
Walrasian Equilibria in Markets with Small Demands
Argyrios Deligkas

Department of Computer Science

Royal Holloway University of London

London, UK

argyrios.deligkas@rhul.ac.uk

Themistoklis Melissourgos

Operations Research Group

Technical University of Munich

Munich, Germany

themistoklis.melissourgos@tum.de

Paul G. Spirakis

Department of Computer Science

University of Liverpool

Liverpool, UK

and

Computer Engineering and

Informatics Department

University of Patras

Patras, Greece

p.spirakis@liverpool.ac.uk

ABSTRACT
We study the complexity of finding a Walrasian equilibrium in mar-

kets where the agents have 𝑘-demand valuations. These valuations

are an extension of unit-demand valuations where a bundle’s value

is the maximum of its 𝑘-subsets’ values. For unit-demand agents,

where the existence of a Walrasian equilibrium is guaranteed, we

show that the problem is in quasi-NC. For 𝑘 = 2, we show that it is

NP-hard to decide if a Walrasian equilibrium exists even if the valu-

ations are submodular, while for 𝑘 = 3 the hardness carries over to

budget-additive valuations. In addition, we give a polynomial-time

algorithm for markets with 2-demand single-minded valuations, or

unit-demand valuations.
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1 INTRODUCTION
One of the most significant problems in market design is finding

pricing schemes that guarantee good social welfare under equilib-

rium. Evidently, the most compelling equilibrium notion in markets

with indivisible items is a Walrasian eqilibrium, henceforth WE,

[35]: an allocation of items to the agents and a pricing, such that

every agent maximizes her utility and all items are allocated. By the

First Welfare Theorem, WE has the nice property of maximizing so-

cial welfare. The existence of WE seems to heavily rely on the class

of valuation functions of the agents. When parameterized by the

valuation function class, the existence ofWE is (relatively) clear due

to Gul and Stracchetti [21] and Milgrom [29]: WE are guaranteed

to exist only in the class of gross substitutes valuation functions.

Two of the most central and interesting problems regarding WE

are:

(a) decide if a WE exists,

(b) compute a WE (if it exists).
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We study the aforementioned two problems when valuation

functions are parameterized by an integer 𝑘 which denotes the

maximum bundle size 𝑘 for which every agent is interested. Such a

class of 𝑘-demand valuation functions can be seen as an extension

of the unit-demand functions, where each agent, for a given bundle

𝑋 values only the most valuable 𝑘-subset of 𝑋 . The main idea

behind k-demand valuations is that every agent has some capacity

for utilising the items that is either endogenously or exogenously

imposed. There are several real-life examples where more than 𝑘

items have the same value as 𝑘 of them: a supervisor can effectively

supervise up to a limited number of students; a grant investigator

can efficiently work up to a limited number of projects; a sports

team is allowed to have up to a small number of foreign players

(or at least a small number of native players) in the squad; one can

hang only a certain number of paintings on their house’s walls.

We investigate the complexity of the aforementioned problems

when we are restricted to the intersection of the standard valuation

classes and the 𝑘-demand classes. Our results contain hardness

results as well as efficient algorithms.

As an example of the effect that 𝑘-demand valuation functions

have on the complexity of these problems, we present unbalanced

markets. In such markets the available items are significantly more

than the agents, or vice versa. We provide an algorithm for the

aforementioned problems parameterized by 𝑘 . Complemented by a

result of Rothkopf [31], this algorithm concludes that for constant

𝑘 and appropriate unbalancedness, these problems are in P.

1.1 Contribution
In this work we study WE under their classic definition with no

relaxation or approximation notions involved. We introduce a hier-

archy of valuation functions, parallel to the already existing one.

Our valuation functions are called 𝑘-demand and are a generaliza-

tion of unit-demand with parameter 𝑘 that determines at most how

many items from a bundle the agent cares about. By definition, it is

easy to see that the class of 𝑗-demand is included in ( 𝑗 + 1)-demand

for any 𝑗 ∈ [𝑚 − 1]. The purpose of considering valuation func-

tions from the intersection of some 𝑘-demand class and some other

known class, is to refine the complexity of the WE-related problem.

Algorithms and hardness results on the existence of WE and/or

the problem of computing one in the current literature show an

interesting dependence on the parameter 𝑘 that we define here.

For example, existence of WE is guaranteed in the well studied
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case of unit-demand valuation functions (i.e. 𝑘 = 1), and a WE can

be computed in polynomial time [16, 26]. Non-existence of WE is

established in [32] by proving that even WinnerDetermination

is NP-hard and this is achieved for valuation functions according

to which the agents are only interested in at most 2 items (i.e.

𝑘 = 2). Furthermore, non-existence of WE and NP-hardness of
WinnerDetermination is proven for single-minded agents via

a reduction to instances where agents are interested in at most 3

items (i.e. 𝑘 = 3) [10]. For each of the above cases of 𝑘 we give

improved results: we supplement the “easy” case, where 𝑘 = 1,

with a quasi-NC algorithm
1
, and the “hard” cases with stronger

NP-hardness results in the sense that ours imply the existing ones.

Mixing the standard valuations’ hierarchy and the 𝑘-demand hi-

erarchy results to a two-dimensional landscape of valuation classes

that aims to break down the complexity of theWE-related problems.

