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ABSTRACT

Machine learning and artificial intelligence models that interact
with and in an environment will unavoidably have impact on this en-
vironment and change it. This is often a problem as many methods
do not anticipate such a change in the environment and thus may
start acting sub-optimally. Although efforts are made to deal with
this problem, we believe that a lot of potential is unused. Driven
by the recent success of predictive machine learning, we believe
that in many scenarios one can predict when and how a change
in the environment will occur. In this paper we introduce a blue-
print that intimately connects this idea to the multiagent setting,
showing that the multiagent community has a pivotal role to play
in addressing the challenging problem of changing environments.
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1 INTRODUCTION

In the past decade machine learning (ML) has made some major
technological advancements and this has impact on our daily lives.
This may be through the more apparent interactions with a virtual
assistant or face recognition in smart devices, but it may also affect
our lives in non-obvious ways. Tasks like credit score rating, judicial
decisions or hiring employees are jobs that might be, and sometimes
are already, done by an autonomous system [3, 23, 39].

However, many of the deployed systems are trained on a fixed
data set, and tend to be very brittle to changes in the data distri-
bution [24, 30, 43]. Changes in the data distribution are also called
a distribution/environment shift, or, more general, a non-stationary
distribution/environment [32]. For instance, the sensors of a clean-
ing robot may vary (due to wear) over time, and start sending
slightly different signals. Similarly, an automatic traffic light con-
troller might observe mostly light traffic, while being suddenly
exposed to a traffic rush. In both cases one can imagine, that a
system starts acting sub-optimally if it does not adapt. Therefore,
a large number of different approaches (see Section 2) try to deal
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with such shifts, by detecting and reacting to the changes. However,
in many cases we might be able to actually observe information
that is correlated with the shifts. E.g., the sensor that wears down
may do so in a certain, predictable, pattern.

For that reason we advocate that we should not merely react, but
pro-actively predict shifts. If our decisions in turn also influence
the environment, one can even imagine to steer the environment
to our benefit through those decisions. This principle becomes
in particular important regarding the following: in many cases,
the decisions of an intelligent system will end up influencing the
very same environment that it is trying to predict and control.
For instance, imagine a company that employs a machine learning
model to predict consumer demand. The model predicts that hipster
consumers will like a particular fashion item, and subsequently the
company saturates the market with this item. It will make initially
good sales, but over time demand will wear off, because of the
decision to saturate the market. Similarly we should expect that
people adjust their behavior and/or digital profile the more that
these are subject to high stake predictions by machine learning
models.

As such, the more intelligent systems we employ, the more im-
portant it is to properly account for the influence of our predictions
and actions. If we fail to do this, the best case is that the system
starts acting sub-optimally. In the worst case, people’s lives and
rights are immorally and/or illegally affected [31]. Preventing this
failure of technology is one of the major challenges that Al faces. In
order to prevent these problems we argue that we need to consider
the bigger picture of how intelligent systems interact with their
environments: we want them be able to predict and even steer the
way that the environment changes over time.

In this paper we bring a blueprint forward that does exactly that:
predicting and steering distributional shifts. The main contribution
of the proposed blueprint is to intimately connect distributional
shifts to the multiagent systems (MAS) setting. The essence of the
idea is to think of distributional shifts as observable entities, which
we model as adversarial agents with limited power, in case we have
no information about those entities. This leads to robust models,
and with this blueprint any type of advancement in MAS directly
helps to address the challenge of non-stationary environments.
With this we believe that the MAS community should play a key
role in addressing the influence of machine learning models and
non-stationary environments.

2 CURRENT APPROACHES

The principle the blueprint exploits is to leverage information that
allows us to predict and steer the shift of the environment. The
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problem with this approach is, that the shift in the environment
does not necessarily follow a Markovian behavior, meaning that
we might have to remember a large portion of the past to predict
the shift. If, for example, we want to predict how an advertising
policy influences consumer demand, we would expect that not only
the most recent advertisement plays a role.

