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ABSTRACT
Egalitarian considerations play a central role in many areas of social

choice theory. Applications of egalitarian principles range from

ensuring everyone gets an equal share of a cake when deciding

how to divide it, to guaranteeing balance with respect to gender or

ethnicity in committee elections. Yet, the egalitarian approach has

received little attention in judgment aggregation—a powerful frame-

work for aggregating logically interconnected issues. We make the

first steps towards filling that gap. We introduce axioms capturing

two classical interpretations of egalitarianism in judgment aggre-

gation and situate these within the context of existing axioms in

the pertinent framework of belief merging. We then explore the

relationship between these axioms and several notions of strat-

egyproofness from social choice theory at large. Finally, a novel

egalitarian judgment aggregation rule stems from our analysis; we

present complexity results concerning both outcome determination

and strategic manipulation for that rule.

KEYWORDS
Social Choice Theory, Judgment Aggregation, Egalitarianism, Strate-

gic Manipulation, Computational Complexity

ACM Reference Format:
Sirin Botan, Ronald de Haan, Marija Slavkovik, and Zoi Terzopoulou. 2021.

Egalitarian Judgment Aggregation. In Proc. of the 20th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online,
May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Judgment aggregation is an area of social choice theory concerned

with turning the individual binary judgments of a group of agents

over logically related issues into a collective judgment [23]. Being

a flexible and widely applicable framework, judgment aggregation

provides the foundations for collective decision making settings in

various disciplines, like philosophy, economics, legal theory, and

artificial intelligence [37]. The purpose of judgment aggregation

methods (rules) is to find those collective judgments that better

represent the group as a whole. Following the utilitarian approach

in social choice, an “ideal" such collective judgment has traditionally

been considered the will of the majority. In this paper we challenge

this perspective, introducing a more egalitarian point of view.

In economic theory, utilitarian approaches are often contrasted

with egalitarian ones [51]. In the context of judgment aggregation,
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an egalitarian rule must take into account whether the collective

outcome achieves equally distributed satisfaction among agents

and ensure that agents enjoy equal consideration. A rapidly grow-

ing application domain of egalitarian judgment aggregation (that

also concerns multiagent systems with practical implications like

in the construction of self-driving cars) is the aggregation of moral

choices [16], where utilitarian approaches do not always offer ap-

propriate solutions [4, 53]. One of the drawbacks of majoritarianism

is that a strong enough majority can cancel out the views of a mi-

nority, which is questionable in several occasions.

For example, suppose that the president of a student union has

secured some budget for the decoration of the union’s office and

she asks her colleagues for their opinions on which paintings to

buy (perhaps imposing some constraints on the combinations of

paintings that can be simultaneously selected, due to clashes on

style). If the members of the union largely consist of pop-art enthu-

siasts that the president tries to satisfy, then a few members with

diverting taste will find themselves in an office that they detest; an

arguably more viable strategy would be to ensure that—as much

as possible—no-one is strongly dissatisfied. But then, consider a

similar situation in which a kindergarten teacher needs to decide

what toys to complement the existing playground with. In that case,

the teacher’s goal is to select toys that equally (dis)satisfy all kids

involved, so that no extra tension is created due to envy, which

the teacher will have to resolve—if the kids disagree a lot, then the

teacher may end up choosing toys that none of them really likes.

In order to formally capture scenarios like the above, this paper

introduces two fundamental properties (also known as axioms) of
egalitarianism to judgment aggregation, inspired by the theory

of justice. The first captures the idea behind the so-called veil of
ignorance of Rawls [56], while the second speaks about how happy

agents are with the collective outcome relative to each other.

Our axioms closely mirror properties in other areas of social

choice theory. In belief merging, egalitarian axioms and merging

operators have been studied by Everaere et al. [28]. The nature of

their axioms is in line with the interpretation of egalitarianism in

this paper, although the twomain properties they study are logically

weaker than ours, as we further discuss in Section 3.1. In resource
allocation, fairness has been interpreted both as maximising the

share of the worst off agent [12] as well as eliminating envy between

agents [31]. In multiwinner elections, egalitarianism is present in

diversity [22] and in proportional representation [2, 20] notions.

Unfortunately, egalitarian considerations often come at a cost.

A central concern in many areas of social choice theory, of which

judgement aggregation does not constitute an exception, is that

agents may have incentives tomanipulate, i.e., to misrepresent their
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judgments aiming for a more preferred outcome [18]. Frequently, it

is impossible to simultaneously be fair and avoid strategic manip-

ulation. For both variants of fairness in resource allocation, rules

satisfying them usually are susceptible to strategic manipulation

[1, 10, 14, 50]. The same type of results have recently been obtained

for multiwinner elections [45, 54]. It is not easy to be egalitarian

while disincentivising agents from taking advantage of it.

Inspired by notions of manipulation stemming from voting the-

ory, we explore how our egalitarian axioms affect the agents’ strate-

gic behaviour within judgment aggregation. Our most important

result in this vein is showing that the two properties of egalitarian-

ism defined in this paper clearly differ in terms of strategyproofness.

Our axioms give rise to two concrete egalitarian rules—one that

has been previously studied, and one that is new to the literature.

For the latter, we are interested in exploring how computationally

complex its use is in the worst-case scenario. This kind of question,

first addressed by Endriss et al. [27], is regularly asked in the lit-

erature of judgment aggregation [5, 25, 47]. As Endriss et al. [26]

wrote recently, the problem of determining the collective outcome

of a given judgment aggregation rule is “the most fundamental

algorithmic challenge in this context”.

The remainder of this paper is organised as follows. Section 2

reviews the basic model of judgment aggregation, while Section 3

introduces our two original axioms of egalitarianism and the rules

they induce. Section 4 analyses the relationship between egalitar-

ianism and strategic manipulation in judgment aggregation, and

Section 5 focuses on relevant computational aspects: although the

general problems of outcome determination and of strategic ma-

nipulation are proven to be very difficult, we propose a way to

confront them with the tools of Answer Set Programming [35].