For example, a possible result could be that below some threshold of

𝑘 and below some standard valuation class, deciding WE existence

is in P. Our results however indicate that this is not the case: even
for 𝑘 = 2 and submodular functionsWinnerDetermination is NP-
hard, and therefore deciding existence of WE is also NP-hard. This
is an improvement over the result of Roughgarden and Talgam-

Cohen [32], where NP-hardness is proven for 𝑘 = 2 but general

functions. Our reduction is entirely different than the one in [32],

and in particular, it is from the problem “3-bounded 3-dimensional

matching” to a market with 𝑛 agents,𝑚 items and 2-demand sub-

modular valuations. Furthermore, in [25]WinnerDetermination

is proven to be weakly NP-hard for budget-additive functions by

reducing “knapsack” to a market with 2 agents, and𝑚 items. We

show that the problem is strongly NP-hard for 𝑘-demand budget-

additive functions even for 𝑘 = 3. The case 𝑘 = 2 for the latter

problem remains open.

On the positive side, we show a clear dichotomy for the prob-

lem of deciding WE existence with single-minded agents. It was

proven in [10] that WinnerDetermination is NP-hard, via a re-
duction from “exact cover by 3-sets” to a market with single-minded

agents who actually used 3-demand valuations. We show that

WinnerDetermination is solvable in polynomial time for single-

minded agents with 2-demand valuations by a reduction to the

maximum weight matching problem. Then, by the decomposition

shown at the end of Section 2, one can find a WE pricing via an LP

(if such a pricing exists).

1.2 Related Work
Existense of Walrasian Equilibria. The most general class

of valuation functions for which existence of WE is guaranteed

has been proved by Gul and Stracchetti [21] and Milgrom [29] to

be gross substitutes. Other valuation classes (that can be seen as

special market settings) outside gross substitutes that guaranteeWE

existence have also been discovered, including the “tree valuations”

in [7], and the valuation classes of [4, 8, 9]. Interestingly, the former

admits also a polynomial time algorithm.

Non-existence ofWE has been shown for many valuation classes,

mostly by constructing an ad hoc market that does not identify

some particular pattern as responsible for the non-existence (e.g.

[13, 21, 25]). Roughgarden and Talgam-Cohen in [32] reprove

1
This is the first parallel algorithm for computing WE to the authors’ knowledge.

some of these results and show a systematic way of proving non-

existence of WE for more general valuation and pricing classes

via standard complexity assumptions. The latter paper shows the

remarkable relation between computability of seemingly arbitrary

problems and existence of equilibria in markets. In fact, one of

their results states that if for some classV of valuation functions

WinnerDetermination is computationally harder than finding

the demand for each agent, then there exist instances inV with no

WE.

Computation of Walrasian Equilibria. On the computa-

tional side, in markets that do not guarantee existence of WE, the

problem of deciding existence is NP-hard for all the most impor-

tant valuation classes. This has been established by proving that

WinnerDetermination for budget-additive valuations is NP-hard
via the “knapsack” problem in [25] and via the strongly NP-hard
problem “bin packing” in [32]. By the fact that a WE corresponds

to an optimal allocation, it is immediate that existence of WE is

at least as hard as WinnerDetermination. Since budget-additive

functions are a subset of submodular functions, it seems that as

soon as valuation functions are allowed to be more general than the

class of gross substitutes, i.e. submodular, the problem is already

NP-hard. Also, for the class of single-minded agents (which is incom-

parable to the rest of the classes), WinnerDetermination is NP-
hard [10]. On the positive side, Rothkopf et al. [31] provide several

classes of valuation functions where WinnerDetermination can

be efficiently solved. In particular, they show that when there are

logarithmically many items with respect to the number of agents,

WinnerDetermination can be efficiently solved via dynamic pro-

gramming. Sandholm [33] provides a comparison of several dif-

ferent methods for WinnerDetermination and experimentally

evaluates them. It is also worth mentioning the “tollbooth” problem

on trees, defined in [22] (see also [11]), for which, even though WE

existence is not guaranteed, finding one (if it exists) is in P.

Relaxations/Approximations. Due to [21] and [29], existence

of WE is guaranteed only in a restrictive class of functions, namely

gross substitutes. This fact has ignited a line of works that, in essence,

question the initially defined WE as being the equilibrium that

occurs in actual markets. These works consider relaxed or approxi-

mate versions of WE. Some of the most interesting results on such

relaxations are the following:

• If only 2/3 of the agents are required to be utility maximizers

then a relaxedWalrasian equilibrium exists for single-minded

agents ([10, 11]).

• If the seller is allowed to package the items into indivisible

bundles prior to sale, not all items have to be sold, and addi-

tionally only half of the optimal social welfare is required

(Combinatorial Walrasian equilibrium) then such an equilib-

rium exists for general valuation functions and can be found

in polynomial time ([18]).

• If agents exhibit endowment effect, meaning that the agents’

valuations for a bundle they already possess is multiplied

by a factor 𝑎, then for any 𝑎 ≥ 2 there exists an 𝑎-endowed

equilibrium for the class of submodular functions ([2]). For

stronger notions of endowment, endowed equilibria exist
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even for XOS functions, and additionally, bundling guaran-

tees equilibria for general functions ([17]).

