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ABSTRACT
This paper presents an extended abstract for the PhD topic Inducing
Rules about Distributed Robotic Systems for Fault Detection &
Diagnosis. The research focuses on developing novel methods for
fault detection and diagnosis using explainable machine learning.
The main field of application is distributed robotic systems. With
current developments in distributed robot technology, the problem
of detecting and diagnosing faults becomes more complex.
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1 INTRODUCTION
Distributed robotic systems are deployed in multiple fields such as
autonomous warehouses, production lines or logistic. Distributed
robotic systems (or multi-robot systems), can exhibit different be-
haviours. Robots can behave cooperatively or concurrently. De-
tecting and diagnosing faults on a singular robot level has its own
challenges. In a distributed robot system, the problem of fault de-
tection and diagnosis (FDD) is more complex. Faults can appear on
different levels of a robotic system: low-level hardware and soft-
ware faults, higher-level reasoning and planning faults. In order
to maintain safe and continuous operation of robots, faults and
failures need to be detected and diagnosed as early as possible.

Machine learning has evolved into an indispensable technique of
modern computer systems. One drawback of most machine learning
methods is lack of explainability. Explainability should give more
insight into a machine learning model, where the model could give
the user some explanation with regards to why a decision has been
made, what the reasoning behind it is, when and why a method
fails. Efforts are already being made in enhancing machine learning
methods with regards to explainability such as in [7] and [8].

Another area of research where explainability is at the center of
focus is inductive logic programming (ILP) [15]. Models or system
descriptions derived by ILP are comprehensible and interpretable
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since they are in the form of first order predicate rules. What sep-
arates ILP from other machine learning methods is the ability to
incorporate background knowledge into the learning process.

This PhD is interested in combining methods of FDD with ex-
plainable machine learning with a focus on distributed robotic
systems. Developing models for FDD is a tedious task and requires
expert knowledge. The problem of diagnosis in distributed systems
becomes even more complex when considreing all the components
within a system. Detecting, isolating and identifying a fault can
be costly and cause undesired behaviours to the system. If faults
and failures are not diagnosed correctly, the safety and security
of the system can be greatly affected. Another problem that has
to be considered when developing or learning models for FDD is
the hard to find data-sets including faults and failures. For these
reasons, developing methods for aiding developers model complex
systems more efficiently is paramount.

2 RELATEDWORK
In this work, three research fields are relevant and of interest,
namely; collection of consistent data from distributed systems, in-
ductuctive logic programming and fault detection and diagnosis.

2.1 Snapshot Recording
In order to be able to learn models, data needs to be collected. Dis-
tributed robotic systems produce a large amount of data. The prob-
lem with collecting data from distributed systems is consistency. If
data collected about the system is inconsistent, then it is not a true
representation of the system. Different algorithms already exist to
deal with the problem of snapshot recodring [1, 3, 11, 12, 14, 23, 26].
For a more detailed overview of how a distributed system is mod-
elled, refer to [3].

2.2 Inductive Logic Programming
Inductive logic programming (ILP) combines computational logic,
programming and machine learning. It has its roots almost 50 years
ago in Plotkins [20] research on generalization. ILP systems gen-
erate models of systems based on background knowledge (BK),
positive and negative examples using first order logic (FOL). Using
background knowledge distinctively makes ILP a unique method
when learning about systems, since it reasons about facts and state-
ments the same way humans do. Having the ability to invent predi-
cates when needed gives ILP an advantage over current trending
methods of machine learning, since they are explainable through
BK.
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Alongside advancements in probabilistic logic learning [21], the
field of predicate invention and recursion did not advance in a
similar manner [16]. In ILP, predicate invention is the process of
introducing new predicates during the process of searching for a
hypothesis in order to be able to explain the examples. In other
words, predicate invention is the process of finding new concepts
or theories that are not directly observable from the data. Recursion
is used in the process of predicate invention where the problem of
finding a hypothesis is recursively broken down to smaller search
spaces to explain the examples. Dietterich [4] stated that predicate
invention is a fundemental problem in machine learning and that
it has an exponentially high complexity. It is also stated that in-
venting predicates and systematically checking for the significance
of each invented predicate is an extremely hard problem. How-
ever, advancements have been made in the predicate invention and
recursion field which are outlined in [17] and [18] in 2013. The
meta-interpretive learner (MIL) is based on inverse entailment for
grammatical inference of regular languages. MIL presented an effi-
cient method of implementing predicate invention and recursion
for regular and context free grammars via abduction. The invented
predicates are introduced as constants that are represented as exis-
tentially quantified higher-order variables. Examples derived inMIL
are made from a higher-order program, and this results in a first-
order program that can be later substituted into the higher-order
variables. Meta-rules in MIL can be viewed as program specifica-
tions. In order to increase the efficiency of MIL even more, research
was conducted in learning Higher-order dyadic Datalog [18]. Data-
log is also a declarative logic programming language such as Prolog.
Datalog is a subset of Prolog, which is frequently used as a query
language. The learning is restricted to the hypothesis space of logic
programs where there are at most two variables for each predicate,
and in the body up to two atoms. It is shown in the study that H2

