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ABSTRACT
Transportation systems of the future can be best modeled as multi-
agent systems. A number of coordination protocols such as au-
tonomous intersection management (AIM), adaptive cooperative 
tra�c light control (TLC), cooperative adaptive cruise control (CACC), 
among others have been developed with the goal of improving the 
safety and e�ciency of such systems. The overall goal in these 
systems is to provide behavioral guarantees under the assumption 
that the participating agents work in concert with a centralized (or 
distributed) coordinator. While there is work on analyzing such 
systems from a security perspective, we argue that there is lim-
ited work on quantifying trustworthiness of individual agents in a 
multi-agent system. We propose a framework that uses an epistemic 
logic to quantify trustworthiness of agents, and embed the use of 
quantitative trustworthiness values into control and coordination 
policies. Our modi�ed control policies can help the multi-agent 
system improve its safety in the presence of untrustworthy agents 
(and under certain assumptions, including malicious agents). We 
empirically show the e�ectiveness of our proposed trust framework 
by embedding it into AIM, TLC, and CACC platooning algorithms. 
In our experiments, our trust framework accurately detects attack-
ers in CACC platoons; mitigates the e�ect of untrustworthy agents 
in AIM; and trust-aware TLC and AIM reduce collisions in all cases 
compared to the vanilla versions of these algorithms.
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1 INTRODUCTION
Multi-agent systems (MASs) consist of multiple, interacting, in-
telligent cyber-agents [2, 8, 26], and the successful behavior of a 
MAS typically depends on safe coordination between the agents. 
For autonomous and mobile MASs, such as those found in ground 
transportation systems or in unmanned aerial vehicles comprising 
avionic systems, coordination may be used to endow greater safety
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over human-operated agents or to improve the e�ciency of the sys-
tem (e.g. tra�c throughput or increasing the sensing range) or both.
For instance, in the context of tra�c light control or autonomous
intersection management [11], the goal is to improve the through-
put of tra�c intersections in a safe fashion, for tra�c consisting
of a mixture of human-driven, semi-autonomous and autonomous
vehicles [5, 27]. Similarly, there is work on cooperative adaptive
cruise control where the objective is to improve tra�c� ow and
fuel consumption while ensuring collision-freedom [15, 23].

An important consideration for MASs is to achieve safe and e�-
cient coordination when the MAS consists of a mixture of trusted
and untrusted agents. Here, being trustworthy can encapsulate dif-
ferent things: (i) the agent follows the commands of the coordinator
to a high degree of precision, (ii) the agent reports its state (e.g.
position, velocity) with consistent accuracy, or (iii) the agent is not
malicious, i.e. it does not purposefully engage in behavior that can
endanger system safety. For instance, vehicle platooning systems
require AI strategies to analyze platoon members and evaluate their
degree of trustworthiness in order to avoid attacks that can lead to
accidents. In the works of [6, 13, 14], researchers take the front col-
lision warning, lane departure warning, and autonomous braking
system into consideration to construct a trust evaluation frame-
work. However, these approaches analyze individual vehicles in
isolation and do not account for communication and co-operation
among vehicles. Moreover, in these approaches, the system can
only react to only one malicious attack. When the platoon system
is attacked by multiple malicious agents, the system can be de-
ceived and led to a catastrophic state. Existing trust frameworks
are ad hoc, which makes it di�cult to apply them universally. In
this paper, we propose a universal framework based on a logical
characterization of trust that allows us to quantify trust in individ-
ual agents in a systematic fashion. Our framework considers both
short-term and long-term behavioral histories of agents to quantify
their trustworthiness.

We envision a cloud-based (or edge-based) architecture where
trust values for agents are stored in a secure fashion, AND where
authenticated decision-making nodes (such as centralized or dis-
tributed coordinators) are able to access trust values for agents to
make real-time decisions. Through quantitative trustworthiness
scores, we are able to perform trust-aware decision-making, where
a coordinator is able to explore trade-o�s between safety and ef-
�ciency when orchestrating coordination for a mixture of trusted
and untrusted agents. Our main contributions are as follows:

• We propose a framework to mathematically quantify trustwor-
thiness of agents in MASs using the formalism of subjective logic.
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Figure 1: a. A trust framework where the centralized trust manager
A keeps inspecting target agents X. b. A does not directly inspect
X but relies on distributed trust authorities �, which may or may
not be trustworthy. c. Both A and � directly inspect X.

We propose that an agent’s trustworthiness is updated using
long-term and short-term observations of the agent’s behavior.

• We provide a trust-aware decision-making framework that uses
the quanti�ed trust values to choose coordination policies that
achieve the desired trade o� between safety and e�ciency.

• We demonstrate the feasibility and applicability of the proposed
trust framework by applying it in three MASs: cooperative adap-
tive cruise control (CACC)-based platoons, an autonomous inter-
section management (AIM) system, and a reinforcement learning-
based tra�c light control (TLC) system. With minimum mod-
i�cation of existing MASs (e.g., AIM, TLC), we can formulate
trust-aware decision-making strategies and achieve better per-
formance.

