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ABSTRACT
In stochastic games, individuals need to make decisions in multi-
ple states and transitions between states influence the dynamics
of strategies significantly. In this work, by describing the dynamic
process in stochastic game as aMarkov chain and utilizing the tran-
sition matrix, we introduce a new method, named state-transition
replicator dynamics, to obtain the replicator dynamics of a stochas-
tic game. Based on our proposed model, we can gain qualitative
and detailed insights into the influence of transition probabilities
on the dynamics of strategies.We illustrate that a set of unbalanced
transition probabilities can help players to overcome the social
dilemmas and lead to mutual cooperation in a cooperation back
state, even if the stochastic game has the same social dilemmas in
each state. Moreover, we also present that a set of specifically de-
signed transition probabilities can fix the expected payoffs of one
player and make him lose the motivation to update his strategies
in the stochastic game.
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1 INTRODUCTION
The tragedy of the commons leads to the questions how to drive
and reinforce cooperative behaviors in social and economic sys-
tems [4, 17]. These questions have been extensively explored by
analyzing stylized uncooperative game theory models with some
feedback mechanisms using evolutionary game theory [14, 16, 18–
20]. Besides the evolutionary game theory, another method used in
studying the dynamics of strategies is multi-agent reinforcement
learning [1, 3, 12]. These works mainly derive and design multi-
agent reinforcement learning algorithms which can lead strategies
of players to the Nash equilibrium existing in the game.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021,
Online. © 2021 International Foundation for Autonomous Agents and Multiagent Sys-
tems (www.ifaamas.org). All rights reserved.

For gaining qualitative and detailed insights into the learning
process in repeated games, many algorithms andmodels have been
proposed to build the bridge between evolutionary game theory
and multi-agent reinforcement learning algorithms, such as FAQ-
learning [10], regret minimization [11], continuous strategy repli-
cator dynamics [5], IGA [21], IGA-WOLF [2] and so on. Besides
the assumption that individuals are in the same state, how to de-
scribe strategy dynamicswith the reciprocity ofmultiple states and
separate strategies also raises the attention of researchers. Vrancx
et al. first investigate the problem and they combine replicator
dynamics and piecewise dynamics to model the learning behav-
ior of agents in stochastic games [25]. Hennes et al. propose a
method called state-coupled replicator dynamics which couples
the multiple states directly [8]. The derived algorithms from the
combination of evolutionary game theory and multi-agent rein-
forcement learning algorithms have been applied in multiple re-
search fields, including femtocell power allocation [27], interdo-
main routing price setting [24], design of social agents [6] and de-
sign of new multi-agent reinforcement learning algorithms [7].

In this paper, by describing the dynamic process in stochastic
game as a Markov chain [9, 22], we propose a new method, named
state-transition replicator dynamics, to derive a set of ordinary dif-
ferential equations tomodel the learning behavior of players in sto-
chastic games. Moreover, based on the transition matrix of Markov
chain and the derived replicator dynamics system, we demonstrate
that, though players face the same social dilemmas in all states, a
set of unbalanced transition probabilities between states can lead
to cooperation in the cooperation back state where players have a
high probability to be in after mutual cooperation. Besides, we also
point out that in stochastic games, there exist several sets of spe-
cific transition probabilities which can control the expected pay-
offs of players. For a stateless matrix game, Press et al. [15] prove
that if players’ decisions depend on the previous actions of players
participating in games, one player can unilaterally sets the payoff
of the other player. In stochastic games, transition probabilities can
take this work. Utilizing the analyzing method in stateless matrix
game [13, 15, 23] and state-transition replicator dynamics model,
we present that a set of specifically derived transition probabilities
can fix the expected payoffs of one player and this player loses the
motivation to update his strategies in this stochastic game.

Main Track AAMAS 2021, May 3-7, 2021, Online

420



2 BACKGROUND
2.1 Stochastic games
Stochastic games describe howmuch rewards players obtain based
on their strategies in multiple states. The concept of state in sto-
chastic games refers to the environment where players interact
with each other. The current state players being in and the joint
action players taking not only determine the immediate payoffs
players can receive in this round, but also the state they will stay
in the next round. To define a stochastic game, we need to spec-
ify the set of players, the set of states, the set of actions that each
player can take in each state, a transition function that describes
how states change over time and the payoff function which de-
scribes how players’ actions in each state affect the players’ pay-
offs.We follow the definition in [8] to give a definition of stochastic
games.

The game𝐺 = ⟨𝑛, 𝑺,𝛀, 𝒛, 𝜏, 𝜋1, · · · , 𝜋𝑛⟩ is a stochastic gamewith
𝑛 players and 𝑘 states. In each state 𝑠 ∈ 𝑺 = (𝑠1, · · · , 𝑠𝑘 ), every
player 𝑖 has an action set 𝛀𝑖 (𝑠) and strategy 𝜋𝑖 (𝑠). In each round,
every player 𝑖 stays in one sate 𝑠 and chooses an action 𝑎𝑖 from
action set 𝛀𝑖 (𝑠) according to strategy 𝜋𝑖 (𝑠). The payoff function
𝜏 (𝑠, 𝒂) : ∏𝑛

𝑖=1 𝛀𝑖 (𝑠) ↦→ 𝑅𝑛 maps the joint action 𝒂 = (𝑎1, · · · , 𝑎𝑛)
to an immediate payoff value for each player. The transition func-
tion 𝑧 (𝑠, 𝒂) :

∏𝑛
𝑖=1 𝛀𝑖 (𝑠) ↦→ Δ𝑘−1 determines the probabilistic

state transition, where Δ𝑘−1 is the (𝑘 − 1)-simplex and 𝑧𝑠′ (𝑠, 𝒂) is
the transition probability from state 𝑠 to 𝑠 ′ under joint action 𝒂.

In this work, we also follow the restriction proposed in [8] that
all states 𝑠 ∈ 𝑺 are in an ergodic set. This restriction ensures that
the game has no absorbing states.

2.2 Two-state two-player two-action stochastic
games

Here, we introduce the simplest version of stochastic games: two-
state two-player two-action stochastic game.