Current approaches avoid this problem in different ways. Active
approaches [8, 13, 15, 37, 40] follow a detect and adapt procedure,
meaning that they are actively searching for changes and then try to
adapt to it. Other methods follow a passive approach, as for example
forgetting old data after a while [9, 35]. Both lines of thought have
the problem that they can handle changes only after the fact, while
on top of that we need a large sample size to detect and/or adapt
to shifts. In comparison, our proposal is pro-active. We propose
to predict shifts and in particular estimate the influence of our
own action on the environment. The closest approach to actually
predicting the shift and acting upon that is the hidden-mode Markov
decision process [11, 19]. That model assumes that the environment
acts in discrete modes, as for example a peak-hour and non-peak-
hour mode. It makes, however, the critical assumption that the mode
is an exogenous variable [10]: i.e., the mode can influence the system
under concern, but is not influenced by it. Thus it does not allow
us to model the influence of the ML system on the environment.

To move from detecting to predicting changes was also recently
proposed in the context of Bayesian change point detection [2],
motivating us further that predicting changes is a viable solution.

Finally, environment shifts are one of the main concerns for MAS
themselves, as different agents will more often than not introduce
a shift [21]. In relation to that, our proposal is not a method to
solve the multiagent problem, but rather cast any situation with
a non-stationary environment as a multiagent system, and then
exploit the knowledge and tools of the MAS community.

3 THE BLUEPRINT

Before we formalize the blueprint we go through a motivating
example, from which our framework will be derived. Imagine we
are a big fashion company and have to think about our next product
line. To take an optimal decision, we ideally would be able to predict
future customer demand. Our own state and action space might be
arbitrarily big, but there will be only a few factors in that state and
action space that will influence the consumer demand, see Figure
1 for a schematic depiction. Furthermore one can assume that a
change in the demand of the consumer does not affect all of our
factors. This scenario motivates the following blueprint:

(1) Introduce a shift variable E for any source of non-stationarity.

(2) Identify what relevant factors are influenced by E.

(3) Identify what relevant factors do influence E.

(4) Predict E given the relevant factors.

(5) Leverage this information to take optimal decisions.

3.1 Formalization Through fPOSG

To formalize the blueprint we use a specific framework that can cap-
ture our idea in a general manner, the factored partially observable
stochastic games (fPOSG) [5, 20].
Definition 3.1. A fPOSG is a tuple (S, b, {A;},{O0;}, P, {Ri}),
where i € {1, -, n} indicates the number of agents present.
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Figure 1: Depiction of the fashion example. Blue factors are
the ones influencing the consumer demand (shift predictive
variables), while red factors are influenced by the demand
(shift destination variables).

o S is the set of environment states and they allow for a fac-
torization as S = [‘[}C:1 Si.

e b0 is an initial distribution over the states from S.

e A; is the action space of agent i. We define A := []]_, A; as
the joint action space.

e O; is the set of possible observations for agent i. We define
O =[] Oi as the joint observation space.

o P denotes a set of transition probabilities. In particular, given
a joint action a € A, states s, s’ € S and a joint observation
0€ 0, P(s’,0] a,s) is the probability of receiving observa-
tions o and transition to state s’, given that the agents took
the joint action a while being in state s.

® R; : § X A — Ris areward function for agent i.

With the previous definitions in play we may introduce the
framework for the blueprint, the environment shift game. The simple,
yet powerful, idea is to add a distinguished set of variables to a
fPOSG, which will allow us to take shifts into account and plan our
own actions accordingly.

Definition 3.2. An environment shift game (ESG) is a fPOSG, with
a state space factorization 8’ = 8 X E, where E is a distinguished
set of state factors E, the shift variables, and two agents: the deci-
sion maker, and an adversarial nature, who can influence the shift
variables. The latter’s reward function is the additive inverse of the
decision maker such that the game is zero-sum.

The idea behind this definition is that, to the extent possible,
we model the change in distribution. However, to deal with the
limitations of our knowledge about the evolution of the shift, we
apply worst-case reasoning (by assuming an adversarial nature)
to derive robust plans [14, 18, 25, 38]: essentially the (‘optimal’)
solution of a zero-sum game yields a minimax policy for the decision
maker that provides security level payoff [36, 41]. Moreover, such a
policy would optimally use any local information (‘shift prediction
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variables’ below) to anticipate the impact of the shifts. Of course,
in case we are be able to fully specify the probabilistic model of
the shift variables, no adversarial agent is needed and the model
reduces to a (single-agent) POMDP [28, 42], which is just a special
case of ESG.! Also, the definition above can be further generalized
when useful: the decision maker could actually comprise a team of
decision makers, and in some cases it may be reasonable to assume
that the incentives are not strictly competitive.