2 BASIC MODEL
Our framework relies on the standard formula-based model of

judgment aggregation [48], but for simplicity we also use notation

commonly employed in binary aggregation [36].

Let N denote the (countably infinite) set of all agents that can

potentially participate in a judgment aggregation setting. In every

specific such setting, a finite set of agents N ⊂ N of size n ≥ 2

express judgments on a finite and nonempty set of issues (formu-

las in propositional logic) Φ = {φ1, . . . ,φm }, called the agenda.
J(Φ) ⊆ {0, 1}m denotes the set of all admissible opinions on Φ.
Then, a judgment J is a vector in J(Φ), with 1 (0) in position k

meaning that the issue φk is accepted (rejected). J is the antipodal
judgment of J : for all φ ∈ Φ, φ is accepted in J if and only if it is

rejected in J .
A profile J = (J1, . . . Jn ) ∈ J(Φ)n is a vector of individual judg-

ments, one for each agent in a group N . We write J ′ =−i J when

the profiles J and J ′ are the same, besides the judgment of agent i .
We write J−i to denote the profile J with agent i’s judgment re-

moved, and (J , J ) ∈ J(Φ)n+1
to denote the profile J with judgment

J added. A judgment aggregation rule F is a function that maps

every possible profile J ∈ J(Φ)n , for every group N and agenda Φ,
to a nonempty set F (J ) of collective judgments in J(Φ). Note that
a judgment aggregation rule is defined over groups and agendas of

variable size, and may return several, tied, collective judgments.

The agents that participate in a judgment aggregation scenario

will naturally have preferences over the outcome produced by the

aggregation rule. First, given an agent i’s truthful judgment Ji ,
we need to determine when agent i would prefer a judgment J
over a different judgment J ′. The most prevalent type of such

preferences considered in the judgment aggregation literature is

that of Hamming distance preferences [6, 7, 9, 59].
The Hamming distance between two judgments J and J ′ equals

the number of issues onwhich these judgments disagree—concretely,

it is defined as H (J , J ′) =
∑
φ ∈Φ |J (φ) − J ′(φ)|, where J (φ) de-

notes the binary value in the position of φ in J . For example,

H (100, 111) = 2. Then, the (weak, and analogously strict) prefer-

ence of agent i over judgments is defined by the relation ⪰i (where

J ⪰i J
′
means that i’s utility from J is higher than that from J ′):

J ⪰i J
′
if and only if H (Ji , J ) ≤ H (Ji , J

′).

But an aggregation rule often outputs more than one judgment,

and thus we also need to determine agents’ preferences over sets

of judgments.
1
We define two requirements guaranteeing that the

preferences of the agents over sets of judgments are consistent with

their preferences over single judgments. To that end, let ⪰̊i (with

strict part ≻̊i ) denote agent i’s preferences over sets X ,Y ⊆ J(Φ).

We require that ⪰̊i is related to ⪰i as follows:

• J ⪰i J
′
if and only if {J } ⪰̊i {J

′}, for any J , J ′ ∈ J(Φ);
• X ≻̊i Y implies that there exist some J ∈ X and J ′ ∈ Y such

that J ≻i J
′
and {J , J ′} ⊈ X ∩ Y .

The above conditions hold for almost all well-known preference

extensions. For example, they hold for the pessimistic preference
(X ≻pess Y if and only if there exists J ′ ∈ Y such that J ≻ J ′ for
all J ∈ X ) and the optimistic preference (X ≻opt Y if and only if

there exists J ∈ X such that J ≻ J ′ for all J ′ ∈ Y ) of Duggan and

Schwartz [19], as well as the preference extensions of Gärdenfors

[32] and Kelly [41]. The results provided in this paper abstract away

from specific preference extensions.

3 EGALITARIAN AXIOMS AND RULES
This section focuses on two axioms of egalitarianism in judgment

aggregation. We examine them in relation to each other and to

existing properties from belief merging, as well as to the standard

majority property defined below. Most of the well-known judgment

aggregation rules return the majority opinion, when that opinion

is logically consistent [24].
2

Letm(J ) be the judgment that accepts exactly those issues ac-

cepted by a strict majority of agents in J . A rule F is majoritarian
when for all profiles J ,m(J ) ∈ J(Φ) implies that F (J ) = {J }.

Our first axiom with an egalitarian flavour is the maximin prop-
erty, suggesting that we should aim at maximising the utility of

those agents that will be worst off in the outcome. Assuming that

everyone submits their truthful judgment during the aggregation

process, this means that we should try to minimise the distance of

the agents that are furthest away from the outcome. Formally:

1
Various approaches have been taken within the area of social choice theory

in order to extend preferences over objects to preferences over sets of objects —see

Barberà et al. [3] for a review.

2
A central problem in judgment aggregation concerns the fact that the issue-wise

majority is not always logically consistent [48].
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▶ A rule F satisfies themaximin property if for all profiles J ∈

J(Φ)n and judgments J ∈ F (J ) there do not exist judgment

J ′ ∈ J(Φ) and agent j ∈ N such that

H (Ji , J
′) < H (Jj , J ) for all i ∈ N .

Although the maximin property is quite convincing, there are set-

tings like those motivated in the Introduction where it does not

offer sufficient egalitarian guarantees. We thus consider a differ-

ent property next, which we call the equity property. This axiom
requires that the gaps in the agents’ satisfaction be minimised. In

other words, no two agents should find themselves in very different

distances with respect to the collective outcome. Formally:

▶ A rule F satisfies the equity property if for all profiles J ∈

Jn
and judgments J ∈ F (J ), there do not exist judgment

J ′ ∈ J(Φ) and agents i ′, j ′ ∈ N such that

|H (Ji , J
′) − H (Jj , J

′)| < |H (Ji′ , J ) − H (Jj′ , J )| for all i, j ∈ N .

No rule that satisfies either the maximin- or equity property can

be majoritarian.
3
As an illustration, in a profile of only two agents

who disagree on some issues, any egalitarian rule will try to reach a

compromise, and this compromise will not be affected if any agents

holding one of the two initial judgments are added to the profile—in

contrast, a majoritarian rule will simply conform to the crowd.