In games containing two players, player 𝑃 (𝑄) has a strategy 𝒑
(𝒒). Each player chooses between only two actions, cooperation (𝑐)
and defection (𝑑). Thus, we can use a probability to fully define one
player’s strategy. For player 𝑃 , the parameter 𝑝 means the proba-
bility of cooperation and 𝒑 = (𝑝, 1 − 𝑝)T. Similarly, for player 𝑄 ,
𝒒 = (𝑞, 1 − 𝑞)T. The payoff function can be represented by a bi-
matrix (𝐴, 𝐵), that gives the payoffs for the row player (𝑃 ) in 𝐴,
and the column player (𝑄) in 𝐵, which is shown as follow,

(𝐴, 𝐵) =
(
𝑎𝑐𝑐 , 𝑏𝑐𝑐 𝑎𝑐𝑑 , 𝑏𝑐𝑑
𝑎𝑑𝑐 , 𝑏𝑑𝑐 𝑎𝑑𝑑 , 𝑏𝑑𝑑

)
. (1)

The outcome of players’ joint action determines the payoffs to both
players. It follows the order of actions of player 𝑃 and 𝑄 , 𝒂 =
(𝑎𝑃 , 𝑎𝑄 ), where 𝑎𝑃 (𝑎𝑄 ) is the action taken by player 𝑃 (𝑄).

When a stochastic game has two states, 𝑠1 and 𝑠2, the payoff
matrices are given by

(𝐴1, 𝐵1) =
(
𝑎1𝑐𝑐 , 𝑏

1
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(𝐴2, 𝐵2) =
(
𝑎2𝑐𝑐 , 𝑏

2
𝑐𝑐 𝑎2
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.

(2)

state 1 Agent Q

coop. defect

Ag
en
tP coop.

defect

𝑎!!" , 𝑏!!" 𝑎!#" , 𝑏!#"

𝑎#!" , 𝑏#!" 𝑎##" , 𝑏##"

state 2 Agent Q

coop. defect

Ag
en
tP coop.

defect

𝑎!!$ , 𝑏!!$ 𝑎!#$ , 𝑏!#$

𝑎#!$ , 𝑏#!$ 𝑎##$ , 𝑏##$

𝑧!! 	(𝑠" , 𝒂)

𝑧!" (𝑠" ,𝒂)

𝑧!" (𝑠# , 𝒂)

𝑧!! (𝑠# , 𝒂)

Figure 1: The framework of a two-state two-player two-
action stochastic game. There are two players, 𝑃 and 𝑄 . In
every round, they can be in one state, 𝑠1 or 𝑠2. In each state,
each player has a corresponding strategy and payoff matrix.
The state in the next round depends on the current state, on
the players’ joint action and on chance, 𝑧𝑠′ (𝑠, 𝒂).

𝐴𝑠 (𝐵𝑠 ) determines the payoffs for player 𝑃 (𝑄) in state 𝑠 . Player
𝑃 receives 𝜏𝑃 (𝑠, 𝒂) = 𝑎𝑠𝑎𝑃 ,𝑎𝑄 while player 𝑄 gets 𝜏𝑄 (𝑠, 𝒂) = 𝑏𝑠𝑎𝑃 ,𝑎𝑄
for a given joint action 𝒂 = (𝑎𝑃 , 𝑎𝑄 ). Player 𝑃 has strategies 𝒑1 =
(𝑝1, 1 − 𝑝1)T and 𝒑2 = (𝑝2, 1 − 𝑝2)T in state 𝑠1 and 𝑠2, respec-
tively. Player 𝑄 also has two strategies, 𝒒1 and 𝒒2. Since there are
only two states, the transition probabilities have the relationship,
𝑧𝑠1 (𝑠1, 𝒂) = 1 − 𝑧𝑠2 (𝑠1, 𝒂) and 𝑧𝑠2 (𝑠2, 𝒂) = 1 − 𝑧𝑠1 (𝑠2, 𝒂). The
framework of a two-state two-player two-action stochastic game
is shown in Figure 1.

2.3 Learning automata
In this section, we give a description on how player can update his
strategy with multi-agent reinforcement learning method [26]. A
player can be seen as a learning automata, who updates his strat-
egy by monitoring the reinforcement signal resulted from the ac-
tion he has chosen in this round. An automata wants to learn the
optimal strategy and maximizes the expected payoffs.

In this paper, we focus on finite action-set learning automata
(FALA) [8]. At the beginning of a round, every player draws a
random action 𝑎(𝑡) from his action set according to his strategy
𝝅 (𝑡). Based on the action 𝑎(𝑡), the environment responds with a re-
ward 𝜏 (𝑡). The automata uses this reward to update his strategy to
𝝅 (𝑡+1).The update rule for FALA using the linear reward-inaction
(𝐿𝑅−𝐼 ) scheme is given below,

𝜋𝑎∗ (𝑡 + 1) = 𝜋𝑎∗ (𝑡) +
{
𝛼𝜏 (𝑡) (1 − 𝜋𝑎∗ (𝑡)) if 𝑎(𝑡) = 𝑎∗

− 𝛼𝜏 (𝑡)𝜋𝑎∗ (𝑡) otherwise ,
(3)

where 𝜏 ∈ [0, 1]. 𝜋𝑎∗ means the probability of taking action 𝑎∗. The
parameter 𝛼 ∈ [0, 1] determines the learning rate.

In multi-state games, a player associates a dedicated learning
automata to each state of the game. One LA tries to optimize the
strategy in one state using the standard update rule given in Equa-
tion (3). Only a single LA is active and selects an action in each
round of the game. However, the immediate reward from the en-
vironment is not directly fed back to this LA. Instead, when the
LA becomes active again, i.e., next time the same state is played,
it is informed about the cumulative reward gathered since the last
activation and the time that has passed by [8].
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The reward 𝜏𝑖 (𝑡) for agent 𝑖’s automaton LA𝑖 (𝑠) associated with
state 𝑠 is defined as

𝜏𝑖 (𝑡) =
Δ𝑟𝑖
Δ𝑡

=

∑𝑡−1
𝑙=𝑡0 (𝑠) 𝑟𝑖 (𝑙)
𝑡 − 𝑡0 (𝑠)

, (4)

where 𝑟𝑖 (𝑙) is the immediate reward for agent 𝑖 in round 𝑙 and 𝑡0 (𝑠)
is the last occurrence function and determines when state 𝑠 was
visited last. The reward feedback in round 𝑡 equals the cumulative
reward Δ𝑟𝑖 divided by time-frame Δ𝑡 . The cumulative reward Δ𝑟𝑖
is the sum over all immediate rewards gathered in all states be-
ginning with round 𝑡0 (𝑠) and including the last round 𝑡 − 1. The
time-frame Δ𝑡 measures the number of rounds that have passed
since automaton LA𝑖 (𝑠) has been active last. This means the state
strategy is updated using the average reward over the interim im-
mediate rewards.