Going back to the previous fashion example, we make the fol-
lowing connections and additional definitions. Figure 1 shows the
ESG structure, with the given states, actions, rewards and the shift
variable, given by the consumer demand. The decision maker takes
actions within the company, while the adversarial nature models
the unknowable aspects of consumer demand. Importantly, we may
limit the capabilities of the adversary: e.g., it may perhaps decrease
demand for some products, but not for all. This way we can encode
domain knowledge and assumptions in the model.? Note that
the states (and similarly the actions and rewards) have different
factors, the product stocks, the value etc. In Figure 1 we identify in
blue the factors that influence the shift, and in red the factors that
are influenced by the shift. Factors that influence the shift variable
and factors that are influenced by it will be respectively called shift
predictive variables and shift destination variables.

Note that the shift variables E may correspond to concrete con-
cepts like ‘demand’ or ‘rush hour’, but they can also be abstract
without a clear meaning: in that case E receives its meaning im-
plicitly by appropriately influencing the shift destination variables
(i.e., being a parent of them in a dynamic Bayesian network rep-
resentation [5], cf. Figure 2 and 3). Also, we do not exactly need
to know why the shift happens. Precisely when we do not fully
understand how E evolves, we can avoid specifying exact transition
probabilities and instead specify intervals for the adversary of what
are deemed possible probabilities.

This approach is much more powerful than just an ad hoc adap-
tation to a shift. If a sensor wears down, and we follow a detect and
adapt procedure, we constantly need to monitor and it will always
take time and samples to detect the shift. The sequential reasoning
of the ESG agents, however, will consider the relationship between
time and wear, and thus the decision maker can anticipate the wear
even before it happens. The optimal solution of an ESG is thus one
that can pro-actively predict shifts before they happen and
adapt to them, and steer the environment to our benefit .

3.2 Modeling other Settings as an ESG

Many settings with a non-stationary component may actually be
modeled as an ESG. We illustrate this with two examples: the co-
variate shift and the online learning setting.

Covariate Shift. The term covariate shift is used for shifts in
supervised learning problems, where we use a prediction rule
f(X) = Y [32]. Specifically, covariate shift assumes that the dis-
tribution of the covariate P(X) changes, while P(Y | X) remains
stationary, where Y is a response variable.

!We still refer to these as ESGs, since they still model the shift as an explicit entity.
In many settings it is known that we cannot efficiently learn without any assumptions
[1, 45], and only restrictions on the adversary make that possible [9, 35].
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Figure 2: Covariate shift in the activity prediction example.
The shift variable are the seasons, the shift predictive vari-
able is the time, and our action is the model we want to use.

For example, think about the following setting: during the year
we feed recent pictures of activities from the same location to a
machine learning model f, and it is supposed to predict the type of
activity seen. Throughout the seasons the performance R(f) of our
model is affected due to seasonality. During winter, it frequently
predicts images with a lot of white as skiing, and this leads to good
results. However, moving to spring and summer this bias does not
work anymore, since lot of white in the picture refers rather to
indoor sports. In short, the biases in the dataset are not stationary
throughout the seasons.

This setting can easily be captured as an ESG, as illustrated in
Figure 2. The seasonality could be encoded in the p; variables in
the ESG, and the optimal solution would essentially encode when
we need to retrain our classifier. We could even expand the model
by explicitly incorporating the costs involved with retraining.

Online Learning. Online learning is a sequential decision making
task, where in each round t we have to choose an action a; and
another (possibly) adversarial agent choses an action n;. Based on
those two actions we receive and observe a reward (or loss) [(a;, n¢).
Formulating this in our framework, we generalize the setting a bit.
Our loss will depend on the shift variable e; and the action of the
adversary can merely influence e; with its own actions n;, see
Figure 3 for a graphical depiction. This allows us to model all types
of strength of the adversary, it might be able to directly chose e;,
or, for example, may only be able to only change e; slightly. Asa
motivating example we consider investing in the stock market. In
each time step our action is to distribute our wealth on the possible
assets, and the return is the gain in wealth. The return of each asset
underlies a constant shift, which is captured in the ESG.