Proposition 1 shows that it is also impossible for the maximin

property and the equity property to simultaneously hold. Therefore,

we have established the logical independence of all three axioms

discussed so far: maximin, equity, and majoritarianism.

Proposition 1. No judgment aggregation rule can satisfy both the
maximin property and the equity property.

Proof. Take an agenda Φ where J(Φ) consists of the nodes in
the graph below and consider the profile J = (J1, J2). Each edge is

labelled with the Hamming distance between the judgments.

J1 : 110000

J : 010000

J2 : 001100

J ′ : 111111

1

3

4

4

Every aggregation rule satisfying the maximin property will return

{J }, as this judgmentmaximises the utility of the worst off agent—in

this case, agent 2. However every rule satisfying the equity property

will return {J ′}, as this judgment minimises the difference in utility

between the best off and worst off agents. Thus, there is no rule

that can satisfy the two properties at the same time. □

From Proposition 1, we also know now that the two properties of

egalitarianism generate two disjoint classes of aggregation rules. In

particular, in this paper we focus on the maximal rule that meets

each property: a rule F is the maximal one of a given class if, for

every profile J , the outcomes obtained by any other rule in that

class are always outcomes of F too.
4

3
This includes popular rules like the median rule [52]—known under a number of

other names, notably distance-based rule [55], Kemeny rule [24], and prototype rule [49].
4
Of course, several natural refinements of these rules can be defrined, with respect

to various other axiomatic properties that we may find desirable. Identifying and

studying such rules is an interesting direction for future research.

The maximal rule satisfying the maximin property is the rule

MaxHam (see, e.g., Lang et al., 2011). For all profiles J ∈ J(Φ)n ,

MaxHam(J ) = argmin

J ∈J(Φ)
max

i ∈N
H (Ji , J ).

Analogously, we define a rule new to the judgment aggregation

literature, which is the maximal one satisfying the equity property.

For all profiles J ∈ J(Φ)n ,

MaxEq(J ) = argmin

J ∈J(Φ)
max

i, j ∈N
|H (Ji , J ) − H (Jj , J )|.

To better understand these rules, consider an agenda with six issues:

p,q, r ≡ p ∧q, and their negations. Suppose that there are only two

agents in a profile J , holding judgments J1 = (111) and J2 = (010).

Then, we have that MaxHam(J ) = {(111), (010)}, while MaxEq =

{(000), (100)}. In this example, the difference in spirit between the

two rules of our interest is evident. Although the MaxHam rule

is able to fully satisfy exactly one of the agents without causing

much harm to the other, it still creates greater unbalance than the

MaxEq rule, which ensures that the two agents are equally happy

with the outcome (under Hamming-distance preferences). In that

sense, MaxEq is better suited for a group of agents that do not want

any of them to feel particularly put upon, while MaxHam seems

more desirable when a minimum level of happiness is asked for.

MaxHam generalises minimax approval voting [11], which is the

special case without logical constraint on the judgments, meaning

agents may approve any subset of issues. Brams et al. [11] show

that MaxHam remains manipulable in this special case. As finding

the outcome of minimax is computationally hard, Caragiannis et al.

[13] provide approximation algorithms that circumvent this prob-

lem. They also demonstrate the interplay between manipulability

and lower bounds for the approximation algorithm—establishing

strategyproofness results for approximations of minimax.

3.1 Relations with Egalitarian Belief Merging
A framework closely related to ours is that of belief merging [43],

which is concerned with how to aggregate several (possibly incon-

sistent) sets of beliefs into one consistent belief set.
5
Egalitarian

belief merging is studied by Everaere et al. [28], who examine in-

terpretations of the Sen-Hammond equity condition [58] and the

Pigou-Dalton transfer principle [17]—two properties that are log-

ically incomparable.
6
We situate our egalitarian axioms within

the context of these egalitarian axioms from belief merging; we

reformulate these axioms into our framework.

▶ Fix an arbitrary profile J , agents i, j , and any three judgment

sets J , J ′ ∈ J(Φ). An aggregation rule F satisfies the Sen-
Hammond equity property if whenever

H (Ji , J ) < H (Ji , J
′) < H (Jj , J

′) < H (Jj , J )

and H (Ji′ , J ) = H (Ji′ , J
′) for all other agents i ′ ∈ N \ {i, j},

then J ∈ F (J ) implies J ′ ∈ F (J ).

Proposition 2. If a rule satisfies either the maximin property or the
equity property, then it will satisfy the Sen-Hammond equity property.

5
We refer to Everaere et al. [29] for a detailed comparison of the two frameworks.

6
Another egalitarian property in belief merging is the arbitration postulate. We do

not go into detail on this postulate, but refer the reader to Konieczny and Pérez [43].
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Equity Pigou-Dalton

Maximin Sen-Hammond

Figure 1: Dashed lines denote incompatibility, dotted lines
incomparability, and arrows implication relations.

.

Proof (sketch). Let J = (Ji , Jj ) be a profile such thatH (J , Ji ) <
H (J ′, Ji ) < H (J ′, Jj ) < H (J , Jj ), and H (Ji′ , J ) = H (Ji′ , J

′) for all

other agents i ′ ∈ N \{i, j}. Suppose F satisfies the equity property—

if there is some agent i ′ such that |H (Ji , J ) −H (Ji′ , J )| > |H (Ji , J ) −
H (Jj , J )|, then J ∈ F (J ) if and only if J ′ ∈ F (J ), as the maximal

difference in distance will be the same for the two judgments. If this

is not the case, then agents i and j determine the outcome regarding

J and J ′ so clearly J ∈ F (J ) implies J ′ ∈ F (J ). The argument for

other cases proceeds similarly.

