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ABSTRACT
Machine learning algorithms in the field of economics and game
theory usually involve computing an intermediate valuation func-
tion from data samples and using this approximate function to
compute desired solution concepts. This approach has several prob-
lems ranging from a high sample complexity to a lack of provable
guarantees about the final solution. In order to avoid these prob-
lems, we explore a new method to learn solution concepts from
data: instead of learning an intermediate valuation function, we
learn the solution concept directly from the samples. This approach
provides an alternative way to approximately learn solution con-
cepts using fewer samples. In addition to this, from our study of
using this approach to learn market equilibria, we find that, in a lot
of settings, it is easier to prove efficiency and fairness guarantees
about the learned solutions.
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1 INTRODUCTION
Consider the following problem: we have a dataset with several
users’ valuations for bundles of items that they purchased in a su-
permarket. We want to use this dataset to allocate goods to users or
set prices for goods such that profits are maximized. The aforemen-
tioned problem is very similar in structure to several problems in
Economics, Game Theory and Fair Division. The standard approach
used to solve this problem is to first learn an approximate valuation
function for each user using the available data and then compute
the optimal allocation for each user with respect to the approxi-
mate valuations. We refer to this approach as indirect learning. This
approach has several problems. First, the underlying function in
most variants of this problem usually has a high sample complexity
and would need an exponential number samples to approximate.
Furthermore, standard function approximating techniques like deep
learning, apart from being time consuming and requiring a large
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amount of computational resources, do not guarantee an approxi-
mate valuation function i.e a function that generalises to new data
points with high probability.

As a result of this, it is not immediately clear whether an accu-
rate solution computed with respect to approximate valuations is
an approximate solution with respect to the accurate valuations.
In addition to this, proving additional guarantees about the final
solutions with respect to efficiency and fairness become close to
impossible in most settings.

In this work, we explore an alternate approach to learning solu-
tion concepts which we refer to as direct learning. In this approach,
instead of learning the valuation function, we learn an approximate
solution concept directly from the data samples. The immediate
advantage that can be seen from this approach is that the final
solution is guaranteed to be an approximate solution. Furthermore,
in several instances, direct learning algorithms are simpler both in
terms of computational complexity as well as sample complexity
than indirect learning algorithms.

For a better understanding of why this may be the case, consider
the problem of finding the global maxima of a function: we have
an unknown function f : Rn 7→ R andm samples
{(x1, f (x1)), (x2, f (x2)), . . . , (xm, f (xm ))} where m is polynomial
in n and we want to find an approximate global maxima of the func-
tion i.e. we want to find an approximate value of argmaxx ∈Rn f (x).
Since the function could be arbitrarily complex, we may not be able
to approximate it using polynomial samples. Therefore, we may not
be able to find an approximate solution using indirect learning. How-
ever, there exists a simple direct learning algorithm for this problem
whichworkswith any function f : output argmaxxi ∈{x1,x2, ...,xm } f (xi ).
This value can be shown to be a probably approximately correct
value of the global maxima of the function [3].

While the above example should provide some intuition about
how direct learning can be applied and why, in some cases, it has
an advantage over indirect learning, the problem of finding a global
maxima is fairly straightforward. In Section 2, we discuss the more
complex problem of learning market equilibria using samples. Be-
fore that, we discuss previous works that use this approach.

1.1 Related Work
Direct Learning for complex solution concepts is a relatively un-
explored area. [1, 2, 5] use direct learning to learn game theoretic
solution concepts from data. Jha and Zick [3] propose a learning
framework for game theoretic solution concepts and analyze the
sample complexity of several solution concepts.

Our work builds on previous research and analyzes the specific
case of Fisher markets with various valuation functions.
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2 LEARNING MARKET EQUILIBIRA FROM
SAMPLES

This section discusses the results in Lev et al. [4]. In this paper, we
consider a Fisher market with a set of players N = {1, 2, . . . ,n} and
a set of indivisible goods G = {д1,д2, . . . ,дk }. Each player has a
budget bi and a valuation function 2G 7→ R+ ∪ {0} which assigns a
value vi (S) to each bundle of goods S ⊆ G.

We assume that the valuation function is unknown but we have
m bundles of goods S = {S1, S2, . . . , Sm } drawn from an unknown
distributionD andwe know each player’s valuation for each bundle
of goods.