Other works have also considered special classes of valuations

that have as parameter the cardinality of the valuable bundles ([13]

and [12]). However these valuation functions are not identical to

ours. In [13] the valuation function of each agent, called 𝑘-wise

dependent, is encoded in a hypergraph whose vertices are the items

and each hyperedge has a positive or negative weight that deter-

mines the additional value of the bundle in case all of its adjacent

vertices are a subset of the bundle. This class of valuations is in-

comparable to ours by definition. The model of [12] is the same as

that of [13], as argued in the latter. Recently, Berger et al. in [5]

introduced a hierarchy of valuation functions similar to ours, called

“𝑘-demand” that also generalize unit-demand functions. The same

definition of functions appears also in [14]. However, those are a

special case of our 𝑘-demand functions (i.e. also additive), and in

fact they are gross substitutes.

The paper is organized in sections so that each deals with a

particular value or group of values for 𝑘 . We study unit-demand

valuations in Section 3, 2-demand valuations in Section 4, 3-demand

valuations in Section 5, and 𝑘-demand valuations for constant 𝑘 and

unbalanced markets in Section 6. We conclude with a discussion in

Section 7.

2 WALRASIAN EQUILIBRIA AND
VALUATION FUNCTIONS

We consider markets with a set 𝑁 of 𝑛 agents and a set 𝑀 of 𝑚

items. Every agent 𝑖 has a valuation function 𝑣𝑖 : 2
𝑀 → R≥0; for

every subset, or bundle, of items 𝑋 ⊆ 𝑀 agent 𝑖 has value 𝑣𝑖 (𝑋 ). A
valuation function 𝑣𝑖 is monotone if 𝑋 ⊆ 𝑌 implies 𝑣𝑖 (𝑋 ) ≤ 𝑣𝑖 (𝑌 ),
and it is normalized if 𝑣𝑖 (∅) = 0. In what follows, we assume that

all the agents have monotone and normalized valuation functions.

There are many different valuation functions studied over the

years and we focus on several of them.
2

• Unit-demand (UD): for agent 𝑖 there exist 𝑚 values

𝑣𝑖1, . . . , 𝑣𝑖𝑚 and 𝑣𝑖 (𝑋 ) = max𝑗 ∈𝑋 𝑣𝑖 𝑗 , for every 𝑋 ⊆ 𝑀 .

• Additive (AD): for agent 𝑖 there exist𝑚 values 𝑣𝑖1, . . . , 𝑣𝑖𝑚
and 𝑣𝑖 (𝑋 ) = ∑

𝑗 ∈𝑋 𝑣𝑖 𝑗 , for every 𝑋 ⊆ 𝑀 .

• Budget-additive (BA): for every agent 𝑖 there exist 𝑚 + 1

values 𝑣𝑖1, . . . , 𝑣𝑖𝑚, 𝐵𝑖 , such that for every 𝑋 ⊆ 𝑀 it is

𝑣𝑖 (𝑋 ) = min

{
𝐵𝑖 ,

∑
𝑗 ∈𝑋 𝑣𝑖 𝑗

}
.

• Single-minded (SMi): for agent 𝑖 there exist a set𝑋𝑖 ⊆ 𝑀 and

a value 𝐵𝑖 , such that 𝑣𝑖 (𝑋 ) = 𝐵𝑖 , if 𝑋𝑖 ⊆ 𝑋 , and 𝑣𝑖 (𝑋 ) = 0,

otherwise.

• Submodular (SubM): for agent 𝑖 and every two sets of items

𝑋 and 𝑌 it holds 𝑣𝑖 (𝑋 ) + 𝑣𝑖 (𝑌 ) ≥ 𝑣𝑖 (𝑋 ∪ 𝑌 ) + 𝑣𝑖 (𝑋 ∩ 𝑌 ).
• Fractionally subadditive (XOS): for every agent there exist

vectors 𝑣𝑖1, . . . 𝑣𝑖𝑘 ∈ R𝑚 and 𝑣𝑖 (𝑋 ) = max𝑗 ∈[𝑘 ]
∑
𝑙 ∈𝑋 𝑣𝑖𝑘 (𝑙),

for every 𝑋 ⊆ 𝑀 .

• Subadditive (SubA): for agent 𝑖 and every two sets of items

𝑋 and 𝑌 it holds 𝑣𝑖 (𝑋 ) + 𝑣𝑖 (𝑌 ) ≥ 𝑣𝑖 (𝑋 ∪ 𝑌 ).
We will focus on constrained versions of the aforementioned

valuation functions, where the cardinality of the sets an agent has

2
When we refer to a valuation function as general we mean that the value for any

bundle does not depend on other bundles’ values. It is clear that the set of general

functions contains all other classes of functions.

value for is bounded by 𝑘 . 𝑘-demand valuations naturally general-

ize unit-demand valuations, but, at the same time, they keep the

structure of more complex valuation functions.

Definition 2.1 (𝑘-demand valuation). A valuation function 𝑣 :

2
𝑚 → R≥0 is 𝑘-demand if for every bundle 𝑋 ⊆ 𝑀 it holds that

𝑣 (𝑋 ) = max

𝑋 ′⊆𝑋
|𝑋 ′ | ≤𝑘

𝑣 (𝑋 ′).