If F satisfies the maximin property, then a similar argument tells

us that if membership of J and J ′ in the outcome is determined by an

agent other than i or j , we will either have both or neither. If i , and
j are the determining factor then J ∈ F (J ) implies J ′ ∈ F (J ). □

▶ Given a profile J = (J1, . . . , Jn ) and agents i and j such that:

– H (Ji , J ) < H (Ji , J
′) ≤ H (Jj , J

′) < H (Jj , J ),
– H (Ji , J

′) − H (Ji , J ) = H (Jj , J
′) − H (Jj , J ), and

– H (Ji∗ , J ) = H (Ji∗ , J
′) for all other agents i∗ ∈ N \ {i, j},

F satisfies the Pigou-Dalton transfer principle if J ′ ∈

F (J ) implies J < F (J ).

We refer to these axioms simply as Sen-Hammond, and Pigou-Dalton.
Note that Pigou-Dalton is also a weaker version of our equity prop-

erty, as it stipulates that the difference between utility in agents

should be lessened under certain conditions, while the equity prop-

erty always aims to minimise this distance.

While we can find a rule that satisfies both the equity property

and a weakening of the maximin property, Sen-Hammond, we

cannot do the same by weakening the equity property.

Proposition 3. No judgment aggregation rule can satisfy both the
maximin property and Pigou-Dalton.

Proof. Consider the domain J(Φ) = {J1, J2, J3, J , J
′} with the

following Hamming distances between judgment sets.
7

J J ′ J1 J2 J3
J1 2 4 0 4 8

J2 6 4 4 0 10

J3 6 6 8 10 0

Let J = (J1, J2, J3). If F satisfies the maximin property, {J , J ′} ⊆

F (J ), as we can see from the grey cells. This means Pigou-Dalton is

violated in this profile, as J ′ ∈ F (J ) should imply J < F (J ). □

We summarise the observations of this section in Figure 1.

7
One such domain would be the following, where J = 00000000111, J ′ =

00000001110, J1 = 00000010011, J2 = 00000111000, and J3 = 11111001111.

4 STRATEGIC MANIPULATION
This section provides an account of strategic manipulation with

respect to the egalitarian axioms defined in Section 3. We start off

with presenting the most general notion of strategic manipulation

in judgment aggregation, introduced by Dietrich and List [18].
8
We

assume Hamming preferences throughout this section.

Definition 1. A rule F is susceptible tomanipulation by agent i
in profile J , if there exists a profile J ′ =−i J such that F (J ′) ≻̊i F (J ).

We say that F is strategyproof in case F is not manipulable by any

agent i ∈ N in any profile J ∈ J(Φ)n .
Proposition 4 shows an important fact: In judgment aggregation,

egalitarianism is incompatible with strategyproofness.
9

Proposition 4. If an aggregation rule is strategyproof, it cannot
satisfy the maximin property or the equity property.

Proof. We show the contrapositive. Let Φ be an agenda such

that J(Φ) = {000000, 110000, 111000, 111111}. Consider the follow-

ing two profiles J (left) and J ′ (right).

Ji 111000

Jj 000000

F (J ) 110000

J ′i 111111

J ′j 000000

F (J ′) 111000

In profile J , both the maximin and the equity properties prescribe

that 110000 should be returned as the single outcome, while in pro-

file J ′ they agree on 111000. Because J ′ = (J−i , J
′
i ), and 111000 ≻i

110000, this is a successful manipulation. Thus, if F satisfies the

maximin or the equity property, it fails strategyproofness. □

Strategyproofness according to Definition 1 is a strong require-

ment, which many known rules fail [9]. We investigate two more

nuanced notions of strategyproofness that are novel to judgment

aggregation, yet have familiar counterparts in voting theory.

First, no-showmanipulation happenswhen an agent can achieve a
preferable outcome simply by not submitting any judgment, instead

of reporting a truthful or an untruthful one.

Definition 2. A rule F is susceptible to no-show manipulation
by agent i in profile J if F (J−i ) ≻̊i F (J ).

We say that F satisfies participation if it is not susceptible to no-show
manipulation by any agent i ∈ N in any profile.

10

Second, antipodal strategyproofness poses another barrier against
manipulation, by stipulating that an agent cannot change the out-

come towards a better one for herself by reporting a totally un-

truthful judgment. This is a strictly weaker requirement than full

strategyproofness, serving as a protection against excessive lying.

Definition 3. A rule F is susceptible to antipodal manipulation
by agent i in profile J if F (J−i , Ji ) ≻̊i F (J ).

We say that F satisfies antipodal strategyproofness if it not suscep-
tible to antipodal manipulation by any agent i ∈ N in any profile.

As is the case for participation, antipodal strategyproofness is a

weaker notion of strategyproofness as far as the MaxHam and the

MaxEq rules are concerned.

8
The original definition of Dietrich and List [18] concerned single-judgment

collective outcomes, and a type of preferences that covers Hamming-distance ones.

9
This in in line with Brams et al.’s work on the minimax rule in approval voting.

10
cf. the no-show paradox in voting [30].
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In voting theory, Sanver and Zwicker [57] show that participa-

tion implies antipodal strategyproofness (or half-way monotonicity,
as called in that framework) for rules that output a single winning

alternative. Notably, this is not always the case in our model (see

Example 1). This is not surprising, as obtaining such a result in-

dependently of the preference extension would be significantly

stronger than the result by Sanver and Zwicker [57]. We are, how-

ever, able to reproduce this relationship between participation and

strategyproofness in Theorem 1, for a specific type of preferences.

Example 1. We present a rule that satisfies participation but violates
antipodal strategyproofness. The other direction admits a similar
example, and is thus omitted. Note that the rule demonstrated is quite
unnatural for simplicity of the presentation.

Consider an agenda Φ with J(Φ) = {00, 01, 11}.11 We construct
an anonymous rule F that is only sensitive to which judgments are
submitted and not to their quantity:

F (00) = F (11) = F (01, 00) = F (00, 11) = {01, 11};
F (01) = {00, 11}; F (01, 11) = F (01, 00, 11) = {01}.