2.4 Replicator dynamics
From the perspective of evolutionary game theory, the dynamics of
strategies can be formulated as a system of differential equations.
Each replicator represents one strategy. Strategies that gain above-
average payoff becomemore likely to be played [25].The dynamics
of strategy that player 𝑖 takes action 𝑎∗, 𝜋𝑖,𝑎∗ , can be written as

𝑑𝜋𝑖,𝑎∗

𝑑𝑡
= (𝑓𝑖,𝑎∗ − 𝑓𝑖,𝜋 )𝜋𝑖,𝑎∗ , (5)

where 𝑓𝑖,𝑎∗ is the payoff when player 𝑖 takes action 𝑎∗ and 𝑓𝑖,𝜋 is
the average payoff when player 𝑖 applies strategy 𝜋 .

In a two-player two-action game, the expected payoffs of coop-
eration and defection of player 𝑃 can be written as

𝑓 (𝑐, 𝒒) = 𝑎𝑐𝑐𝑞 + 𝑎𝑐𝑑 (1 − 𝑞) = (𝐴𝒒)𝑐 ,
𝑓 (𝑑, 𝒒) = 𝑎𝑑𝑐𝑞 + 𝑎𝑑𝑑 (1 − 𝑞) = (𝐴𝒒)𝑑 .

(6)

and similarly we can write the expected payoff of strategy 𝒑 as

𝑓 (𝒑, 𝒒) = 𝑝𝑓 (𝑐, 𝒒) + (1 − 𝑝) 𝑓 (𝑑, 𝒒) = 𝒑T𝐴𝒒. (7)

Thus, the two-player two-action replicator dynamics can be de-
fined as the following system of ordinary differential equations

𝑑𝑝

𝑑𝑡
=

[
(𝐴𝒒)𝑐 − 𝒑T𝐴𝒒

]
𝑝,

𝑑𝑞

𝑑𝑡
=

[
(𝐵T𝒑)𝑐 − 𝒒T𝐵T𝒑

]
𝑞.

(8)

As there are only two actions for each player, the replicator dy-
namics can also be written as

𝑑𝑝

𝑑𝑡
= [(𝐴𝒒)𝑐 − (𝐴𝒒)𝑑 ] (1 − 𝑝)𝑝,

𝑑𝑞

𝑑𝑡
=

[
(𝐵T𝒑)𝑐 − (𝐵T𝒑)𝑑

]
(1 − 𝑞)𝑞.

(9)

3 REPLICATOR DYNAMICS IN STOCHASTIC
GAMES

If the game has only one state, the joint action results in a deter-
ministic outcome and brings a deterministic reward to the play-
ers. However, in a stochastic game, as the joint action influences
the next state players being in, the average reward of joint action
in one state is affected by the future rewards players can receive.
Thus, how to evaluate the payoff of an action and a strategy in one

state in stochastic games is a critical point to derive the replicator
dynamics in stochastic games.

3.1 State-coupled replicator dynamics
In work [8], the authors propose an approach named state-coupled
replicator dynamics to derive the replicator dynamics in stochastic
games. In their work, they first need to get an average reward game
of each state. For a stochastic game 𝐺 = ⟨𝑛, 𝑺,𝛀, 𝑧, 𝜏, 𝜋1, · · · , 𝜋𝑛⟩
and state 𝑠 ∈ 𝑺 , the average reward game is defined as

𝐺 (𝑠, 𝜋1 . . . 𝜋𝑛) =
〈
𝑛,𝛀1 (𝑠) . . .𝛀𝑛 (𝑠), 𝜏, 𝜋1 (𝑠 ′) . . . 𝜋𝑛 (𝑠 ′)

〉
(10)

where each player 𝑖 plays a fixed strategy 𝜋𝑖 (𝑠 ′) in all states 𝑠 ′ ≠ 𝑠 .
The payoff function 𝜏𝑖 is given by

𝜏𝑖 (𝑠, 𝒂) = 𝑥𝑠 (𝑠, 𝒂)𝜏𝑖 (𝑠, 𝒂) +
∑

𝑠′∈𝑆−{𝑠 }
𝑥𝑠′ (𝑠, 𝒂)𝐹𝑖

(
𝑠 ′

)
(11)

where

𝐹𝑖
(
𝑠 ′

)
=

∑
𝒂′∈∏𝑛

𝑖=1 𝛀𝑖 (𝑠′)

(
𝜏𝑖

(
𝑠 ′, 𝒂′

) 𝑛∏
𝑖=1

𝜋𝑖,𝑎′𝑖
(
𝑠 ′

))
. (12)

In Equation (11), 𝑥𝑠∗ (𝑠, 𝒂) is a stationary distribution over all states
𝑺 , given the joint action 𝒂 being played in state 𝑠 . The distribution
meets the condition that

∑
𝑠∗∈𝑺 𝑥𝑠∗ (𝑠, 𝒂) = 1 and

𝑥𝑠∗ (𝑠, 𝒂) = 𝑥𝑠 (𝑠, 𝒂)𝑞𝑠𝑠∗ (𝑠, 𝒂) +
∑

𝑠′∈𝑺−{𝑠 }
𝑥𝑠′ (𝑠, 𝒂)𝑍𝑖

(
𝑠 ′

)
, (13)

where

𝑍𝑖
(
𝑠 ′

)
=

∑
𝒂′∈∏𝑛

𝑖=1 𝛀𝑖 (𝑠′)

(
𝑧𝑠∗

(
𝑠 ′, 𝒂′

) 𝑛∏
𝑖=1

𝜋𝑖,𝑎′𝑖
(
𝑠 ′

))
. (14)

Given the average reward games of each state, the state-coupled
replicator dynamics are defined by the following system of differ-
ential equations:

𝑑𝜋𝑖, 𝑗 (𝑠)
𝑑𝑡

=
[
𝑓𝑖

(
𝑠, 𝒆 𝑗

)
− 𝑓𝑖 (𝑠, 𝜋𝑖 (𝑠))

]
𝜋𝑖, 𝑗𝑥𝑠 (𝜋) (15)

where 𝒆 𝑗 is the 𝑗𝑡ℎ-unit vector which means the case that player 𝑖
takes action 𝑗 . 𝑓𝑖 (𝑠, 𝜔) is the expected payoff for a player 𝑖 playing
strategy 𝜔 in state 𝑠 . 𝑓𝑖 is defined as

𝑓𝑖 (𝑠, 𝜔) =
∑

𝑗 ∈𝛀𝑖 (𝑠)