A very important remark is that when 𝑘 is constant the problems

have succinct representation, namely polynomial in the number of

agents and items, i.e. Θ
(
𝑛 ·𝑚𝑘 · log𝑉

)
, where 𝑉 is the maximum

valuation among all bundles and among all agents. This makes

our setting computationally interesting and also removes the need

for access to some value oracle or demand oracle: the former takes

as input a bundle and returns its value, and the latter, for some

indicated agent, takes a pricing as input and outputs the most

preferable bundles for the agent. Having such oracles when 𝑘 is

constant is redundant since there are only

∑𝑘
𝑗=1

(𝑚
𝑗

)
∈ Θ(𝑚𝑘 ) many

𝑗-subsets of𝑀 , 𝑗 ≤ 𝑘 , and an agent just needs to declare a value for

each; then the algorithm with this input can compute in polynomial

time the value of the agent for any bundle. Also, a demand oracle is

not needed since, for a given pricing, one can compute efficiently

the prices of all

∑𝑘
𝑗=1

(𝑚
𝑗

)
bundles (these are the only ones that can

maximize the utility of an agent; by considering a bundle 𝑌 with

more than 𝑘 items, its value will correspond to a bundle 𝑋 with

𝑘 items, but 𝑝 (𝑌 ) ≥ 𝑝 (𝑋 )), and then (efficiently) search through

them to find which ones yield the maximum utility to the agent.

In contrast, a great line of works has studied the complexity of

the WE-related problems, provided that value oracles and demand

oracles are available (e.g. [6, 15, 21, 27, 30]).

An allocation 𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑛) is a partition of 𝑀 to 𝑛 + 1

disjoint bundles, where agent 𝑖 ∈ [𝑛] gets bundle 𝑆𝑖 . Items in 𝑆0
are not allocated to any agent. The social welfare of allocation 𝑆

is defined as 𝑆𝑊 (𝑆) = ∑
𝑖∈[𝑛] 𝑣𝑖 (𝑆𝑖 ). An allocation 𝑆 is optimal if

it maximizes the social welfare, i.e., 𝑆𝑊 (𝑆) ≥ 𝑆𝑊 (𝑆 ′), for every
possible allocation 𝑆 ′. A pricing 𝑝 = (𝑝1, . . . , 𝑝𝑚) defines a price
for every item, where 𝑝 𝑗 ≥ 0 is the price of item 𝑗 . For 𝑋 ⊆ 𝑀 , we

denote 𝑝 (𝑋 ) = ∑
𝑗 ∈𝑋 𝑝 𝑗 . Given an allocation 𝑆 and a pricing 𝑝 , the

utility of agent 𝑖 is

𝑢𝑖 (𝑆, 𝑝) := 𝑣𝑖 (𝑆𝑖 ) − 𝑝 (𝑆𝑖 ).
The demand correspondence of agent 𝑖 with valuation 𝑣𝑖 under

pricing 𝑝 , denoted 𝐷 (𝑣𝑖 , 𝑝), is the set of items that maximize the

utility of the agent; formally 𝐷 (𝑣𝑖 , 𝑝) := {𝑆 ⊆ 𝑀 : 𝑢𝑖 (𝑆, 𝑝) ≥
𝑢𝑖 (𝑇, 𝑝) for all 𝑇 ⊆ 𝑀}. Any element of 𝐷 (𝑣𝑖 , 𝑝) is called demand

set of agent 𝑖 .

Definition 2.2 (Gross substitutes (GS)[24]). A valuation function

satisfies the gross substitutes property when for any price vectors

𝑝 ∈ R𝑚 and 𝑆 ∈ 𝐷 (𝑣, 𝑝), if 𝑝 ′ is a price vector 𝑝 ≤ 𝑝 ′ (meaning

that for all 𝑙 ∈ 𝑆 , 𝑝𝑙 ≤ 𝑝 ′
𝑙
), then there is a set 𝑆 ′ ∈ 𝐷 (𝑣, 𝑝 ′) such

that 𝑆 ∩ { 𝑗 ;𝑝 𝑗 = 𝑝 ′
𝑗
} ⊆ 𝑆 ′.

Intuitively, a valuation is gross substitute if after the increase of

the prices of some items in some demand set 𝑆 of an agent, the agent

still has a demand set 𝑆 ′ that contains the items with unchanged

prices.

Main Track AAMAS 2021, May 3-7, 2021, Online

415



It is known that UD ⊂ BA ⊂ SubM, that AD ⊂ GS ⊂ SubM,

and finally that SubM ⊂ XOS ⊂ SubA. Furthermore, SMi valuation

functions are not contained in any of these valuation classes.

Definition 2.3 (Walrasian Equilibrium). An allocation 𝑆 =

(𝑆0, 𝑆1, . . . , 𝑆𝑛) and a pricing 𝑝 = (𝑝1, . . . , 𝑝𝑚) form a Walrasian

equilibrium (WE), if the following two conditions hold.

(1) For every agent 𝑖 and any bundle𝑋 ⊆ 𝑀 it holds that 𝑣𝑖 (𝑆𝑖 )−
𝑝 (𝑆𝑖 ) ≥ 𝑣𝑖 (𝑋 ) − 𝑝 (𝑋 ).

(2) For every item 𝑗 ∈ 𝑆0 it holds that 𝑝 𝑗 = 0.

Walrasian

Input: A market with 𝑛 agents and𝑚 items, and a valuation

function for each agent.

Task: Decide whether the market possesses a Walrasian equi-

librium, and if it does, compute one.

The First Welfare Theorem states that for any Walrasian equilib-

rium (𝑆, 𝑝), partition 𝑆 corresponds to an optimal allocation [26].