For the pessimistic preference, no agent can be strictly better off by ab-
staining. However, compare the profiles (01, 00) and (01, 11): agent 2
with truthful judgment 00 can move from outcome {01, 11} to out-
come {01}, which is strictly better for her.

While the two axioms are independent in the general case, par-

ticipation implies antipodal strategyproofness (Theorem 1) if we

stipulate that

• X ≻̊i Y if and only if there exist some J ∈ X and J ′ ∈ Y
such that J ≻i J

′
and {J , J ′} ⊈ X ∩ Y .

If a preference satisfies the above condition, we say that it is decisive.
This condition gives rise to a preference extension equivalent to the

large preference extension of Kruger and Terzopoulou [44]. Note that
a decisive preference is not necessarily acyclic—in fact, it may even

be symmetric. The interpretation of such a preference extension

is slightly different than the usual one; when we say that a rule

is strategyproof for a decisive preference where both J ≻̊ J ′ and
J ′ ≻̊ J hold, we mean that no agent i with J ≻̊i J

′
and no agent j , i

with J ′ ≻̊j J will ever have an incentive to manipulate.

Using Lemma 1, we can now prove a result analogous to the one

in voting theory, to give a complete picture of how these axioms

relate to each other in judgment aggregation.

Lemma 1. For judgment sets J , J ′ and J ′′: H (J , J ′) > H (J , J ′′), if
and only if H (J , J ′) < H (J , J ′′).

Proof. For judgment sets J , J ′ ∈ J(Φ), H (J , J ′) =m −H (J , J ′).

Suppose H (J , J ′) > H (J , J ′′). Then H (J , J ′) = m − H (J , J ′) < m −

H (J , J ′′) = H (J , J ′′). The other direction is analogous. □

Theorem 1. For decisive preferences over sets of judgments, partici-
pation implies antipodal strategyproofness.

Proof. Working on the contrapositive, suppose that F is suscep-

tible to antipodal manipulation. We will prove that F is susceptible

to no-show manipulation too. We know that there exists i ∈ N

such that F (J−i , Ji ) ≻̊i F (J−i , Ji ), for some profile J . This means

11
For other agendas we can simply take the rule to be constant.

that there exist J ′ ∈ F (J−i , Ji ) and J ∈ F (J−i , Ji ) with J ′ ≻i J .
Equivalently,

H (Ji , J
′) < H (Ji , J ) (1)

Next, consider a judgment J ′′ ∈ F (J−i ).

If H (Ji , J
′′) < H (Ji , J

′), then F is susceptible to no-show manip-

ulation by agent i in the profile (J−i , Ji ).

Otherwise, H (Ji , J
′) ≤ H (Ji , J

′′). Then Lemma 1 implies that

H (Ji , J
′′) ≤ H (Ji , J

′). So, together with Inequality (1), we have that

H (Ji , J
′′) < H (Ji , J ). This means that F is susceptible to no-show

manipulation by agent i in the profile (J−i , Ji ). □

We next prove that any rule satisfying the maximin property is

immune to both no-showmanipulation and antipodal manipulation

(Theorem 2), while this is not true for the equity property (Proposi-

tion 5).
12

We emphasise that the theorem holds for all preference
extensions. These results—holding for two independent notions

of strategyproofness—are significant for two reasons. First, they

bring to light the conditions under which we can have our cake and

eat it too, simultaneously satisfying an egalitarian property and

a degree of strategyproofness. In addition, they provide a further

way to distinguish between the properties of maximin and equity:

the former is better suited in contexts where we may worry about

the agents’ strategic behaviour.

Theorem 2. The maximin property implies participation and an-
tipodal strategyproofness.

Proof. We prove the participation case; the proof for antipodal

strategyproofness is analogous, and utilises Lemma 1.

Suppose for contradiction that F is a rule that satisfies the max-

imin property but violates participation. Then there must exist

agent i ∈ N and profile J where Ji is agent i’s truthful judg-

ment, such that F (J−i ) ≻̊i F (J ). This means there must exist judg-

ments J ∈ F (J ) and J ′ ∈ F (J−i ) such that J ′ ≻i J and {J , J ′} ⊈
F (J ) ∩ F (J−i ). Because agent i strictly prefers J ′ to J , this means

that H (Ji , J ) > H (Ji , J
′). We consider two cases.

Case 1: Suppose that J ′ < F (J ). Let k be the distance between the

worst off agent’s judgment in J and any judgment in F (J ). Then,

H (Jj′ , J ) ≤ k for all j ′ ∈ N . (2)

We know that H (Ji , J
′) < k because H (Ji , J ) ≤ k , and agent i

strictly prefers J ′ to J . From Inequality (2), this means that if J ′ is
not among the outcomes in F (J ), there has to be some j ∈ N \ {i}
such that H (Jj , J

′) > k . But all judgments submitted to profile (J−i )

by agents inN \{i} are at most at distance k from J by Inequality (2),
so J would be selected by any rule satisfying the maximin property

will select J as an outcome of F (J−i )—instead of J ′, a contradiction.
Case 2: Suppose that J ′ ∈ F (J ), meaning that J < F (J−i ). Analo-

gously to the first case, let k ′ be the distance between the worst off

agent’s judgment in J−i and any judgment in F (J−i ). Then,

H (Jj′ , J
′) ≤ k ′ for all j ′ ∈ N \ {i}. (3)

Moreover, since J < F (J−i ), it is the case that

H (Jj , J ) > k ′ for some j , i . (4)

12
Note that antipodal strategyproofness is not so weak a requirement that is

immediately satisfied by all “utilitarian” aggregation rules. For example, the Copeland

voting rule fails the analogous axiom of half-way monotonicity [60].
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In profile J , Inequalities (3) and (4) still hold. In addition, we have

that H (Ji , J ) > H (Ji , J
′) because agent i strictly prefers J ′ to J . So,

for any rule satisfying the maximin property, judgment J ′ will be
better as an outcome of F (J ) than J , a contradiction. □

Corollary 1. The rule MaxHam satisfies antipodal strategyproofness
and participation.

Proposition 5. No rule that satisfies the equity property can satisfy
participation or antipodal strategyproofness .