2 QUANTIFYING TRUST IN MAS
In MASs, such as air/drone tra�c control system [7, 17], adaptive
cruise control system [16], multi-agent autonomous tra�c man-
agement [4], and even federated learning [19] in machine learning,
the safety and behavior of one or a subset of agents a�ects the
e�ciency and safety of the whole system. Such systems usually
are vulnerable to agents that are untrustworthy for various reasons
including operating defects, uncertain operating environments or
purposeful malice. In these cases, a subjective measurement is a
must to identify untrustworthy agents. Therefore, we propose a
trust quanti�cation framework based on Subjective Logic (SL) [18].
Our framework interprets agent-behaviors and assigns a trustwor-
thiness score to the agents.

To explain the basic idea, we assume that the MAS is endowed
with a secure and trusted observer known as the trust manager (de-
noted as A) that observes the behavior of agents, extracts knowl-
edge (opinion in SL parlance) from observations (evidence in SL
parlance) and computes the agents’ trustworthiness. We now pro-
vide the de�nitions required for the calculation of trustworthiness
in our proposed trust framework. Given a trust manager A and
a speci�ed agent - in a MAS, let 1A- denote the belief mass that
A has in - , let 3A- denote the disbelief mass, let DA

- denote the
uncertainty mass, and 0A- denote the base rate. Intuitively, the belief

and disbelief loosely correspond to the probabilities of an agent
being trustworthy and untrustworthy. Uncertainty represents the
lack of evidence to support any speci�c probability, e.g., DA

- = 1
represents we know nothing about agent’s behavior and by default,
with chance of 0A- = 0.5, it can be trustworthy.

De�nition 2.1 (Opinion [18]). In SL, a binomial opinion, A

- =
{1A- ,3A- ,DA

- ,0A- } represents the opinion of an observer A about
- , where 1A- , 3A- , DA

- , and 0A- are as previously de�ned, and 1A- +

3A- + DA

- = 1 for 0A- 2 [0, 1] and base rate is akin to a prior.

De�nition 2.2 (Trustworthiness [8, 18]). The trustworthiness of -
assessed by A is de�ned as ?A- = 1A- + DA

- ⇤ 0
A

- , where 1A- , DA

-
and 0A- are as de�ned previously, and ?A- 2 [0, 1].

De�nition 2.3 (Evidence [18]). Given a behavioral property i , a
positive evidence A quanti�es the satisfaction of the property i by a
behavior of- as observed byA, a negative evidence B quanti�es the
violation of i by the observed behavior of - . A binomial opinion
is formed using evidences based on the principle that A contributes
to the belief mass and B contributes to disbelief mass using the
following equations:

1A- =
A

A + B + l
, 3A- =

B

A + B + l
, DA

- =
l

A + B + l
, (1)

where l = 2 is a default non-informative prior weight.

Fig. 1a shows our proposed trust-aware MAS consisting of a
centralized manager A that keeps inspecting agents and updates
their trustworthiness ?A- ,8- 2 X (where X represents the set of

all agents) based on time-varying, A

- ,8- 2 X (which are updated
based on observed evidences A or B). Instead of keeping a record
of all past evidence histories, i.e., A and B , we keep a hash tableH
that records (long-term) opinions of X and use a cumulative fusion
operator [18] to merge established (long-term) opinions and newly
observed (short-term) opinions.1

De�nition 2.4 (Cumulative Fusion Operator). Let us assume a
long-term opinion about agent- ,, A

- , is calculated based on previ-
ous observations A [0,C�g ] and B [0,C�g ] from time 0 to C�g , and newly
observed evidences A [C�g,C] and B [C�g,C] form a short-term opinion

,
⇢
- . The updated opinion takes evidences from time period [0, C],

which is equivalent to the cumulative fusion of, A

- and, ⇢
- :

,
A

-  ,
A⇧⇢
- =,

A

- �,
⇢
- . (2)

See Supplementary Materials Section A for derivation details. 2
In addition to the centralized trust authority A, there are also

distributed trust authorities � that help inspect agents and collect
evidence as shown in Fig. 1b. The existence of � enlarges the ob-
servation range, increases the observation frequency, and relaxes
the requirement that A needs to directly inspect agents. � keeps
local trust records of covered agents and sends updates to A regu-
larly. For example, in tra�c systems, local road side units inspect
1Assume short- and long-term opinions are established by evidences (A1, B1) and
(A2, B2) , which are observed in non-overlapping time periods. Applying cumulative
fusion to combine opinions is equivalent to summing up evidences (A1, B1) and (A2, B2) .
2Supplementary Materials can be found in this link https://drive.google.com/drive/
folders/1gxEYtS_v3HLyZ7outQiM-bdQIvmt0VFe?usp=sharing.
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vehicles and report to the department of motor vehicles. To merge
the (long-term) opinions from A and �, we use cumulative fusion
operator:, A

-  ,
A⇧�
- . Note that, in our trust framework,A can

operate alone without helpers � due to the assumption that A can
directly inspect agents as shown in Fig. 1a.