Hence,walrasian can be decomposed into the following two prob-

lems.

WinnerDetermination

Input: A market with 𝑛 agents and𝑚 items, and a valuation

function for each agent.

Task: Find an optimal allocation 𝑆∗ for the items.

WalrasianPricing

Input: A market with 𝑛 agents and𝑚 items, a valuation func-

tion for each agent, and an optimal allocation 𝑆∗.
Task: Find a pricing vector 𝑝 such that (𝑆∗, 𝑝) is a Walrasian

equilibrium, or decide that there is no Walrasian equi-

librium for the instance.

This decomposition highlights that a WE exists if and only if

there exists a pricing vector 𝑝 that satisfies the conditions of Defi-

nition 2.3 for any optimal allocation 𝑆∗ = (𝑆∗
0
, 𝑆∗

1
, . . . , 𝑆∗𝑛).

For𝑘-demand valuation functions, the conditions of Definiton 2.3

(and therefore a solution to WalrasianPricing) correspond to

the solution of the following linear system of𝑚 variables and 𝑛 ·∑𝑘
𝑗=1

(𝑚
𝑗

)
+𝑚 equality/inequality constraints, where each constraint

has at most 2𝑘 variables.

𝑣𝑖 (𝑆∗𝑖 ) − 𝑝 (𝑆∗𝑖 ) ≥ 𝑣𝑖 (𝑋 ) − 𝑝 (𝑋 ), ∀𝑋 ⊆ 𝑀, where |𝑋 | ≤ 𝑘,∀𝑖 ∈ 𝑁

𝑝 𝑗 ≥ 0, ∀𝑗 ∉ 𝑆∗
0

𝑝 𝑗 = 0, ∀𝑗 ∈ 𝑆∗
0
. (1)

Note that when 𝑘 is a constant, as mentioned earlier, the above

constraints are 𝑛 · ∑𝑘
𝑗=1

(𝑚
𝑗

)
+𝑚 which is at most linear in 𝑛 and

polynomial in𝑚, since

𝑘∑︁
𝑗=1

(
𝑚

𝑗

)
≤

𝑘∑︁
𝑗=1

𝑚 𝑗

𝑗 !
≤

𝑘∑︁
𝑗=1

𝑘 𝑗

𝑗 !
·
(𝑚
𝑘

) 𝑗
≤ 𝑒𝑘 ·

𝑘∑︁
𝑗=1

(𝑚
𝑘

) 𝑗
≤ 𝑒𝑘 ·

(𝑚
𝑘

)𝑘
.

We conclude that, for constant 𝑘 , a solution to linear system (1)

(and thus,WalrasianPricing) can be found in time polynomial in

𝑛 and𝑚 by formulating it as an LP with objective function set to a

constant. So, the problem of deciding the existence of WE and the

problem of computing one (if it exists) essentially reduce to finding

an optimal allocation 𝑆∗, i.e. WinnerDetermination. In Sections

4, 5, 6 we exploit the aforementioned fact and only investigate the

complexity of WinnerDetermination.

3 UNIT-DEMAND VALUATION FUNCTIONS
The simplest case of markets is when the agents have unit-demand

valuation functions. The existence of WE in this class of markets

was shown in the seminal paper of Demange, Gale, and Sotomayor

[16] via an algorithm that resembles the tâtonnement process. This

algorithm is pseudopolynomial in general, and polynomial when

the values of the agents are bounded by some polynomial. In [26]

an algorithm (Algorithm 1) is presented and it is shown that a

modification of it finds a WE in time 𝑂 (𝑚2𝑛 +𝑚4
log𝑉 ), where 𝑉

is the maximum valuation of any item across all agents.

In this section we show that walrasian in these markets is in

quasi-NC. The complexity class quasi-NC is defined as quasi-NC =

⋓𝑘≥0quasi-NC
𝑘
, where quasi-NC𝑘 is the class of problems having

uniform circuits of quasi-polynomial size, 𝑛log
𝑂 (1) 𝑛

, and polyloga-

rithmic depth 𝑂 (log𝑘 𝑛) [3]. Here “uniform” means that the circuit

can be generated in polylogarithmic space. Put differently, quasi-NC
contains problems that can be solved in polylogarithmic parallel

time using quasi-polynomially many processors with shared mem-

ory.

In this class of marketsWinnerDetermination can be reduced

to a maximum weight matching on a complete bipartite graph. On

the left side of the graph there exist 𝑛 nodes corresponding to the

agents, on the right side there are𝑚 nodes corresponding to the

items and the weight of the edge (𝑖, 𝑗) equals to the value of agent 𝑖
for item 𝑗 . The recent breakthrough of Fenner, Gurjar, and Thierauf

[19] states that the maximum weight perfect matching in bipartite

graphs is in quasi-NC when the edge-weights are bounded by some

polynomial; later Svensson and Tarnawski [34] extended this result

for general graphs. Thus, if we augment the bipartite graph that

corresponds to the market by adding dummy items with zero value

for every agent, or dummy agents with zero value for every item, we

can guarantee that it contains a perfect matching without changing

any optimal allocation. Then, we can use the algorithm of [19] and

compute an optimal allocation in polylogarithmic time.

Given an optimal allocation, WalrasianPricing for these mar-

kets has a special structure. It is a linear feasibility problem with

polynomially many inequalities and at most two variables per in-

equality. For this special type of feasibility systems there exists a

quasi-NC algorithm [28].