Proof. The following is a counterexample for antipodal strate-

gyproofness. A similar one exists for participation.

Consider the following profiles J = {Ji, Jj } and J
′ = (J−i , Ji ). We

give a visual representation of the profiles as well as the outcomes

under an arbitrary rule F that satisfies the equity principle. We

specify that J(Φ) = {00110, 00000, 01110, 10000, 11111}.

F (J )
00110

J

Ji : 00000

Jj : 01110

F (J ′)
10000

J ′

J ′i : 11111

J ′j : 01110

4

4

1

4

2

1

Each edge from an individual judgment to a collective one is labelled

with the Hamming distance between the two. It is clear that agent i
will benefit from her antipodal manipulation, as her true judgment

is much closer to the singleton outcome in J ′ than the singleton

outcome in J . □

Corollary 2. The rule MaxEq does not satisfy participation or an-
tipodal strategyproofness.

5 COMPUTATIONAL ASPECTS
We have discussed two aggregation rules that reflect desirable egal-

itarian principles—i.e., the MaxHam and MaxEq rules—and exam-

ined whether they give agents incentives to misrepresent their

truthful judgments. In this section we consider how complex it is,

computationally, to employ these rules, and the complexity of de-

termining whether an agent can manipulate the collective outcome.

The MaxHam rule has been considered from a computational

perspective before [38–40]. Here, we extend this analysis to the

MaxEq rule, and we compare the two rules with each other on their

computational properties. Concretely, we primarily establish some

computational complexity results; motivated by these results, we

then illustrate how some computational problems related to these

rules can be solved using the paradigm of Answer Set Programming.

5.1 Computational Complexity
We investigate some computational complexity aspects of the judg-

ment aggregation rules that we have considered. Due to space con-

straints, we will only describe the main lines of these results—for

full details, we refer to the accompanying Appendix.
13

Consider the problem of outcome determination (for a rule F ).
This is most naturallymodelled as a search problem,where the input

consists of an agenda Φ and a profile J = (J1, . . . , Jn ) ∈ J(Φ)n . The
problem is to produce some judgment set J∗ ∈ F (J ). We will show

that for the MaxEq rule, this problem can be solved in polynomial

13
The appendix is available here [8].

time with a logarithmic number of calls to an oracle for NP search

problems (where the oracle also produces awitness for yes answers—

also called an FNP witness oracle). Said differently, the outcome

determination problem for the theMaxEq rule lies in the complexity

class FPNP[log,wit]. We also show that the problem is complete for

this class (using the standard type of reductions used for search

problems: polynomial-time Levin reductions).

Theorem 3. The outcome determination problem for the MaxEq rule
is FPNP[log,wit]-complete under polynomial-time Levin reductions.

Proof (sketch). Membership in FPNP[log,wit] can be shown

by giving a polynomial-time algorithm that solves the problem by

querying an FNPwitness oracle a logarithmic number of times. The

algorithm first finds the minimum value k of maxJ ′, J ′′∈J |H (J , J ′)−
H (J , J ′′)| by means of binary search—requiring a logarithmic num-

ber of oracle queries. Then, with one additional oracle query, the al-

gorithm can produce some J∗ ∈ J(Φ)with maxJ ′, J ′′∈J |H (J∗, J ′)−
H (J∗, J ′′)| = k .

To show FPNP[log,wit]-hardness, we reduce from the problem

of finding a satisfying assignment of a (satisfiable) propositional

formula ψ that sets a maximum number of variables to true [15,

42]. This reduction works roughly as follows. Firstly, we produce

3CNF formulas ψ1, . . . ,ψv where each ψi is 1-in-3-satisfiable if

and only if there exists a satisfying assignment of ψ that sets at

least i variables to true. Then, for each i , we transform ψi to an

agenda Φi and a profile Ji such that there is a judgment set with

equal Hamming distance to each J ∈ Ji if and only ifψi is 1-in-3-
satisfiable. Finally, we put the agendas Φi and profiles Ji together

into a single agenda Φ and a single profile J such that we can—from

the outcomes selected by the MaxEq rule—read off the largest i for
which ψi is 1-in-3-satisfiable, and thus, the maximum number of

variables set to true in any truth assignment satisfyingψ . This last
step involves duplicating issues in Φ1, . . . ,Φv different numbers of

times, and creating logical dependencies between them. Moreover,

we do this in such a way that from any outcome selected by the

MaxEq rule, we can reconstruct a truth assignment satisfying ψ
that sets a maximum number of variables to true. □

The result of Theorem 3 means that the computational complexity

of computing outcomes for theMaxEq rule lies at theΘ
p
2
-level of the

Polynomial Hierarchy. This is in line with previous results on the

computational complexity of the outcome determination problem

for the MaxHam rule—De Haan and Slavkovik [39] showed that a

decision variant of the outcome determination problem for the Max-

Ham rule is Θ
p
2
-complete. Notably, our proof (presented in detail in

the Appendix) brings out an intriguing fact about a problem that

is at first glance simpler than outcome determination for MaxEq:

Given an agenda Φ and a profile J , deciding whether the minimum

value of maxi, j ∈N |H (Ji , J ) −H (Jj , J )| for J ∈ J(Φ)—the value that

the MaxEq rule minimizes—is divisible by 4, is Θ
p
2
-complete (Propo-

sition 6). Intuitively, merely computing the minimum value that is

relevant for MaxEq is Θ
p
2
-hard.

Proposition 6. Given an agenda Φ and a profile J , deciding whether
the minimal value of maxJ ′, J ′′∈J |H (J∗, J ′) − H (J∗, J ′′)| for J∗ ∈

J(Φ), is divisible by 4, is a Θp
2
-complete problem.
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Interestingly, we found that the problem of deciding if there exists a

judgment set J∗ ∈ J(Φ) that has the exact same Hamming distance

to each judgment set in the profile is NP-hard, even when the

agenda consists of logically independent issues.