We assume that A is always trustworthy, and � may or may
not be trustworthy. For example, in a tra�c system, if road side
units serve as �, then they usually are trustworthy. However, if
vehicles serve as �, for example, if the trailing vehicle reports to A

about leader vehicle, then � can be untrustworthy and their trust
evaluations may not be trustworthy. To deal with such scenarios,
A applies a discounting factor [18] to take �’s own trustworthiness
into consideration when relying �’s evaluations.3

De�nition 2.5 (Discounting Operator). Assume A would like to
develop trust in - and A relies on � for evidence collection and
opinion/trust evaluation. A’s opinion about � is represented as
,

A

� , and �’s opinion about - is, �
- . Based on the combination

of A’s trust in � and �’s opinion about - , A updates its opinion
about - using the discounting operator ⌦:

,
[A;�]
- =,

A

� ⌦,
�
- . (3)

Complete mathematical derivations of discounting operator ⌦ is
given in Supplementary Material section B., [A;�]

- is a short-term
opinion. To merge with the long-term opinion, A

- , substituting
,

⇢
- with, [A;�]

- in Eq. 2 generates the designated result. In cases
where there are both A and � as shown in Fig. 1c, or there are
multiple � inspecting the target agent - at the same time, we need
to have a way to merge multiple short-term opinions together. We
can make use of the averaging fusion operator in SL to take the
average of two opinions observed at the same time [18].4

De�nition 2.6. Subject to trust authorities A and �, and a speci-
�ed agent - in a multi-agent system, assume bothA and � inspect
- in the same time period [C � g,C ] and � may or may not be trust-
worthy. A and � develop opinions to - as, A

- , and, �
- , respec-

tively. The short-term opinion about - combines both authorities’
opinions via an averaging fusion operator �:

,
A⇧[�;�]
- =,

A

- �,
[�;�]
- . (4)

Detailed math equations of averaging fusion operator ⌦ can be
found in Supplementary Materials Section C. If distributed author-
ity � is trustworthy then Eq. 4 is simpli�ed as, A⇧�

- =,
A

- �,
�
- .

If the observing authorities are both distributed authorities, namely
�1 and �2, then Eq. 4 reads:, [�;�1 ]⇧[�;�2 ]

- . Then to merge with
long-term history of - , use cumulative fusion operator de�ned
in De�nition 2.4. A demonstration example of our proposed trust
framework in tra�c systems is shown in Fig. 2, which correspond-
ing to the scenario in Fig. 1c.

To demonstrate how the proposed trust framework works in
di�erent applications, we� rst show its feasibility in the context of
CACC platoons (Section 3) where the distributed trust authorities
3Assume �’s trustworthiness is ?A

� , then A discounts �’s opinions by ?A

� .
4Assume two short-term opinions are established by evidences (A1, B1) and (A2, B2) ,
which are observed in the same time periods. Applying averaging fusion to combine
opinions is equivalent to take average of evidences (A1, B1) and (A2, B2) .

Figure 2: A trust framework in tra�c systems. A and � keep in-
specting the target vehicle - . Both road side units and other vehi-
cles adjacent to - serve as �. If we assume road side units are trust-
worthy, then the opinion updating equation can be simpli�ed as
,

A

-  (,
�1
- �,

[A;�2 ]
- �,

A

- ) �,
A

- , where on the left hand side,
the�rst ,

A

- in the bracket is short-term opinion, and the second
,

A

- is a long-term opinion extracted from H.

are not necessarily trustworthy. We show with simulation results
that our trust-based attack detection can accurately detect attackers.

To demonstrate how to extend existing control policies to be
trust-aware, we provide two case studies regarding intersection
management. We consider situations where trustworthy distributed
authorities are appreciated but not necessary. The� rst case study
in Section 4, is of the Autonomous Intersection Management (AIM)
protocol [27], where we show how to modify AIM to a trust-aware
version called AIM-Trust. Here, we empirically demonstrate that
AIM-Trust can achieve an e�ective trade o� between throughput
and safety (de�ned as freedom from collisions). The second case
study in Section 5 uses a coordination policy learned using rein-
forcement learning (RL) for tra�c light control (TLC). We augment
the TLC policy with trust-awareness in a minimal fashion, and
show that the collision rate decreases in all scenarios involving
vehicles with mixed trustworthiness values.

3 TRUST-BASED MALICIOUS ATTACKER
DETECTION IN CACC PLATOONS

3.1 CACC Platoons
Recent advances in vehicle-to-everything (V2X) communication
have enabled the development of platooning to save energy, im-
prove e�ciency, and ensure safety [6]. In a platoon, a chain of
vehicles equipped with V2X sense the surroundings and maintain a
constant inter-vehicle space. The head vehicle controls the platoon
by broadcasting its kinematic data, such as its designated velocity
E , and inter-vehicle space 3 . The member vehicles follow the head
vehicle’s instructions and use beacons from other platoon members
to control velocity and inter-vehicle space. 5

5Beacon messages containing vehicle information are communicated by vehicles to
increase cruise stability [14].
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3.2 Attacker Model
Various CACC (platoon) attacks have been proposed in the litera-
ture, including jamming attacks, V2X data injection [3] and sensor
manipulation attacks [28]. Attack defense models such as misbehav-
ior detection has also been studied [14]. In this case study, we aim
to detect attackers in platoons, so the core of our attacker model
is that attackers gain control over vehicles and their actions are
observable by participants. In order to detect adversarial behavior,
we focus on V2X data injection attacks: acceleration data injections.