𝜔 𝑗

∑
𝒂∈∏𝑙≠𝑖 𝛀𝑙 (𝑠)

(
𝜏𝑖 (𝑠, 𝒂)

∏
𝑙≠𝑖

𝜋𝑙,𝑎𝑙 (𝑠)
) (16)

where joint action 𝒂 = (𝑎1, · · · , 𝑎𝑖−1, 𝑗, 𝑎𝑖+1, · · · , 𝑎𝑛). 𝑥 is the sta-
tionary distribution over all states under strategy 𝜋 , with∑

𝑠∈𝑆
𝑥𝑠 (𝜋) = 1 and (17)

𝑥𝑠 (𝜋) =
∑
𝑠∗∈𝑺

𝑥𝑠∗ (𝜋)
∑

𝒂∈∏𝑛
𝑖=1 𝛀𝑖 (𝑠∗)

(
𝑧𝑠 (𝑠∗, 𝒂)

𝑛∏
𝑖=1

𝜋𝑖,𝑎𝑖 (𝑠∗)
) (18)
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3.2 State-transition replicator dynamics
In the derivation of state-coupled replicator dynamics, one critical
step is to get the expected payoff 𝑓𝑖 (𝑠, 𝒂) for the joint action 𝒂 taken
in state 𝑠 . The expected payoff is given by adding the immediate
payoff for joint action 𝒂 in state 𝑠 with the expected payoffs in all
other states. Expected payoffs are then weighted by the frequency
of corresponding state occurrences. As calculating the expected
payoffs in other states and the frequency of state occurrences, the
strategies in other states are assumed to be fixed.

In this paper, we propose a new approach to derive the average
reward game and replicator dynamics in stochastic games, by the
means of describing the dynamic process in stochastic game as
a Markov chain. As we use the properties of Markov chain and
transition matrix in the derivation of replicator dynamics, we call
this approach as state-transition replicator dynamics.

One outcome of the Markov chain for stochastic game is the
combination of state 𝑠 and the joint action 𝒂 in this state, which is
written as 𝑂 (𝑠,𝒂) . In total, the Markov chain has number of 𝑁 =∑

𝑠∈𝑺
∏𝑛

𝑖=1 |𝛀𝑖 (𝑠) | possible outcomes. For a stochastic game 𝐺 =
⟨𝑛, 𝑺,𝛀, 𝑧, 𝜏, 𝜋1, · · · , 𝜋𝑛⟩, transitions between outcomes in theMarkov
chain can be represented by a transition matrix𝑀 (𝐺) with the en-
tries equaling to

𝑃 (𝑋𝑡+1 = 𝑂 (𝑠,𝒂) |𝑋𝑡 = 𝑂 (𝑠′,𝒂′) ) = 𝑧𝑠 (𝑠 ′, 𝒂′)
𝑛∏
𝑖=1

𝜋𝑖,𝑎𝑖 (𝑠). (19)

The entry of the transition matrix means the probability that the
outcome moves from 𝑂 (𝑠′,𝒂′) to 𝑂 (𝑠,𝒂) . This probability is deter-
mined by themultiplication of two parts. One is the state transition
probability, 𝑧𝑠 (𝑠 ′, 𝒂′)). The other is the probability of joint action
𝒂 taking place in state 𝑠 , which is written as

∏𝑛
𝑖=1 𝜋𝑖,𝑎𝑖 (𝑠), where

𝑎𝑖 ∈ 𝒂
We define the vector 𝒗 (𝐺) as the left eigenvector of the transi-

tion matrix 𝑀 (𝐺) corresponding to the eigenvalue 1. This vector
represents the stationary distribution of outcomes in the Markov
chain. The entry 𝑣 (𝑠,𝒂) of this vector is the expected frequencies to
observe the outcome𝑂 (𝑠,𝒂) over the course of the stochastic game.
Furthermore, we know the immediate payoffs for players given a
state 𝑠 and the joint action 𝒂. Thus, for stochastic game 𝐺 , the ex-
pected payoff of player 𝑖 can then be computed by

𝑓𝑖 (𝐺) =
∑

𝑠∈𝑺,𝒂∈∏𝑛
𝑙=1 𝛀𝑙 (𝑠)

𝑣 (𝑠,𝒂) · 𝜏𝑖 (𝑠, 𝒂). (20)

For obtaining the average reward game, we need to calculate
the expected payoffs of the combinations of every state and every
joint action. The joint action in state 𝑠 can be seen as that each
player takes a pure strategy in this state. Given that players take
the joint action 𝒂∗ in state 𝑠∗, the transition matrix𝑀∗ (𝐺) for this
combination of state and joint action can be written as

𝑃 (𝑂 (𝑠,𝒂) |𝑂 (𝑠′,𝒂′) ) =


0 if 𝑠 = 𝑠∗, 𝒂 ≠ 𝒂∗

𝑧𝑠 (𝑠 ′, 𝒂′) if 𝑠 = 𝑠∗, 𝒂 = 𝒂∗

𝑧𝑠 (𝑠 ′, 𝒂′)
∏𝑛

𝑖=1 𝜋
𝑖
𝑎𝑖 (𝑠) if 𝑠 ≠ 𝑠∗

(21)
With transition matrix 𝑀∗ (𝐺), we can get the stationary distri-

bution 𝒗∗ (𝐺) with entries as 𝑣∗(𝑠,𝒂) . The expected payoff function

𝜏𝑖 (𝑠∗, 𝒂∗) is given by

𝜏𝑖 (𝑠∗, 𝒂∗) =
∑

𝑠∈𝑺,𝒂∈∏𝑛
𝑙=1 𝛀𝑙 (𝑠)

𝑣∗(𝑠,𝒂) · 𝜏𝑖 (𝑠, 𝒂). (22)

Given the average reward games, we can use Equations (15)
and (16) to derive the system of replicator dynamics.The stationary
distribution over all states under strategy 𝜋 equals to

𝑥𝑠 (𝜋) =
∑

𝒂∈∏𝑛
𝑖=1 𝛀𝑖 (𝑠)

𝑣 (𝑠,𝒂) (23)

3.3 Results of strategy trajectory traces
In this section, we plot multiple strategy trajectory traces origi-
nating from learning automata as well as state-coupled and state-
transition replicator dynamics based on the stochastic game pre-
sented in [8].These results illustrate that state-transition replicator
dynamics can model the learning process precisely.