Theorem 3.1. walrasian in unit-demand markets with polyno-

mial valuations is in quasi-NC.

Proof. When shared memory is available, as in quasi-NC, we
can solveWinnerDetermination in polylogarithmic parallel time

via the algorithm of [19] and store it in the shared memory. Then,

the processors will read the solution, build the linear system for

WalrasianPricing and solve it in polylogarithmic time via the the

algorithm of [28] on the shared memory. Hence, the composition

of the two algorithms can be done in polylogarithmic time using

quasi-polynomially many processors. □

Our result suggests a parallel algorithm that needs 𝑂 (log3 (𝑛))
time which is significantly faster than any serial algorithm. On
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the other hand though, it requires 𝑛log(𝑛) processors in the worst

case. We observe that this is the current best possible result, since

any improvement would imply better parallel algorithms for other

important problems like maximum weight matching and feasibility

of systems with linear inequalities. We have to state though that it is

openwhether both aforementioned problems are in NC. On the other
hand, it is known that the maximumweight problem in graphs with

polynomial weights is in pseudo-deterministic RNC [1, 20]. Hence, a
first improvement would be to placeWalrasianPricing in pseudo-

deterministic RNC.

4 2-DEMAND VALUATION FUNCTIONS
In this section we resolve the complexity of deciding existence of

WE for 2-demand valuation functions. As an example, consider

the case where the football teams need to have at least 2 young

native players in their squad. Each team knows exactly which pair

of players wants and it does not want more young players due to

capacity constraints. A version of 2-demand valuations, termed pair-

demand valuations, was studied in [32], where every agent 𝑖 has a

value 𝑣𝑖 ( 𝑗, 𝑘) for every pair of items and the value of 𝑖 for a bundle 𝑆

is 𝑣𝑖 (𝑆) = max𝑗,𝑘∈𝑆 𝑣𝑖 ( 𝑗, 𝑘). These are general valuation functions

that can allow complementarities. We strengthen the results of [32]

and prove that WinnerDetermination is NP-hard even when the

valuation functions of the agents are 2-demand submodular and

every agent has positive value for at most six items.

Theorem 4.1. WinnerDetermination is strongly NP-hard even
for 2-demand submodular functions.

Proof. We reduce from 3-bounded 3-dimensional matching,

termed 3dm(3). The input of a 3dm(3) instance consists of three sets

𝑋,𝑌, 𝑍 , where |𝑋 | = |𝑌 | = |𝑍 |, and a set 𝑆 of triplets (hyperedges)

(𝑥,𝑦, 𝑧) where 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 , and 𝑧 ∈ 𝑍 . In addition, every element

of 𝑋,𝑌, 𝑍 appears in at most three triplets and every triplet shares

at most one element with any other triplet. The task is to decide if

there is a subset of non-intersecting triplets of 𝑆 of cardinality |𝑋 |.
The problem is known to be NP-complete [23].

For every element 𝑥 ∈ 𝑋 we create an agent and for every

element in 𝑌 ∪ 𝑍 we create an item. Let 𝑆𝑥 𝑗
denote the set of items

that correspond to the 𝑗th triplet of 𝑆 that 𝑥 belongs to. Recall

that there exist at most three such triplets. In addition, since any

two triplets of 𝑆 share at most one element, we have that 𝑆𝑥 𝑗
s are

disjoint. Moreover, let 𝑆𝑥 be the union of the elements from 𝑆𝑥 𝑗
s.

Then, the valuation function of agent 𝑥 for a subset of items 𝑇 is

defined as follows:

• 𝑣𝑥 (𝑇 ) = 2, if 𝑇 contains some 𝑆𝑥 𝑗
;

• 𝑣𝑥 (𝑇 ) = 0, if |𝑇 ∩ 𝑆𝑥 | = 0;

• 𝑣𝑥 (𝑇 ) = 1, if |𝑇 ∩ 𝑆𝑥 | = 1;

• 𝑣𝑥 (𝑇 ) = 1.5, if |𝑇 ∩ 𝑆𝑥 | ≥ 2 and 𝑇 does not contain any 𝑆𝑥 𝑗
.

Observe that if |𝑇 ∩ 𝑆𝑥 | > 3, then 𝑇 will contain some 𝑆𝑥 𝑗
, hence

the definition of the valuation function is complete. It is not hard

to verify that 𝑣𝑥 is indeed a 2-demand submodular function.

We claim that there is an allocation with welfare 2|𝑋 | if and only
if the 3dm(3) instance is satisfiable. Firstly, assume that indeed the

3dm(3) instance has a solution 𝑆 ′, i.e., 𝑆 ′ contains |𝑋 | non intersect-

ing triplets in 𝑆 . Then, if the triplet (𝑥,𝑦, 𝑧) belongs to 𝑆 ′ we allocate
the items that correspond to 𝑦 and 𝑧 to the agent that corresponds

to 𝑥 and the agent has value 2 for the bundle. Clearly, the allocation

achieves welfare 2|𝑋 |. For the other direction, assume that there is

an allocation for the items with welfare 2|𝑋 |. This means that every

agent gets utility 2 from her allocated bundle. Then, by construction,

each agent 𝑥 alongside her allocated bundle corresponds to a triplet

from 𝑆 . Observe, that the allocation consists of non-overlapping

bundles, hence we get |𝑋 | non intersecting triplets in 𝑆 . □

Theorem 4.1 implies that walrasian is NP-hard for any class of

valuation functions that contains the class of 2-demand submodular

valuations.