3.3 Trust-based Attacker Detection Model

Figure 3: Trust-based attacker detection model with single and bi-
directional trust evaluations.

We now demonstrate how to apply our trust framework to de-
tect attackers in CACC platoons. We assume a centralized trust
authority A that maintains a trustworthiness table H . Such an
authority could either be a cloud-based service or an edge com-
puting node. We assume that the head vehicle is the leader and A

only directly inspects leader to reduce inspection intensity. We also
assume that each vehicle - serves as a distributed trust authority
� and reports to A when evaluating the adjacent vehicles; and it is
also a target, when the adjacent vehicles evaluate - . Since � can
be untrustworthy, when it reports to A, we apply the discounting
operator de�ned in Eq. 3, De�nition 2.5. Assume the long-term trust
histories of- and and its successor and predecessor vehicles �1 and
�2 are,

A

- ,, A

�1 , and,
A

�2 , respectively. �1 and �2 use sensors to
get accurate information including sensed inter-vehicle distances
x-�1

, x-�2
and sensed- ’s speed sp-�1

, sp-�2
. Therefore, they evaluate

- and the resulting short-term trust/opinions are, �1
- and, �2

- .
Then the short-term opinion about - reads:

,
[A;�1 ]
- �,

[A;�2 ]
- = (,

A

�1 ⌦,
�1
- )�(,

A

�2 ⌦,
�2
- ) . (5)

After combining the long-term opinion, the opinion about - reads:
,

A

-  (,
[A;�1 ]
- �,

[A;�2 ]
- ) �,

A

- . This bi-directional trust eval-
uation takes information from both the vehicles that are right before
and after the target vehicle as illustrated in Fig. 3. To reduce commu-
nication intensity, this trust evaluation can be downgraded to single
directional as shown in the top half of Fig. 3. In single-directional
trust evaluation, each vehicle is only evaluated by its direct prede-
cessor �. Hence, the opinion update equation of vehicle - takes a

simpli�ed version:, A

-  ,
[A;�]
- �,

A

- = (,
A

� ⌦,
�
- ) �,

A

- .
We assume that in both single and bi-directional evaluations, the
head vehicle’s predecessor is the trustworthy A.

In fact,, �
- is evidence-based and now we present how to derive

evidences. A vehicle gains accurate position and velocity informa-
tion of its adjacent vehicles via sensors, and the reported infor-
mation from beacons (of other vehicles). Therefore, vehicles as �
measure evidence using a set of rules to determine if the adjacent
vehicle is trustworthy based on the assumption that the sensor data
is always accurate. In what follows, we use i , k , and b to denote
behavioral properties in an appropriate formalism such as Signal
Temporal Logic (STL) [22]. For brevity, we omit a detailed expla-
nation of STL; in our notation, (x- , C) |= i denotes that starting
from time C , the behavior x- satis�es i , and (x- , C) |= G[C1,C2 ]i
indicates that the formula i holds at all times between C + C1 and
C + C2. A set of platoon-speci�c rules determines positive (A ) and
negative (B) evidence:

A = A + 1 if (x- , C) |= i ^ (sp- , C) |= k ^ (jk- , C) |= b ;
B = B + 1 otherwise. (6)

i ⌘ G[C1,C2 ]
�
|x-

(C ) � 3 |  &B?024 ^ |x-
(C ) � x-

� (C ) | &B?024
� (7)

k ⌘ G[C1,C2 ]
�
|sp- (C ) � E |  &B?443 ^ |sp- (C ) � sp-� (C ) | &B?443

� (8)

b ⌘ G[C1,C2 ]

⇣
jk-

(C )  & 9:=4BB ^ |jk-
(C ) � jk-

� (C ) | & 9:=4BB

⌘
(9)

Eq. 6 indicates that the reported inter-space of - from beacons, x- ,
should not deviate from the requested 3 by more than &B?024 in
time interval [C + C1, C + C2], where C1 and C2 are hyper parameters.
Similarly, reported x- should not deviate from the sensed x-� by
more than &B?024 . Similar rules apply for speed sp- and the jerk
value jk- , which we estimate by taking the di�erence between
the accelerations values for the last and current beacons. High jerk
values or abrupt change in acceleration are a safety risk [14].

3.4 Experiments
3.4.1 Experiment Setup. We experiment with 10-vehicle platoons
and there exists 0CC 2 [1, 2, 3] attacker(s) that are randomly located
in the member vehicles. Attacker setup can be found in Supple-
mentary Materials Section D.1. We test our trust-based attacker
detection models (both single and bi-directional) with acceleration
injection attacks. We generate synthetic acceleration data for mem-
ber vehicles and evaluate trust opinions in real time. Evaluated
trust values are saved inH for long-term record after each trip.