2
is sufficiently general to contain the Universal Turing Machine;
therefore, it has sufficient expressibility.

2.3 Fault Detection & Diagnosis
After developing a model of the multi-robot system, fault detection
and diagnosis methods are required to deploy the model online
and compare observations from the actual system with the model.
Applications of machine learning to fault diagnosis of robots al-
ready exist [2, 24, 25]. However, the applications are usually used
to diagnose specific types of faults using machine learning and
require a substantial amount of data to develop an accurate model.
It is not easy to find classified data that is specifically for faults in
different components. Usually faulty data is disregarded and data
sets exist of normal behaviour of components or systems. These
are some of the reasons ILP was chosen as a machine learning
method for this research. The following publications offer more
insight into different methods of FDD [5, 6, 9, 10, 27]. Since ILP is
the chosen method for model development, and from the literature
on FDD, consistency-based diagnosis, which is part of model-based
diagnosis that uses first-order logic to detect and diagnose faults, is
a suitable method to be utilized for this project. Founded by Reiters
[22], consistency-based diagnosis is used in diagnosing systems by
describing the correct behaviour of the components and the way
components interact. CBD uses First Order Logic (FOL) to describe

the behaviour of the system including its components. A model of
a system is then a collection of the FOL statements describing the
behaviour of the components. These models are used to diagnose
the system based on observations of the real system. Describing a
system in terms of its components means that the system can be
decomposable, which can help in fault isolation. A description of
a system can then be split into three main parts [19]; behaviour
of component types, list of components and component structure.
Using CBD to diagnose faults in robots has been done previously
in different studies [28], [13].

3 APPROACH SUMMARY
To achieve the goals of this research, data sets of multi-robot sys-
tems need to be collected. In order to achieve that, a multi-robot
system is being developed using actual hardware. Since we are in-
terested in testing and improving the developed algorithms in real
scenarios, the development of an actual robotic system is preferred
over simulation. Usually in simulation, some aspects are assumed
to be noiseless or static, and not all sensor behaviours can be imple-
mented in simulation. Moreover, considering that we would like to
later on inject some faults into the system such as cutting off power
to some sensors or components and so on, it is more favourable
to do so with actual hardware to capture its behaviour using the
snapshotting algorithms.

From the data collected, ILP can be utilized to develop explainable
models in the form of system descriptions suitable for diagnosis us-
ing consistency-based diagnosis. The models can be later deployed
to the multi-robot system and diagnosis can be run online.

4 OUTLOOK
The expected outcomes of this research can be summarized as fol-
lows: Creation of data-sets of multi-robot system with faults and
failures for the purpose of learning faults. Evaluation of state-of-the-
art inductive logic programming methods on learning multi-robot
system behaviours, from low-level hardware and software com-
ponents, to complex behaviours and planning. Development of
methods to produce explainable system descriptions using ILP, that
can be used for consistncy-based diagnosis. Evaluation of devel-
oped methods on real multi-robot systems and the effectivness of
diagnosing faults and failures.

The PhD project is currently on going and is expected to be com-
pleted by 2023. A lab consisting of multiple single-board computer
robots that mimic the behaviour of robots in a warehouse envi-
ronment is currently being set up to collect data that can be used
for the later stages of the PhD. Once the data-sets are collected,
they will be published along with the findings. The later stages
will comprise of utilizing the collected data to produce explainable
models of the system, then diagnose faults and failures.
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