The payoff matrices of a two-state two-player two-action sto-
chastic game are given by(

𝐴1, 𝐵1
)
=

(
3, 3 0, 10

10, 0 2, 2

)
,
(
𝐴2, 𝐵2

)
=

(
4, 4 0, 10

10, 0 1, 1

)
.

(24)
The transition probabilities are defined as

𝑧𝑠′ (𝑠, 𝑐𝑐) = 𝑧𝑠′ (𝑠, 𝑑𝑑) = 0.1,

𝑧𝑠′ (𝑠, 𝑐𝑑) = 𝑧𝑠′ (𝑠, 𝑑𝑐) = 0.9,
(25)

where 𝑠, 𝑠 ′ ∈ 𝑺 and 𝑠 ≠ 𝑠 ′. Player 𝑃 (𝑄) has strategies 𝒑1 (𝒒1)
and 𝒑2 (𝒒2) in state 𝑠1 and 𝑠2, respectively. The pure stationary
equilibrium reflects the strategies where one of the players defects
in one state while cooperating in other and the second player does
exactly the opposite.

Figure 2 presents trajectory plots for this stochastic game. The
state-transition replicator dynamics canmodel the learning dynam-
ics precisely, as well as the state-coupled replicator dynamics pro-
posed in [8]. Both of these two methods describe the coupling be-
tween states. The main difference in these two methods is the ap-
proach to obtain the average reward game and the stationary dis-
tribution over all states under strategy 𝜋 . State-coupled method
copes with these problems by building a system of multi-variable
equations and solving it. The state-transition replicator dynamics
method proposed in this paper solves these problems by viewing
the dynamic process in stochastic games as a Markov chain. Then,
the average reward game and the stationary distribution over states
can be obtained through calculating the stationary vector of the
transition matrix.

4 APPLICATIONS
By viewing the stochastic game in the perspective of Markov chain
and utilizing the properties of transition matrix, we can get a pow-
erful tool to analyze and design some specific stochastic games.

4.1 Unbalanced transition probabilities
between states

We first illustrate that how transition probabilities between states
influence the dynamics of strategies and promote cooperation in
social dilemmas. It is assumed that players take part in three alike
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Figure 2:The strategy trajectory traces of learning automata,
state-coupled and state-transition replicator dynamics. Ini-
tial strategy profiles are picked randomly in state 1 and state
2 at start.

Prisoner’s Dilemma games in a stochastic game. The payoff matri-
ces in each state are set as

(𝐴1, 𝐵1) = (𝐴2, 𝐵2) = (𝐴3, 𝐵3) =
(
3, 3 1, 4
4, 1 2, 2

)
(26)

The difference between these three states is defined by the tran-
sition probabilities. State 1 is assumed to be a cooperation back
state. If players cooperate mutually, they have a high probability
to be in state 1 in the next round. Otherwise, they have a high prob-
ability to stay in state 2 or state 3. Here, the transition probabilities
are set as 𝑧𝑠1 (𝑠, 𝑐𝑐) = 0.9, 𝑧𝑠1 (𝑠, 𝒂) = 0.1, 𝑧𝑠2 (𝑠, 𝑐𝑐) = 𝑧𝑠3 (𝑠, 𝑐𝑐) =
(1−𝑧𝑠1 (𝑠, 𝑐𝑐))/2 and 𝑧𝑠2 (𝑠, 𝒂) = 𝑧𝑠3 (𝑠, 𝒂) = (1−𝑧𝑠1 (𝑠, 𝒂))/2, where
𝑠 ∈ 𝑺 and 𝒂 ∈ ∏𝑛

𝑖=1 𝛀
𝑖 (𝑠) \(𝑐𝑐).

Figure 3 plots the strategy trajectory traces originating from
learning automata and state-transition replicator dynamics in the
stochastic game with unbalanced transition probabilities. It can be
observed that, for most of initialization conditions shown in Fig-
ure 3, both players 𝑃 and𝑄 converge to cooperation in state 𝑠1 and
tend to defect mutually in states 𝑠2 and 𝑠3. The mutual defection
in states 𝑠2 and 𝑠3 can be seen as a punishment for players if they
choose defection state 𝑠1. The temptation of defection in state 𝑠1

can not cover the loss of leaving it. However, there still exist some
initialization conditions with that players turn to be mutually de-
fective in state 𝑠1. With the help of state-transition replicator dy-
namics model, we can investigate what initialization conditions
that players need to meet for the prevalence of cooperation.

For player 𝑖 in a stochastic game, we define the vector 𝜃𝑖 =
(𝑎1, · · · , 𝑎𝑘 ) as the combination of actions taken by player 𝑖 in each
state 𝑠 . For player 𝑖 and state 𝑠 , by setting the strategy as follow,

𝜋𝑖,𝑎 (𝑠) =
{

1 if 𝑎 = 𝑎𝑠

0 if 𝑎 ≠ 𝑎𝑠 ,
(27)

and substituting it into the Equations (19) and (20), we can get the
expected payoffs for player 𝑖 with combination of actions𝜃𝑖 against
other players’ strategies.

In stochastic game defined in this section, players have two ac-
tions, 𝑐 and𝑑 , in three states.Through enumerating all the possible
combinations of actions for player 𝑃 and𝑄 , we can get an expected
payoff matrix shown as below,

(c, c, c) (c, c, d) (c, d, c) (c, d, d)

©«

(c, c, c) 3.0, 3.0 2.83, 3.08 2.83, 3.08 2.0, 3.5
(c, c, d) 3.08, 2.83 2.92, 2.92 2.75, 2.75 2.25, 3.0
(c, d, c) 3.08, 2.83 2.75, 2.75 2.92, 2.92 2.25, 3.0
(c, d, d) 3.5, 2.0 3.0, 2.25 3.0, 2.25 2.5, 2.5
(d, c, c) 3.5, 2.0 2.71, 2.61 2.71, 2.61 1.3, 3.7
(d, c, d) 3.68, 1.64 3.04, 1.96 2.65, 2.35 1.75, 2.8
(d, d, c) 3.68, 1.64 2.65, 2.35 3.04, 1.96 1.75, 2.8
(d, d, d) 4.0, 1.0 3.1, 1.45 3.1, 1.45 2.2, 1.9

ª®®®®®®®®®®¬

2.0, 3.5 1.64, 3.68 1.64, 3.68 1.0, 4.0
2.61, 2.71 1.96, 3.04 2.35, 2.65 1.45, 3.1
2.61, 2.71 2.35, 2.65 1.97, 3.04 1.45, 3.1
3.7, 1.3 2.8, 1.75 2.8, 1.75 1.9, 2.2
2.5, 2.5 2.0, 2.97 2.0, 2.97 1.1, 3.8
2.96, 2.0 2.32, 2.32 2.45, 2.45 1.55, 2.9
2.96, 2.0 2.45, 2.45 2.32, 2.32 1.55, 2.9
3.8, 1.1 2.9, 1.55 2.9, 1.55 2.0, 2.0
(𝑑, 𝑐, 𝑐) (𝑑, 𝑐, 𝑑) (𝑑, 𝑑, 𝑐) (𝑑, 𝑑, 𝑑)

.