3.4.2 Experimental Results. Fig. 4 shows the experimental results
of the single-directional trust model. Trust values of attackers de-
crease when they perform acceleration attacks. Since our trust
framework is aware of long-term history, if no record in H , the
initial opinion about vehicle is set to {0, 0, 1, 0.5}, where uncertainty
takes its maximum 1 to represent the fact that we don’t know any-
thing (before trip 1). If a vehicle has no history and performs an
attack in the beginning of its� rst trip, then its trust value decreases
very fast, e.g., vehicle 1, 2, 3 in trip 1. If a vehicle has good history,
and performs an attack or behaves dangerously, then its trust value
also decreases but with relatively low rate, e.g., vehicle 9 in trip 5.
This is because our framework calculates trustworthiness based on
both long-term and short-term history. The longer a vehicle keeps
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Figure 4: Single-directional attacker detection experimental results. A 10-vehicle platoon completes 6 trips. Assume in the� rst trip all vehicles
are new to the trust system and do not have trust record. Their records in H start building from trip 1 and are used in the following trips. The
sine waves are required accelerations, and the fuzzy parts are acceleration attacks performed by vehicles.

Figure 5: Bi-directional attacker detection experimental results. A 10-vehicle platoon completes 2 adjacent trips and attackers 1, 2, and 3
perform similar accelerations attacks. a. All vehicles do not have trust history in H. b. Only attacker vehicles have moderate histories in H

with trust value 0.25. c. Only attacker vehicles have bad histories with trust value 0.05.

a good record, the slower the penalty comes. On the contrary, when
a vehicle with bad history behaves dangerously, its trust value will
decrease by a large margin, e.g., vehicle 3 in trip 6.

Fig. 5 shows results of the bi-directional trust model. Di�erent
historical trust record of attackers results in di�erent trust values.
When attackers with no or moderate histories perform attacks,
the trust evaluations and degradation in Fig. 5a-b are similar in
Fig. 4. When attackers with bad histories perform good in the
current trip, they will gain trust slowly as shown in Fig. 5c. Note
that the middle attacker V2 gains trust slower than V1 and V3
because in our bi-directional trust model, V2’s evaluators are also
untrustworthy, hence their evaluations are discounted by their own
trustworthiness.

3.5 Discussion
Our attacker detection model combines long- and short-term trust-
worthiness history and takes distributed authorities’ own trustwor-
thiness into consideration to enable detection of multiple attackers
in platoons. One improvement could be di�erentiating the danger
level of attackers by manipulating Eq. 6. A more dangerous behav-
ior (e.g., a behavior leads to crash) should be penalized more than a
less dangerous behavior. With this consideration, we will make the
trust-based attacker detection be more comprehensive and e�cient
in follow-up works, such as trust-aware distance control in CACC

platoons. In addition, involving trustworthy RSUs is always helpful
but costly. With the long-term trust history, vehicles can choose
platoons controlled by more trustworthy head vehicles when join-
ing and forming platoons, which is also a meaningful direction in
platoon research. In this section we demonstrate the possibility and
feasibility of our trust framework, and provide backbones for future
works to build on. In the following sections, we will demonstrate
how to use the calculated trust values in control policies.

4 TRUST-AWARE AUTONOMOUS
INTERSECTION MANAGEMENT (AIM)

4.1 AIM
The intersection tra�c in AIM is a simpli�ed version of real-world
intersection tra�c. Fig. 6a illustrates a four-way intersection exam-
ple with three lanes in each road leading to the intersection area
I (marked by the white dotted rectangle). A vehicle - 2 X on
the road traveling to but not yet entering I is on the AIM map
M. The operating procedure of AIM starts from - entering M

and communicating with intersection manager (IM) A by send-
ing a request W- , i.e., vehicle identi�cation number, vehicle size,
predicted arrival time, velocity, acceleration, arrival and departure
lanes. A then calculates the trajectory of - and makes a grant or
reject decision and sends the decision back to - . A rejects W- if
there is a con�ict in the simulated trajectories. If A approves W- ,
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Figure 6: a. A four-way intersection. b. Space-time bu�er examples.
Color-shaded areas represent the bu�ers for each vehicles. Trust-
worthy vehicles have tight bu�er since they are expected to fol-
low the instructions with small error. Untrustworthy vehicles have
large bu�er because it is highly likely that they would act di�er-
ently than instructions. Dark red areas represent collision warning
in simulated trajectories. In this case the vehicles will not be per-
mitted to enter the intersection and their requests are rejected.

- is responsible for following the instruction to enter and drive
through I. In the case of rejection, - has to resend the request and
wait for further instructions [12].