Corollary 4.2. walrasian is strongly NP-hard even if all the

agents have 2-demand submodular valuation functions.

Closing the gap in single-minded valuations. In addition to

the above hardness results we study single-minded agents with 2-

demand valuations and we show that in this casewalrasian is easy,

contrary to the case of 3-demand valuations where it is NP-hard
[10]. To prove this, for agents that are single-minded for bundles of

size 2, we reduceWinnerDetermination to a maximum weight

matching problem over a graph 𝐺 . Every item corresponds to a

vertex of 𝐺 . For every pair of items that is the most preferable by

an agent we create the corresponding edge with weight the value

of the agent for the items; if there are more than one agents that

want the same pair of items we keep only the weight for the highest

valuation. Clearly, any maximum weight matching corresponds to

an optimal allocation.

Next we show how to handle instances where every agent is

either unit-demand or multi-minded over a subset of size 2. Recall,

a unit-demand agent-might have positive value for various items.

An agent 𝑖 is multi-minded over a subset of size 2, if there exist

items 𝑎𝑖 and 𝑏𝑖 and the agent has positive values only for the

following three bundles: {𝑎𝑖 }, {𝑏𝑖 }, and {𝑎𝑖 , 𝑏𝑖 }. Observe the this is
a strict generalisation of 2-demand single minded. To achieve this,

we extend the construction described above as follows. For every

multi-minded agent 𝑖 we add a new vertex 𝑥𝑖 and the edges (𝑥𝑖 , 𝑎𝑖 ),
(𝑥𝑖 , 𝑏𝑖 ), with weights 𝑣𝑖 (𝑎𝑖 ) and 𝑣𝑖 (𝑏𝑖 ) respectively. For every unit-

demand agent 𝑖 , we add a new vertex𝑦𝑖 and the edges (𝑦𝑖 , 𝑗), where
𝑗 is a vertex that corresponds to item 𝑗 , with weight 𝑣𝑖 ( 𝑗); i.e. equal
to the agent’s value for item 𝑗 . Again, a maximum weight matching

for the constructed graph corresponds to an optimal allocation.

Theorem 4.3. walrasian is in P for markets where every agent is

unit-demand or multi-minded over a subset of size 2.

5 3-DEMAND VALUATION FUNCTIONS
In this section we prove strong NP-hardness for

WinnerDetermination for 3-demand budget-additive valu-

ation functions. As an example for 3-demand budget additive

valuation, we can think of departments within a university that

want to hire staff members for their labs. The agents are the

departments, the items are the staff members, and the available

resources of each department’s lab defines the budget. The value

a department gets from a candidate equals the quantity of the

resources the candidate is capable of utilizing. The department

is allowed to hire at most 3 staff members, due to regulations

imposed by the university.
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Theorem 5.1. WinnerDetermination is strongly NP-hard even
when all the agents have identical 3-demand budget-additive valua-

tion functions.

Proof. We prove the theorem with a reduction from 3-partition.

An instance of 3-partition consists of a multiset of 3𝑛 positive

integers 𝑎1, 𝑎2, . . . , 𝑎3𝑛 summing up to 𝑆 . The question is whether

the multiset can be partitioned into 𝑛 triplets such that the elements

of each triplet sum up to 𝐵 = 𝑆
𝑛 . So, given an instance of 3-partition

we create a WinnerDetermination instance with 𝑛 agents and

3𝑛 items. All the agents have the same 3-demand budget-additive

valuation: they have value 𝑎𝑖 for item 𝑖 and budget 𝐵.

The question we would like to decide is whether there exists

an allocation with social welfare 𝑛 · 𝐵. It is not hard to see that if

there is a solution to 3-partition, then there exists an allocation

forWinnerDetermination with social welfare 𝑛 ·𝐵. On the other

hand, observe that, due to the budget-additive valuations, social

welfare 𝑛 · 𝐵 for the instance can be achieved only when there

exists an allocation where every agent gets value 𝐵. In addition,

since the agents have 3-demand valuation functions it means that

any allocation that maximizes the social welfare, without loss of

generality, allocates exactly three items to every agent; otherwise

some agent gets more than 3 items and value gets wasted since, by

definition of 3-demand valuation, the agent will only appreciate

the 3 most valuable items. Hence, if there exists an allocation for

the constructed instance with social welfare 𝑛 ·𝐵, necessarily, every
agent gets exactly 3 items whose values sum up to 𝐵. This allocation

trivially defines a solution to 3-partition. □

Corollary 5.2. walrasian is strongly NP-hard even if all the

agents have identical 3-demand budget-additive valuation functions.