Proposition 7. Given an agendaΦ and a profile J , the problem of de-
ciding whether there is some J∗ ∈ J(Φ)with maxJ ′, J ′′∈J |H (J∗, J ′)−
H (J∗, J ′′)| = 0 is NP-complete. Moreover, NP-hardness holds even
for the case where Φ consists of logically independent issues—i.e.,

the case where J(Φ) = {0, 1}m for somem.

This is also in line with previous results for the MaxHam rule—

De Haan [38] showed that computing outcomes for the MaxHam

rule is computationally intractable even when the agenda consists

of logically independent issues.

Next, we turn our attention to the problem of strategic manipula-

tion. Specifically, we show that—for the case of decisive preferences

over sets of judgment sets—the problem of deciding if an agent i
can strategically manipulate is in the complexity class Σ

p
2
.

Proposition 8. Let ⪰ be a preference relation over judgment sets that
is polynomial-time computable, and let ⪰̊ be a decisive extension over
sets of judgment sets. Then the problem of deciding if a given agent i
can strategicallymanipulate under theMaxEq rule—i.e., givenΦ and J ,
deciding if there exists some J ′ =−i J withMaxEq(J ′) ≻̊i MaxEq(J )—
is in the complexity class Σp

2
.

Proof (sketch). To show membership in Σ
p
2
= NPNP, we de-

scribe a nondeterministic polynomial-time algorithm with access to

an NP oracle that solves the problem. The algorithm firstly guesses

a new judgment set J ′i for agent i in the new profile J ′, and guesses

a truth assignment witnessing that J ′i is consistent. Then, using

the NP oracle, it computes the values k = maxJ ′, J ′′∈J |H (J , J ′) −
H (J , J ′′)| and k ′ = maxJ ′, J ′′∈J ′ |H (J , J ′) − H (J , J ′′)|, for J ∈ J(Φ).
Finally, it guesses some J , J ′ ∈ J(Φ), together with truth assign-

ments witnessing consistency, and it verifies that J ′ ≻i J , that J
′ ∈

MaxEq(J ′), that J ∈ MaxEq(J ), and that {J , J ′} ⊈ MaxEq(J ) ∩

MaxEq(J ′). Since these final checks can all be done in polynomial

time—using the previously guessed and computed information—one

can verify that this can be implemented by an NPNP algorithm. □

This Σ
p
2
-membership result can straightforwardly be extended to

other variants of the manipulation problem (e.g., no-show manipu-

lation and antipodal manipulation) and to other preferences, as well

as to the MaxHam rule. Due to space constraints, we omit further

details on this. Still, we shall mention that results demonstrating

that strategic manipulation is very complex are generally more

welcome than analogous ones regarding outcome determination.

If manipulation is considered a negative side-effect of the agents’

strategic behaviour, knowing that it is hard for the agents to materi-

alise it is good news.
14

In Section 5.2 we will revisit these concerns

from a different angle.

5.2 ASP Encoding for the MaxEq Rule
The complexity results in Section 5.1 leave no doubt that applying

our egalitarian rules is computationally difficult. Nevertheless, they

also indicate that a useful approach for computing outcomes of the

14
Note though that hardness results regarding manipulation of our egalitarian

rules remain an open question.

MaxEq rule in practice would be to encode this problem into the

paradigm of Answer Set Programming (ASP) [35], and to use ASP

solving algorithms. ASP offers an expressive automated reasoning

framework that typically works well for problems at the Θ
p
2
level

of the Polynomial Hierarchy. In this section, we will show how this

encoding can be done—similarly to an ASP encoding for the Max-

Ham rule [40]. Due to space restrictions, we refer to the literature

for details on the syntax and semantics of ASP—e.g., [33, 35].

We use the same basic setup that De Haan and Slavkovik [40] use

to represent judgment aggregation scenarios—with some simplifica-

tions and modifications for the sake of readability. In particular, we

use the predicate voter/1 to represent individuals, we use issue/1

to represent issues in the agenda, and we use js/2 to represent

judgment sets—both for the individual voters and for a dedicated

agent col that represents the outcome of the rule.

With this encoding of judgment aggregation scenarios, one can

add further constraints on the predicate js/2 that express which

judgment sets are consistent, based on the logical relations between

the issues in the agenda Φ—as done by De Haan and Slavkovik [40].

We refer to their work for further details on how this can be done.

Now, we show how to encode the MaxEq rule into ASP, similarly

to the encoding of the MaxHam rule by De Haan and Slavkovik [40].

We begin by defining a predicate dist/2 to capture the Hamming

distance D between the outcome and the judgment set of an agent A.

1 dist(A,D) :- voter(A),

D = #count { X : issue(X), js(col ,X), js(A,-X) }.

Then, we define predicates maxdist/1, mindist/1 and inequity/1

that capture the maximum Hamming distance from the outcome

to any judgment set in the profile, the minimum such Hamming

distance, and the difference between the maximum and minimum

(or inequity), respectively.
2 maxdist(Max) :- Max = #max { D : dist(A,D) }.

3 mindist(Min) :- Min = #min { D : dist(A,D) }.

4 inequity(Max -Min) :- maxdist(Max), mindist(Min).

Finally, we add an optimization constraint that states that only

outcomes should be selected that minimize the inequity.
15

5 #minimize { I@30 : inequity(I) }.

For any answer set program that encodes a judgment aggregation

setting, combined with Lines 1–5, it then holds that the optimal

answer sets are in one-to-one correspondence with the outcomes

selected by the MaxEq rule.

Interestingly, we can readily modify this encoding to capture

refinements of the MaxEq rule. An example of this is the refinement

that selects (among the outcomes of the MaxEq rule) the outcomes

that minimize the maximum Hamming distance to any judgment

set in the profile. We can encode this example refinement by adding

the following optimization statement that works at a lower priority

level than the optimization in Line 5.

6 #minimize { Max@20 : maxdist(Max) }.