Important assumptions that AIM makes are as follows. (i) For all
- 2 X, they follow the instructions of A strictly with a range of
error tolerance. This restriction guarantees safety by simulating the
trajectories and rejecting the con�icted requests. (ii) For all - 2 X,
they are all attached with a static bu�er size, which indicates the
time-space reservation of the vehicle. The trajectories are de�ned
as con�icted if the bu�ers of two vehicles are overlapped (marked
as dark red in Fig. 6b, and the shaded area represents the bu�er of
each vehicle). The larger the bu�er size, the higher the safety, and
the lower the e�ciency or throughput. Note that in conventional
AIM, all vehicles’ bu�er sizes are set to be 1 and this preserves the
collision-free because of assumption (i). However, in real world
scenarios, assumption (i) is invalid since some of the new drivers
or even malicious autonomous agents would act recklessly and not
follow the instructions. This leads to collisions inI and furthermore,
small static bu�er size in assumption (ii) intensi�es the situation.

4.2 RL-based AIM (AIM-RL)
In order to determine optimal bu�er sizes for trustworthy and un-
trustworthy agents to avoid collisions, we use RL to explore the
unknown environment. In this section, we de�ne the RL formu-
lation (deep Q-learning [24, 25]) including de�nitions of states,
actions, and rewards, of our proposed RL-based AIM, AIM-RL. In
deep Q-learning, the neural network is approximating a Q-learning
table, where each entry in the table is updated by @(BC ,0C )  
@(BC ,0C ) + U [AC+1 + W max0 @(BC+1,0) � @(BC ,0C )] [10], where BC is
state, 0C is action, AC+1 is reward calculated at AC+1, U is learning
rate, and W is discounting factor.

4.2.1 State Space, State Transition, and Action Space. We model a
four-way intersection with three lanes in each direction as shown
in Fig. 6a. To simulate the real world scenarios, we explicitly allow
vehicles on each lane to either go straight, turn left or right. We

Figure 7: AIM-Trust framework. Combining AIMwith RL bu�er ad-
justment agent results in AIM-RL. Adding trust authorities to AIM-
RL gives AIM-Trust.

de�ne our states as st = (E1C , 4
1
C ,@

1
C , ..., E

=
C , 4

=
C ,@

=
C )

) , where (E8C , 4
8
C ,@

8
C )

are the vehicle identi�cation number, starting point, and requested
destination of vehicle 8 2 [1,=] at time C . In each training time step C ,
vehicles pass through I and fully exitM. Within one episode, there
are in total g steps, which represent that the = vehicles pass through
g intersections. 88, C, (48C ,@

8
C ) are randomly generated by the simula-

tor. The state transition equations for the environment are de�ned
as: E8C+1  E8C ; 4

8
C+1,@

8
C+1  '0=3><(E8C+1), where '0=3><(·) is the

random starting point and destination generator in simulator.
The action at time C is de�ned as at = (01C ,0

2
C , ..., 0

=
C )

) , where
08C is the bu�er size of vehicle 8 at time C . Neural network makes
prediction by assessing the positions and request of each vehicle.

4.2.2 Reward Function. It is known that throughput is sensitive
to bu�er size, i.e., large bu�er size harms throughput. However,
large bu�er size leads to low collisions. Therefore, to operate the
intersection with low collision rate and maintain throughput, the
reward function is de�ned as:

A 8C =

(
1 + _(1C⌘ � 0

8
C ), if no collision,

�(g � 1) ⇤ [1 + _(1C⌘ � 0
8
C )], if collision happens,

(10)
where1C⌘ is a hyper parameter indicating a reasonable upper bound
bu�er size. _ is a hyper parameter to balance the collision and
throughput. The vehicle is removed once it collides and not blocking
I, and in next steps we put it back inM. A training episode contains
g steps, and an episode ends once reach the maximum g step.

4.3 Trust-aware RL-based AIM (AIM-Trust)
In this section, we show how to apply our trust framework in AIM
and build on AIM-RL to get our trust-aware framework, AIM-Trust.
We assume that the IMs serve as the centralized trust manager
A, and we have help from RSUs which serve as distributed trust
authorities �. RSUs cover the places between the intersections
while IMs cover intersections. We enhance the AIM framework
to be aware of trustworthiness of vehicles and use trust values
when inferring the appropriate time-space reservations (bu�ers) of
vehicles to reduce collision rate. AIM-Trust’s bu�er adjusting agent
is similar to AIM-RL and the operation details are shown in Fig. 7.

4.3.1 Trust/Opinion Update. Before enteringM, RSUs as distributed
� update the opinion about - by cumulative fusion:, A

-  ,
�
- �

,
A

- . After entering M and before entering I, IM A inspects - ,
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observes evidence, and develops short-term opinion about - . Since
short-term,

A

- is evaluated based on evidence, and to distinguish
from long-term,

A

- , we substitute short-term,
A

- with notation
,

⇢>
- (⇢> represents evidence observed outside I). Then the opin-

ion about - is updated by combining with its long-term opinion:
,

A

-  ,
⇢>
- �,

A

- . Before - entering I, - ’s trust value is sent to
RL-based bu�er adjustment agent to calculate the trust-based dy-
namic bu�er. And then AIM control policy uses this dynamic bu�er
size to determine whether to reject or accept - ’s request similarly
in original AIM. After - exits I, the trust/opinion is updated again
based on - ’s behaviors and collision status in I. Here, A inspects
- ’s behavior in I and obtains an evidence-based opinion, ⇢8

- , then
the opinion about - is updated as:, A

-  ,
⇢8
- �,

A

- ., ⇢>
- ,, ⇢8

- ,
and, �

- are evaluated by observations of - ’s behavior based on
Eq. 1. Now we describe how to determine positive (B) and negative
(A ) evidences. Similarly to Eq. 6, we use a set of AIM-speci�c rules
to specify a driving behavior to be B or A . Before - approaches M,
� (RSUs) observe - and generate opinion, �

- . When - arrivesM,
AIM-Trust uses another set of rules to quantify evidences based on
how well - follows instructions and collision status in I.