Theentries of thematrix represent the expected payoffs for player
𝑃 and 𝑄 with combination of actions 𝜃𝑃 and 𝜃𝑄 . The first value in
each entry represents the payoff for row player 𝑃 and the second
one for column player 𝑄 .

We can find that there exist two pure Nash equilibria, ((𝑐, 𝑑, 𝑑),
(𝑐, 𝑑, 𝑑)) and ((𝑑, 𝑑, 𝑑), (𝑑, 𝑑, 𝑑)). That is to say, for both of players,
the best actions in states 𝑠2 and 𝑠3 are defection. However, in state
𝑠1, an unstable equilibrium point exists in the perspective of evo-
lutionary game theory. By eliminating the dominated actions, we
can get a sub payoff matrix shown as follow,

( (𝑐, 𝑑, 𝑑) (𝑑, 𝑑, 𝑑)
(𝑐, 𝑑, 𝑑) 2.5, 2.5 1.9, 2.2
(𝑑, 𝑑, 𝑑) 2.2, 1.9 2.0, 2.0

)
. (28)

For player 𝑃 , the expected payoff of cooperation in state 𝑠1,
𝑓 (𝑐, 𝒒1), equals 2.5𝑞1 + 1.9(1 − 𝑞1) and the expected payoff of de-
fection, 𝑓 (𝑑, 𝒒1), equals 2.2𝑞1+2.0(1−𝑞1). The dynamic direction
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Figure 3:The strategy trajectory traces of learning automata and state-transition replicator dynamics in stochastic games with
unbalanced transition probabilities. Initial strategy profiles are picked randomly in states 𝑠1, 𝑠2 and 𝑠3 at start. The shadow
areas in panels (a) and (d) illustrate the area into where strategies 𝑝1 and 𝑞1 turn to be 0 when they fall.

of strategy 𝑝1 is determined by

𝑓 (𝑐, 𝒒1) − 𝑓 (𝑑, 𝒒1) = 0.4𝑞1 − 0.1. (29)

There exists a value 𝑞1 = 0.25 leading 𝑓 (𝑐, 𝒒1) − 𝑓 (𝑑, 𝒒1) to be 0.
When the strategy 𝑞1 is larger than 𝑞1, player 𝑃 would like to be
cooperative in state 𝑠1, and vice versa. In Figure 3 (a) and (d), there
exists a shadow area where 𝑝1 < 0.25 and 𝑞1 < 0.25. If strategies
𝑝1 and 𝑞1 initially fall into this area or evolve into this area, both
players 𝑃 and 𝑄 would like to change to be defective.

Figure 4 illustrates the relationship between 𝑑𝑝1/𝑑𝑡 and 𝑞1 for
different parameters 𝑧𝑠1 (𝑠, 𝑐𝑐) when the strategies of players 𝑃 and
𝑄 are purely defective in state 𝑠2 and 𝑠3. Meanwhile, the parame-
ter 𝑧𝑠1 (𝑠, 𝒂) is fixed as 0.1 for 𝒂 ∈ ∏𝑛

𝑖=1 𝛀
𝑖 (𝑠) \(𝑐𝑐). We can find

that the unstable equilibrium point 𝑞1 turns to be smaller with the
decrease of 𝑧𝑠1 (𝑠, 𝑐𝑐). When 𝑧𝑠1 (𝑠, 𝑐𝑐) becomes 0.5, the unstable
equilibrium point vanishes. The strategy 𝑝1 turns to be defective
no matter what strategy 𝑞1 is.

4.2 Control the payoffs of players
In this section, by extending the analysis method proposed in [15]
from stateless game to stochastic game and utilizing the state-transition

replicator dynamics, we demonstrate that a set of specifically de-
rived transition probabilities in stochastic games can control the
payoffs of players.

For a two-state (𝑠1, 𝑠2) two-player (𝑃,𝑄) two-action (𝑐, 𝑑) sto-
chastic game 𝐺 , the whole outcomes of the Markov chain can be
written as a vector, 𝑶 = ((𝑠1, 𝑐𝑐), (𝑠1, 𝑐𝑑), (𝑠1, 𝑑𝑐), (𝑠1, 𝑑𝑑), (𝑠2, 𝑐𝑐),
(𝑠2, 𝑐𝑑), (𝑠2, 𝑑𝑐), (𝑠2, 𝑑𝑑)). For simplicity, we define that the out-
comes in 𝑶 are labeled 1, · · · , 8 following the order in the vector.
The probabilities of the next state being 𝑠1 for the respective out-
comes are given by a vector 𝒛 = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8). 𝒗 is the
stationary vector of transition matrix 𝑀 defined in Equation (19).
The vector 𝒗 satisfies

𝒗𝑀 = 𝒗 or 𝒗𝑀 ′ = 0, (30)

where𝑀 ′ = 𝑀−𝐼 . 𝐼 is the identity matrix with the same dimension
of 𝑀 . Because the transition matrix 𝑀 is stochastic and has a unit
eigenvalue, the matrix 𝑀 ′ is singular, with thus zero determinant.
Further, by Cramer’s rule, we have

𝐴𝑑 𝑗 (𝑀 ′)𝑀 ′ = 𝑑𝑒𝑡 (𝑀 ′)𝐼 = 0, (31)
where 0 is a zero matrix with the same dimensions of𝑀 ′.𝐴𝑑 𝑗 (𝑀 ′)
is the adjoint matrix of𝑀 ′. Let𝑚∗

𝑖 𝑗 be the (𝑖, 𝑗) entry of the cofactor
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Figure 4: Gradient of strategy 𝑝1 as a function of the strategy
𝑞1 for different parameters 𝑧𝑠1 (𝑠, 𝑐𝑐). The strategies of play-
ers 𝑃 and 𝑄 in state 𝑠2 and 𝑠3 are fixed as purely defective.
The parameter 𝑧𝑠1 (𝑠, 𝒂) is fixed as 0.1 for 𝒂 ∈ ∏𝑛

𝑖=1 𝛀
𝑖 (𝑠) \(𝑐𝑐).