An allocation is denoted by (A, ®p) where A = {A1,A2, . . . ,An }
is the allocation vector and ®p is the price vector. Our goal is to
compute an allocation such that it is an approximate equilibrium
with high probability i.e. the probability that a bundle drawn from
the unknown distribution can be afforded by a player who prefers
this bundle to their allocated bundle is low. Mathematically, for any
ϵ > 0, the following condition is satisfied whenm is polynomial in
n and 1

ϵ

Pr
S∼D

[∃i ∈ N ,vi (S) > vi (Ai ) ∧
∑
д∈S

pд ≤ bi ] ≤ ϵ

It is easy to see why this condition approximates the conditions
imposed by theWalrasian Equilibrium. AWalrasian equilibrium sat-
isfies the above condition for all bundles of goods S ∈ 2G whereas
an approximate equilibrium only satisfies the condition with a high
probability for a randomly sampled bundle of goods. We call an
allocation which satisfies the above condition a Probably Approxi-
mately Correct Equilibrium or a PAC Equilibrium.

In addition to computing PAC equilibria in markets, we also
prove efficiency guarantees for the allocations output by our algo-
rithms. We define efficiency as the ratio of the total welfare of our
allocation to the total welfare of the welfaremaximizing equilibrium
allocation i.e.

ERv (A) =

∑n
i=1vi (Ai )∑n
i=1vi (A

∗
i )

where A∗ is the welfare maximizing equilibrium allocation.
We study the computability and efficiency of PAC equilibria in

markets with different classes of common valuation functions and
discuss our findings below.

2.1 Unit Demand Valuations
In markets with unit demand valuations, the value of a bundle
is equal to the value of the most valuable good in the bundle i.e.
v(S) = maxд∈S v({д}). This class of valuation functions can be
efficiently learned in polynomial samples and when all the players
in the market have unit demand valuations, an equilibrium can be
computed in polynomial time. However, we show that an indirectly
learned equilibrium is not guaranteed to be a PAC equilibrium.

We then provide a direct learning algorithm to compute an equi-
librium and show that our algorithm guarantees an efficiency bound
of 1

min{n,k } . We also show that this efficiency bound is tight i.e. no
algorithm can guarantee a better efficiency bound.

Furthermore, We show that, under product distributions and
relatively sparse valuations, our algorithm outputs an allocation
with efficiency 1 with exponentially high probability.

2.2 Additive Valuations
In markets with additive valuations, the value of a bundle is equal
to the sum of the values of every good in the bundle i.e. v(S) =∑
д∈S v({д}).
Additive valuations can be efficiently learned but computing an

equilibrium even when the valuations are known is an open prob-
lem. To work around this, we provide a direct learning algorithm
which may not be market clearing but always outputs a PAC equi-
librium. In addition to this we prove that our algorithm guarantees
an efficiency of 1

k and show that this bound is tight.

2.3 Monotone Submodular Valuations
The class of monotone submodular valuations can be characterized
by three equations. First, the empty set has a value of zero i.e.v(∅) =
0. Second, the function is monotone i.e. if S ⊆ T , then v(S) ≤ v(T ).
Third, the valuation function satisfies the submodular inequality
i.e. for any two sets S,T , we have v(S)+v(T ) ≥ v(S ∪T )+v(S ∩T ).
This class of valuations is a superset of both the class of additive
valuations as well as the class of unit demand valuations.

Monotone submodular valuations cannot be learned efficiently
since they have an exponentially high sample complexity. Therefore,
indirect learning cannot be used here. We provide a direct learning
algorithm for markets with monotone submodular valuations and
show that our algorithm guarantees an efficiency of 1

k . Similar to
previous valuation classes, we show that this bound is tight.

3 CONCLUSION AND FUTUREWORK
Our work shows the potential benefit of directly learning solutions,
instead of learning utility functions and calculating solutions from
them. We study Fisher markets with several valuation function fam-
ilies, and in all of them, use direct learning to construct algorithms
which guarantee generalisation of the final solution to new samples
as well as the highest possible efficiency.

We believe that this work is the tip of the iceberg in showing
how direct learning can help in computing solution concepts in
computer science and economics, directly from the data, without
using the data to construct intermediate steps (such as learning
utility functions). Even in the field of game theory, plenty of prob-
lems are still open – from expanding results to a larger family of
functions (XOS, gross substitutes), to further type of results (e.g.,
other desirable states beyond equilibria). Outside of game theory,
fields like recommender systems and fair division remain to be
explored as well with potential results in both explainability and
fairness.
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