4.3.2 Evidence Evaluation at Road Side Units. Suppose a RSU ob-
serves vehicle - ’s trajectory and velocity, and the desired behavior
is de�ned by a set of rules, e.g., driving within one lane with neg-
ligible deviation and under the designated speed limit. Hence, we
de�ne these properties formally as follows. Subject to - , suppose
the true trajectory is x- , the requested (or predicted) trajectory is
~- , the negligible deviation from ~- is & , the speed of the vehicle
is sp- , and the designated speed limit is ˆB? . We quantify A and B as:

A = A + 1, if (x- , C ) |= i ^ (sp- , C ) |= k ; B = B + 1, otherwise,

i ⌘ G[C1,C2 ] ( |x
-
(C ) � ~-

(C ) | &),k ⌘ G[C1,C2 ] (sp
-
(C )  ˆB?) .

(11)

This equation indicates that the true trajectory of a vehicle should
not deviate from the requested smooth trajectory by more than & in
time interval [C+C1, C+C2], where C1 and C2 are hyper parameters. For
a RSU, it predicts a smooth trajectory ~- to� t the true trajectory
x- . For AIM-Trust, ~- is the requested and approved trajectory
of - . In addition, the speed of a vehicle should never exceed the
speed limit in time interval [C1, C2].

4.3.3 Evidence Evaluation at M. When vehicles enter M before
enteringI, Eq. 11 is used to quantify evidences. If negative evidence
observed, it means the vehicle violates the approved trajectory by
an intolerable error. Once vehicles enter I, a new set of rules is
used to take into account the honest status of vehicles and collisions
in I: A = A + 1, if the vehicle follows the approved trajectory and
no collision happens; otherwise B = B + 1.

4.3.4 Trust-based RL Bu�er Adjustment Agent. We formulate RL
of AIM-Trust similarly to AIM-RL, and add only trustworthiness of
vehicles in state space: st = (E1C , 4

1
C , ?

1
C ,@

1
C , ..., E

=
C , 4

=
C , ?

=
C ,@

=
C )

) , where
?8C is 8’s trustworthiness at time C . With this minor modi�cation, we
achieve trust-aware RL-based intersection management.

UV AIM-RL AIM-1
20% 51.35% 64.00%
40% 50.00% 82.85%
60% 64.44% 79.37%
80% 18.18% 83.84%
100% 71.69% 89.28%

Figure 8 & Table 1: Collision comparison between AIM-Trust, AIM-
RL and AIM-1. In-plot shows the cumulative reward of AIM-Trust
with 20% untrusted vehicles in training. Table 1: Performance im-
provement of AIM-Trust compared to baselines. UV indicates the
untrusted vehicle percentage.

4.4 Experiments
4.4.1 Experiment Setup. We consider in one RL training episode,
= = 10 vehicles passing through g = 10 intersections and we
monitor the collisions happened within these =g = 100 intersection
crossing events as 2 . For each intersection (or step) C in an episode, =
vehicles enter and leave the intersection following randomly picked
starting points, [40C , 4

1
C , ..., 4

=
C ], and destinations, [@0C ,@

1
C , ..., @

=
C ]. We

compare AIM-Trust with the original AIM algorithm with� xed
bu�er size 1, namely AIM-1, and AIM-RL. We insert 20-100% un-
trusted vehicles in tra�c to cause potential collisions. All sim-
ulations are done in the AIM simulator [1]. See Supplementary
Materials Section D.2 for the selection of hyper-parameters and
further experimental setup details. We train both AIM-Trust and
AIM-RL 10 times and report the mean-variance results. In addition,
we control the training process of AIM-RL and AIM-Trust to be the
same to ensure fair comparison.

4.4.2 Experimental Results. As shown in Fig. 8, RL-based AIM-RL
and AIM-Trust decrease the collision numbers drastically compared
to AIM-1 for two reasons: (i) AIM-1 cannot deal with untrusted
vehicles and the small and� xed bu�er size results in high collision
rate. (ii) AIM-Trust and AIM-RL takes collision numbers in reward
function to penalize collision and allocate appropriate time-space
bu�er intelligently for di�erent vehicles. Table 1 shows the average
improvements of AIM-Trust in terms of percentage. Compared to
non-trust AIM-RL, AIM-Trust decreases collisions by at least 19.18%
and up to 71.69%. These results demonstrate the e�ectiveness of the
proposed trustworthiness and trust framework in control policies.