The crosses represent the unstable equilibriumpointswhere
𝑑𝑝1/𝑑𝑡 equals 0. The value of 𝑝1 can influence the value of
𝑑𝑝1/𝑑𝑡 , but can notmove the unstable equilibrium points. In
this figure, we fix 𝑝1 as 0.5.The left cross is for 𝑧𝑠1 (𝑠, 𝑐𝑐) = 0.9
and 𝑞1 equals 0.25. The right cross is for 𝑧𝑠1 (𝑠, 𝑐𝑐) = 0.7 and
𝑞1 equals 2/3.

matrix of𝑀 ′, then 𝐴𝑑 𝑗 (𝑀 ′) can be expressed as follow,

𝐴𝑑 𝑗 (𝑀′) =



𝑚∗
11 𝑚∗

21 𝑚∗
31 𝑚∗

41 𝑚∗
51 𝑚∗

61 𝑚∗
71 𝑚∗

81
𝑚∗

12 𝑚∗
22 𝑚∗

32 𝑚∗
42 𝑚∗

52 𝑚∗
62 𝑚∗

72 𝑚∗
82

𝑚∗
13 𝑚∗

23 𝑚∗
33 𝑚∗

43 𝑚∗
53 𝑚∗

63 𝑚∗
73 𝑚∗

83
𝑚∗

14 𝑚∗
24 𝑚∗

34 𝑚∗
44 𝑚∗

54 𝑚∗
64 𝑚∗

74 𝑚∗
84

𝑚∗
15 𝑚∗

25 𝑚∗
35 𝑚∗

45 𝑚∗
55 𝑚∗

65 𝑚∗
75 𝑚∗

85
𝑚∗

16 𝑚∗
26 𝑚∗

36 𝑚∗
46 𝑚∗

56 𝑚∗
66 𝑚∗

76 𝑚∗
86

𝑚∗
17 𝑚∗

27 𝑚∗
37 𝑚∗

47 𝑚∗
57 𝑚∗

67 𝑚∗
77 𝑚∗

87
𝑚∗

18 𝑚∗
28 𝑚∗

38 𝑚∗
48 𝑚∗

58 𝑚∗
68 𝑚∗

78 𝑚∗
88


.

(32)

From Equations (30) and (31), every row of 𝐴𝑑 𝑗 (𝑀 ′) is propor-
tional to 𝒗. Thus, we have 𝒗 = 𝜌 (𝑚∗

18,𝑚
∗
28,𝑚

∗
38,𝑚

∗
48,𝑚

∗
58,𝑚

∗
68,

𝑚∗
78,𝑚

∗
88) for some 𝜌 ≠ 0.

By adding the first column, the second column and the third
column to the fourth column in the matrix𝑀 ′, we can get

𝐻 =



𝑧1𝑝
1𝑞1 − 1 𝑧1𝑝

1
(
1 −𝑞1

)
𝑧1

(
1 − 𝑝1

)
𝑞1 𝑧1 − 1 (1 − 𝑧1 ) 𝑝2𝑞2

𝑧2𝑝
1𝑞1 𝑧2𝑝

1
(
1 −𝑞1

)
− 1 𝑧2

(
1 − 𝑝1

)
𝑞1 𝑧2 − 1 (1 − 𝑧2 ) 𝑝2𝑞2

𝑧3𝑝
1𝑞1 𝑧3𝑝

1
(
1 −𝑞1

)
𝑧3

(
1 − 𝑝1

)
𝑞1 − 1 𝑧3 − 1 (1 − 𝑧3 ) 𝑝2𝑞2

𝑧4𝑝
1𝑞1 𝑧4𝑝

1
(
1 −𝑞1

)
𝑧4

(
1 − 𝑝1

)
𝑞1 𝑧4 − 1 (1 − 𝑧4 ) 𝑝2𝑞2

𝑧5𝑝
1𝑞1 𝑧5𝑝

1
(
1 −𝑞1

)
𝑧5

(
1 − 𝑝1

)
𝑞1 𝑧5 (1 − 𝑧5 ) 𝑝2𝑞2 − 1

𝑧6𝑝
1𝑞1 𝑧6𝑝

1
(
1 −𝑞1

)
𝑧6

(
1 − 𝑝1

)
𝑞1 𝑧6 (1 − 𝑧6 ) 𝑝2𝑞2

𝑧7𝑝
1𝑞1 𝑧7𝑝

1
(
1 −𝑞1

)
𝑧7

(
1 − 𝑝1

)
𝑞1 𝑧7 (1 − 𝑧7 ) 𝑝2𝑞2

𝑧8𝑝
1𝑞1 𝑧8𝑝

1
(
1 −𝑞1

)
𝑧8

(
1 − 𝑝1

)
𝑞1 𝑧8 (1 − 𝑧8 ) 𝑝2𝑞2



(1 − 𝑧1 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧1 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧1 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧2 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧2 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧2 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧3 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧3 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧3 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧4 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧4 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧4 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧5 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧5 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧5 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧6 ) 𝑝2

(
1 −𝑞2

)
− 1 (1 − 𝑧6 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧6 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧7 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧7 )

(
1 − 𝑝2

)
𝑞2 − 1 (1 − 𝑧7 )

(
1 − 𝑝2

) (
1 −𝑞2

)
(1 − 𝑧8 ) 𝑝2

(
1 −𝑞2

)
(1 − 𝑧8 )

(
1 − 𝑝2

)
𝑞2 (1 − 𝑧8 )

(
1 − 𝑝2

) (
1 −𝑞2

)
− 1

.

(33)

where the transpose of the fourth column is denoted by �̃� ≡ (𝑧1−1,
𝑧2 − 1, 𝑧3 − 1, 𝑧4 − 1, 𝑧5, 𝑧6, 𝑧7, 𝑧8). It is clear that �̃� depends only
on the transition probabilities, but not on players’ strategies.