6 CONSTANT-DEMAND VALUATION
FUNCTIONS

In this section we study markets where the agents have 𝑘-demand

valuation functions, where 𝑘 is constant. Our results from the pre-

vious sections imply that deciding the existence of a WE is NP-hard
even when 𝑘 = 2 and the valuation functions are submodular. In

addition, we showed that the problem is NP-hard for 𝑘 = 3 even

for budget-additive valuations [13]. This means that in order to get

efficient algorithms we have to further restrict our market design

in markets that retain constant demand 𝑘 , but with either reduced

number of agents, or reduced number of items. For this reason, we

study unbalanced markets. A market is unbalanced if the number

of available items is significantly larger than the number of agents,

formally,𝑚 ∈ 𝜔 (𝑛), or the other way around, 𝑛 ∈ 𝜔 (𝑚). For the
case where,𝑚 = 𝑂 (log𝑛) and any 𝑘 the dynamic programming ap-

proach of Rothkopf [31] solvesWinnerDetermination in 𝑂 (𝑛3).
Next we show a result for the case where the market is unbalanced

in the opposite direction.

Theorem 6.1. In markets with 𝑘-demand valuations, 𝑛 agents and

𝑚 items, where 𝑘 and 𝑛 are constant,WinnerDetermination is in P.

Proof. We consider the unbalanced market where the number

of available items𝑚 is a lot greater than the number of items 𝑘 · 𝑛
to be allocated. The number 𝑘 · 𝑛 comes from the fact that in an

optimum allocation, not more than 𝑘 · 𝑛 items will be appreciated

by the agents (by definition of the 𝑘-demand valuation function).

Therefore, allocating more than these items does not improve the

social welfare, thus, does not yield additional WE. In this case, we

can find all possible subsets of size 𝑘 ·𝑛 of items, that is, all candidate

sets of items to be allocated to the agents. Formally, we consider

the set 𝐼 := {𝐿 ⊆ 𝑀 | |𝐿 | = 𝑘 · 𝑛} that consists of all (𝑘 · 𝑛)-subsets
of𝑀 . It is |𝐼 | =

( 𝑚
𝑘 ·𝑛

)
∈ 𝑂 ((𝑚 − 𝑘 · 𝑛)𝑘 ·𝑛), which is a polynomial in

𝑚 when 𝑘 and 𝑛 are constant.

Observe now that, given a subset 𝐿 of items with size𝑘 ·𝑛, one can
construct a 𝑘+1-uniform hypergraph, i.e. a hypergraph all of whose

hyperedges have size 𝑘 +1, in the following way. Have its vertex set

be 𝐿 ∪𝑁 , and for every 𝑘-subset 𝐿𝑘 of 𝐿 have a hyperedge 𝐿𝑘 ∪ {𝑖}
for every 𝑖 ∈ 𝑁 . Also, assign to each hyperedge a weight equal to

the valuation of agent 𝑖 for the item bundle 𝐿𝑘 , namely 𝑣𝑖 (𝐿𝑘 ). On
this graph one can run a brute-force algorithm to find a maximum

weight (𝑘 + 1)-dimensional matching in constant time, since the

graph is of constant size. Then, by repeating the same routine for

all (𝑘 ·𝑛)-subsets of 𝐼 in time polynomial in𝑚, we pick the one that

yields the maximum sum of weights in the matching. The optimal

allocation of items to agents corresponds to the aforementioned

optimum matching. The running time of this algorithm is 𝑂 (𝑚𝑐 )
for some constant 𝑐 , i.e. polynomial in the input size, since the input

size is Ω
(
𝑛 ·

(𝑚
𝑘

)
· log𝑉

)
bits, where 𝑉 := max 𝑖∈𝑁

𝑋 ⊆𝑀
𝑣𝑖 (𝑋 ); that is

because every agent has to declare how much her valuation is for

every 𝑘-subset of items. □

Corollary 6.2. In markets with 𝑘-demand valuations, 𝑛 agents

and𝑚 items, where 𝑘 and 𝑛 are constant, walrasian is in P.

7 DISCUSSION
In this paper we study the complexity of computing Walrasian

equilibria in markets with 𝑘-demand valuations. As we show, even

for the smallest possible value for 𝑘 , the problem of deciding WE

existence remains NP-hard for the next greater well-studied class of
valuations outside gross substitutes (submodular). Hence, we turn

to the study of unbalanced markets and present a polynomial-time

algorithm for 𝑘-demand general valuations, where 𝑘 is constant.

For markets with 𝑘 = 1, known as “matching markets”, we prove

that the problem is in quasi-NC. We view this as a very interesting

result since all the known algorithms for the problem are highly se-

quential. Can we design an NC algorithm for the problem via a form

of a simultaneous auction? This would be remarkable since it would

imply that bipartite weighted matching is in NC. For 𝑘 = 2 we show

that WinnerDetermination is intractable even for submodular

functions, and for 𝑘 = 3 the hardness remains for an even stricter

class, namely budget-additive functions. In order to completely

resolve the complexity of 2-demand valuations, it remains to solve

WinnerDetermination for 2-demand budget-additive valuations.

Is the problem NP-hard, or is there a polynomial time algorithm for

it? Answering this question would provide a complete dichotomy

for the complexity of the problems WinnerDetermination and

also Walrasian. For unbalanced markets with constant 𝑘 , we cov-

ered the cases𝑚 ∈ 𝑂 (log𝑛) and 𝑛 ∈ Θ(1). Are there efficient algo-

rithms for any 𝑛 ∈ 𝜔 (𝑚) and𝑚 ∈ 𝜔 (𝑛)? Another very intriguing

direction is to study approximate Walrasian equilibria. The recent

results of Babaioff, Dobzinski, and Oren [2] and of Ezra, Feldman,
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and Friedler [17] propose some excellent notions of approximation.

Can we get better results if we assume 𝑘-demand valuations?
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