Since our formulation of RL reward function considers through-
out, and higher throughput leads to lower safety, with Eq. 10, AIM-
Trust cannot guarantee collision-free due to the trade-o� between
safety and throughput. To demonstrate that AIM-Trust can deduce
appropriate bu�er sizes based on trustworthiness, we suppress
the performance on throughput and let _ = 0 while giving big
penalty (�40) when collision happens. (See Supplementary Mate-
rials Section D.3 for detailed formulation.) It turns out AIM-Trust
with revised reward function learns to select large bu�er sizes and
achieves collision-free in all scenarios.
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5 TRUST-AWARE TRAFFIC LIGHT CONTROL
5.1 RL-based Tra�c Light Control (TLC-RL)
Conventional� xed-cycle tra�c light control (TLC) has many disad-
vantages, such as energywaste and long delays [20]. Many RL-based
adaptive TLC frameworks have been proposed in recent years to
take real-time tra�c information as input and adjust tra�c light
dynamically [9, 20, 21, 29, 30]. Here, we use an example RL for-
mulation of such problems following [20] and later we show how
to make it trust-aware by a minimal modi�cation. We use deep
Q-learning to dynamically control the tra�c light. Detailed RL
formulation can be found in Supplementary Material Section D.4.

5.2 Trust-aware TLC (TLC-Trust)
With the assumption that there might be untrustworthy/malicious
vehicles, trust evaluation is helpful for intersection management. To
enable the tra�c light controller with trust information, we utilize
our proposed trust framework where the centralized trust manager
A maintains a trustworthiness tableH . The trust framework for
TLC is similar to AIM-Trust as described in Section 4.3.1. Note that
distributed trust authorities, e.g., RSUs in tra�c systems, are not
necessary in our trust framework, however, they can help A to
enlarge the observation range and maintain an accurate H . With
A, we have access to trustworthiness of vehicles. Hence, with a
minimum modi�cation to the state space in RL formulation, i.e.,
adding vehicles trustworthiness @8C gives us TLC-Trust.

5.3 Experiments
5.3.1 Experiment Setup. In this case study, we compare TLC-RL
and its trust-aware version, TLC-Trust. In addition, we also com-
pare with conventional� xed-cycle tra�c light policy (TLC-Fix).
Similarly in AIM experiments, we insert 20%� 100% untrustworthy
vehicles in the tra�c and we assume that untrustworthy vehicles
may turn left even they are at right lane. In one episode, 100 ve-
hicles pass through the intersection I and we use collision rate
as evaluation metric. We run TLC-RL and TLC-Trust 10 times and
report mean-variances to ensure fair comparison.

Figure 9: a. Collision comparison between TLC-Trust, TLC-RL and
TLC-Fix. b. Mean collisions of TLC-Trust in 10 test cases, each test
case runs 10 times to calculate the mean collision. TLC-Trust’s col-
lision rates in test and training sets are consistent.

5.3.2 Experimental Results. The collision comparison between TLC-
Trust, TLC-RL, and TLC-Fix is illustrated in Fig. 9. Compared to

non-trust TLC-RL, TLC-Trust achieves lower collisions in all cases.
In addition, TLC-Trust and TLC-RL are more advanced than tradi-
tional� xed-length TLC-Fix. Since the experimental setup in TLC
and AIM case studies are similar, we compare TLC also with AIM
methods. As shown in Fig. 8 and 9, AIM methods are much better
at collision reduction compared to TLC methods, this is because
AIM-Trust and AIM-RL are designed to do collision avoidance and
allocate a trust-based space-time bu�er to each vehicle, whereas the
tra�c light-based control policies are focusing on intersection e�-
ciency. To reduce collision rate of TLC-Trust, we can add penalties
in reward function when collision happens. Besides these results,
we also provide videos to demonstrate how TLC-Trust works in
AIM intersection simulator: https://youtu.be/15heSQbWHtE.

5.4 Discussion
Trust-aware intersection management using tra�c signals shows
better performance in terms of collision rate compared to the non-
trust version. We envision that further advantages of trust-aware
intersection management lie in cooperative intersection manage-
ment where multiple adjacent intersections cooperate and control
tra�c lights aware of dangerous and untrustworthy vehicles. In
addition, emergency vehicles can bene�t from this setup since we
can give priority through trust values.

6 CONCLUSION
In this work we propose a general trust framework for MASs and
demonstrate the feasibility and advantages by applying it to three
di�erent systems.We show that with trust evaluations, the designed
trust-based CACC platoon attacker detection model accurately de-
tects attackers and the historical trust record can be further useful
in future platoon formation and platoon control. In the intersec-
tion management case studies (AIM and TLC), we show that by
embedding trust quanti�cation into decision-making algorithms,
the coordination algorithms can balance safe coordination with
system performance even in mixed trust settings. In particular, we
show that the trust-aware versions of Autonomous Intersection
Management (AIM-Trust) and Tra�c Light Control (TLC-Trust)
outperform their trust-oblivious counterparts in terms of improv-
ing safety of the overall MAS. In future, we will consider applying
the trust framework to broader classes of MAS algorithms such as
those used for consensus and multi-agent path planning.
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