3.3 Stationarity of the ESG

A very important question the reader may ask now: does an ESG
solve the non-stationarity problem? The answer is: sometimes. It is
actually clear that it cannot always solve the problem. If any part of
the environment may change without regularity, there is no hope
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Figure 3: Online learning in the stock market. Most impor-
tantly, our own actions may influence the shift, and this is
modeled by the arrow from a; to p;. The shift predictive vari-

able p; may contain more information, i.e. everything we
consider relevant for prediction.
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that we can account for it pro-actively. We may still adapt to it
after the fact, but this is then rather in the spirit of the active or
passive methods discussed in Section 2. Imagine, however, a traffic
scenario that has truly only two types of transitions; one for peak-
hour P1(s” | s) and one for non-peak-hour P,(s” | s). Without
further knowledge, the switching of the environment between %4
and P is outside of our control. If we, however, introduce the shift
variable e, which corresponds to the time of the day, we can turn
the transitions into one stationary process P (s’ | s, e).

But even if the ESG does not manage to turn a non-stationary
problem into a stationary one, the approach is still valid and useful.
If, in the traffic example, the transition functions also depend on a
factor that we do not account for, say which day of the year it is,
we still have a more benign problem if we at least take the time of
the day into account. One may see the ESG as the attempt to turn a
non-stationary problem, as good as possible, into a stationary one.

3.4 Solving the ESG

While the ESG is a very powerful framework, it is a non-trivial case
of POSG and solving POSGs is far from easy [20]. Nevertheless, we
believe that there is hope that the communities working on game
theory and multiagent reinforcement learning (MARL) will further
integrate (e.g., [29]) and provide the insights and tools to make ESGs
practical. For instance, there has been tremendous progress in zero-
sum games [4, 17, 46] like poker [6, 7]. Moreover, we may be able
to exploit various forms of structure, such as common-knowledge
[29], forms of observability [22], or structure of value function [44].
Similarly we may reduce the complexity of the problem with ap-
proaches like influence-based abstraction [33, 34]. The idea directly
connects to our proposed framework, as one assumes that we have
a local model of observed variables, and non-local variables that are
unobserved, which correspond to the shift variable. Approximat-
ing the influence with neural networks or other types of function
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approximation is a promising direction to deal with scalability [12].
Additionally, we have seen tremendous empirical progress by com-
bining deep learning with MARL [7, 16, 26, 27], which gives hope
that we would be able to derive useful policies in practice.

4 SUMMARY AND CHALLENGES

In this paper we formalized a framework, called the environment-
shift game, that intimately connects a large class of non-stationary
problems to the MAS setting. We argued that this offers a num-
ber of opportunities: we can pro-actively predict shifts before
they happen and adapt to them, we can steer the environ-
ment to our benefit and we can encode domain knowledge
and assumptions (inductive bias) in the model. One may also
wonder if a trained ESG can be useful to explain certain behavior of
an Al system, as it tries to capture the hidden dynamics between the
Al and its environment. There are, however, still many challenges
that need addressing before we can deploy realistic ESGs:

Learning the model will be a big technical challenge. However,
even if learning ‘the correct’ model might be impossible in the near
future, learning approximate models may be feasible. We envision
that this will be a better approach than ignoring the shift altogether.
In certain scenarios one may also be able to perform a sensitivity
analysis, to decide which parts of the model are crucial to model
exactly, and which parts may be approximated.

Scalability of the action space may pose another technical
challenge in some ESGs. In the covariate shift setting from Figure 2,
for example, the action of the decision maker could be the selection
of an entire classifier. Dealing with such complex action spaces
might be difficult and a number of questions arise: Can we select
good (candidate model) action subsets? Can we integrate super-
vised learning as a manner of action selection in a principled way?
Can we exploit modularity of machine learning models, perhaps
leading to factored action spaces? We may, for example, share parts
between different models that are not affected by the distribution
shift, for example certain layers of a neural network. Considering
ethical implications in the context of ESGs is a topic that has to
be addressed before deploying them. As pointed out earlier, the ESG
will use the actions to steer the environment in a desired direction.
This steering is only implicit, so in some cases it may be very hard
to control what the long-term effect on the environment actually is.
In cases where societal values, as fairness, safety or other, are part
of the environment, it becomes critical to study the effect that the
actions have on the environment. On the other hand, we can see the
influence on the environment as a chance. If we align the societal
values with the reward the system receives, an ESG should take
actions that will create long-term benefits towards those values.
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