5.3 Encoding Strategic Manipulation
We now show how to encode the problem of strategic manipulation

into ASP. The value of this section’s contribution should be viewed

from the perspective of the modeller rather than from that of the

15
The expression “@30” in Line 5 indicates the priority level of this optimization

statement (we used the arbitrary value of 30, and priority levels lexicographically).
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agents. That is, even if we do not wish for the agents to be able

to easily check whether they can be better off by lying, it may be

reasonable, given a profile of judgments, to externally determine

whether a certain agent can benefit from being untruthful.

We achieve this with the meta-programming techniques devel-

oped by Gebser et al. [34]. Their meta-programming approach

allows one to additionally express optimization statements that are

based on subset-minimality, and to transform programs with this

extended expressivity to standard (disjunctive) answer set programs.

We use this to encode the problem of strategic manipulation.

Due to space reasons, we will not spell out the full ASP encoding

needed to do so. Instead, we will highlight the main steps, and de-

scribe how these fit together. We will use the example of MaxEq, but

the exact same approach would work for any other judgment aggre-

gation rule that can be expressed in ASP efficiently using regular

(cardinality) optimization constraints—in other words, for all rules

for which the outcome determination problem lies at the Θ
p
2
level

of the Polynomial Hierarchy. Moreover, we will use the example of

a decisive preference ≻̊ over sets of judgment sets that is based on a

polynomial-time computable preference ≻ over judgment sets. The

approach can be modified to work with other preferences as well.

We begin by guessing a new judgment set J ′i for the individual i
that is trying to manipulate—and we assume, w.l.o.g., that i = 1.

7 voter(prime (1)).

8 1 { js(prime (1),X), js(prime (1) ,-X) } 1 :- issue(X).

Then, we express the outcomes of the MaxEq rule, both for the

non-manipulated profile J and for the manipulated profile J ′, using

the dedicated agents col (for J ) and prime(col) (for J ′). This is done

exactly as in the encoding of the problem of outcome determination

(so for the case of MaxEq, as described in Section 5.2)—with the

difference that optimization is expressed in the right format for the

meta-programming method of Gebser et al. [34].

We express the following subset-minimality minimization state-

ment (at a higher priority level than all other optimization con-

straints used so far). This will ensure that every possible judgment

set J ′i will be considered as a subset-minimal solution.

9 _criteria (40,1,js(prime (1),X)) :- js(prime (1),S).

10 _optimize (40,1,incl).

To encode whether or not the guessed manipulation was suc-

cessful, we have to define a predicate successful/0 that is true if

and only if (i) J ′ ≻i J and (ii) J and J ′ are not both selected as out-

come by the MaxEq rule for both J and J ′, where J ′ is the outcome

encoded by the statements js(prime(col),X) and J is the outcome

encoded by the statements js(col,X). Since we assume that ≻i is

computable in polynomial time, and since we can efficiently check

using statements in the answer set whether J and J ′ are selected
by the MaxEq rule for J and J ′, we know that we can define the

predicate successful/0 correctly and succinctly in our encoding.

For space reasons, we omit further details on how to do this.

Then, we express another minimization statement (at a lower

priority level than all other optimization statements used so far),

that states that we should make successful true whenever possible.

Intuitively, we will use this to filter our guessed manipulations that

are unsuccessful.

11 unsuccessful :- not successful.

12 successful :- not unsuccessful.

13 _criteria (10,1, unsuccessful) :- unsuccessful.

14 _optimize (10,1,card).

Finally, we feed the answer set program P that we constructed so

far into the meta-programming method, resulting in a new (disjunc-

tive) answer set program P ′ that uses no optimization statements

at all, and whose answer sets correspond exactly to the (lexico-

graphically) optimized answer sets of our program P . Since the

new program P ′ does not use optimization, we can add additional

constraint to P ′ to remove some of the answer sets. In particular, we

will filter out those answer sets that correspond to an unsuccessful

manipulation—i.e., those containing the statement unsuccessful.

Effectively, we add the following constraint to P ′:

15 :- unsuccessful.

As a result the only answer sets of P ′ that remain correspond exactly

to successful manipulations J ′i for agent i .
The meta-programming technique that we use uses the full dis-

junctive answer set programming language. For this full language,

finding answer sets is a Σ
p
2
-complete problem [21]. This is in line

with our result of Proposition 8 where we show that the problem

of strategic manipulation is in Σ
p
2
.

The encoding that we described can straightforwardly be modi-

fied for various variants of strategic manipulation (e.g., antipodal

manipulation). To make this work, one needs to express additional

constraints on the choice of the judgment set J ′i . To adapt the en-

coding for other preference relations ≻̊, one needs to adapt the

definition of successful/0, expressing under what conditions an

act of manipulation is successful.

Our encoding using meta-programming is relatively easily un-

derstandable, since we do not need to tinker with the encoding of

complex optimization constraints in full disjunctive answer set pro-

gramming ourselves—this we outsource to the meta-programming

method. If one were to do this manually, there is more space for

tailor-made optimizations, which might lead to a better perfor-

mance of ASP solving algorithms for the problem of strategic ma-

nipulation. It is an interesting topic for future research to investi-

gate this, and possibly to experimentally test the performance of

different encodings, when combined with ASP solving algorithms.

6 CONCLUSION
We have introduced the concept of egalitarianism into the frame-

work of judgment aggregation and have presented how egalitarian

and strategyproofness axioms interact in this setting. Importantly,

we have shown that the two main interpretations of egalitarianism

give rise to rules with differing levels of protection against manip-

ulation. In addition, we have looked into various computational

aspects of the egalitarian rules that arise from our axioms, in a

twofold manner: First, we have provided worst-case complexity

results; second, we have shown how to solve the relevant hard

problems using Answer Set Programming.

While we have axiomatised two prominent egalitarian principles,

it remains to be seen whether other egalitarian axioms can provide

stronger barriers against manipulation. For example, in parallel to

majoritarian rules, one could define rules that minimise the distance

to some egalitarian ideal. Moreover, as is the case in judgment

aggregation, there is an obvious lack of voting rules designed with

egalitarian principles in mind. We hope this paper opens the door

for similar explorations in voting theory.
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