Let ℎ∗𝑖 𝑗 be the (𝑖, 𝑗) entry of the cofactor matrix of 𝐻 . Since the
operations of additions of columns do not change the determinant
of the matrix, we have ℎ∗𝑖8 = 𝑚∗

𝑖8 for 𝑖 = 1, · · · , 8. Through replac-
ing the eighth column of 𝐻 by the transpose of an arbitrary eight-
dimensional vector 𝜼 = (𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5, 𝜂6, 𝜂7, 𝜂8), the value of
the determinant of the corresponding matrix can be computed by
expanding along the eighth column as follow,

𝑑𝑒𝑡



𝑧1𝑝
1𝑞1 − 1 𝑧1𝑝

1
(
1 −𝑞1

)
𝑧1

(
1 − 𝑝1

)
𝑞1 𝑧1 − 1

𝑧2𝑝
1𝑞1 𝑧2𝑝

1
(
1 −𝑞1

)
− 1 𝑧2

(
1 − 𝑝1

)
𝑞1 𝑧2 − 1

𝑧3𝑝
1𝑞1 𝑧3𝑝

1
(
1 −𝑞1

)
𝑧3

(
1 − 𝑝1

)
𝑞1 − 1 𝑧3 − 1

𝑧4𝑝
1𝑞1 𝑧4𝑝

1
(
1 −𝑞1

)
𝑧4

(
1 − 𝑝1

)
𝑞1 𝑧4 − 1

𝑧5𝑝
1𝑞1 𝑧5𝑝

1
(
1 −𝑞1

)
𝑧5

(
1 − 𝑝1

)
𝑞1 𝑧5

𝑧6𝑝
1𝑞1 𝑧6𝑝

1
(
1 −𝑞1

)
𝑧6

(
1 − 𝑝1

)
𝑞1 𝑧6

𝑧7𝑝
1𝑞1 𝑧7𝑝

1
(
1 −𝑞1

)
𝑧7

(
1 − 𝑝1

)
𝑞1 𝑧7

𝑧8𝑝
1𝑞1 𝑧8𝑝

1
(
1 −𝑞1

)
𝑧8

(
1 − 𝑝1

)
𝑞1 𝑧8



(1 − 𝑧1 ) 𝑝2𝑞2 (1 − 𝑧1 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧1 )

(
1 − 𝑝2

)
𝑞2 𝜂1

(1 − 𝑧2 ) 𝑝2𝑞2 (1 − 𝑧2 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧2 )

(
1 − 𝑝2

)
𝑞2 𝜂2

(1 − 𝑧3 ) 𝑝2𝑞2 (1 − 𝑧3 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧3 )

(
1 − 𝑝2

)
𝑞2 𝜂3

(1 − 𝑧4 ) 𝑝2𝑞2 (1 − 𝑧4 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧4 )

(
1 − 𝑝2

)
𝑞2 𝜂4

(1 − 𝑧5 ) 𝑝2𝑞2 − 1 (1 − 𝑧5 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧5 )

(
1 − 𝑝2

)
𝑞2 𝜂5

(1 − 𝑧6 ) 𝑝2𝑞2 (1 − 𝑧6 ) 𝑝2
(
1 −𝑞2

)
− 1 (1 − 𝑧6 )

(
1 − 𝑝2

)
𝑞2 𝜂6

(1 − 𝑧7 ) 𝑝2𝑞2 (1 − 𝑧7 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧7 )

(
1 − 𝑝2

)
𝑞2 − 1 𝜂7

(1 − 𝑧8 ) 𝑝2𝑞2 (1 − 𝑧8 ) 𝑝2
(
1 −𝑞2

)
(1 − 𝑧8 )

(
1 − 𝑝2

)
𝑞2 𝜂8

= 𝜂1ℎ
∗
18 + 𝜂2ℎ∗28 + 𝜂3ℎ∗38 + 𝜂4ℎ∗48 + 𝜂5ℎ∗58 + 𝜂6ℎ∗68 + 𝜂7ℎ∗78 + 𝜂8ℎ∗88 .

(34)

Recalling that ℎ∗𝑖8 =𝑚∗
𝑖8 for 𝑖 = 1, · · · , 8 and 𝒗 = 𝜌 (𝑚∗

18,𝑚
∗
28,𝑚

∗
38,

𝑚∗
48,𝑚

∗
58,𝑚

∗
68,𝑚

∗
78,𝑚

∗
88) for 𝜌 ≠ 0, then Equation (34) implies

that𝜂1ℎ∗18+𝜂2ℎ
∗
28+𝜂3ℎ

∗
38+𝜂4ℎ

∗
48+𝜂5ℎ

∗
58+𝜂6ℎ

∗
68+𝜂7ℎ

∗
78+𝜂8ℎ

∗
88 =

1
𝜌 (𝒗 · 𝜼). Then, we can have

𝒗 · 𝜼 = 𝜌𝐷 (𝒛,𝒑, 𝒒,𝜼) (35)
where𝐷 (𝒛,𝒑, 𝒒,𝜼) equals to the determinant value defined in Equa-
tion (34). 𝒑 = (𝑝1, 𝑝2) (𝒒 = (𝑝1, 𝑞2)) represents the combination of
strategies of player 𝑃 (𝑄) in state 𝑠1 and 𝑠2. Player 𝑃 ’s payoff vector
is 𝑺𝑃 = (𝑎1𝑐𝑐 , 𝑎1𝑐𝑑 , 𝑎

1
𝑑𝑐
, 𝑎1

𝑑𝑑
, 𝑎2𝑐𝑐 , 𝑎

2
𝑐𝑑
, 𝑎2

𝑑𝑐
, 𝑎2

𝑑𝑑
), whereas player 𝑄 ’s
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Figure 5: The strategy trajectory traces of state-transition
replicator dynamics in stochastic games with ZD transition
probabilities. Initial strategy profiles are picked randomly
in state 𝑠1 and 𝑠2. Strategies 𝑝1 and 𝑝2 do not change and
keep the initial value. Meanwhile, strategies 𝑞1 and 𝑞2 up-
date to be 0 in social dilemmas.

payoff vector is 𝑺𝑄 = (𝑏1𝑐𝑐 , 𝑏1𝑐𝑑 , 𝑏
1
𝑑𝑐
, 𝑏1

𝑑𝑑
, 𝑏2𝑐𝑐 , 𝑏

2
𝑐𝑑
, 𝑏2

𝑑𝑐
, 𝑏2

𝑑𝑑
). Their re-

spective expected payoffs are

𝐸𝑃 =
𝒗 · 𝑺𝑃
𝒗 · 1 =

𝐷 (𝒛,𝒑, 𝒒, 𝑺𝑃 )
𝐷 (𝒛,𝒑, 𝒒, 1)

𝐸𝑄 =
𝒗 · 𝑺𝑄
𝒗 · 1 =

𝐷 (𝒛,𝒑, 𝒒, 𝑺𝑄 )
𝐷 (𝒛,𝒑, 𝒒, 1)

(36)

where 1 is the vector with all components 1.
The expected payoff for one player depends linearly on his own

payoff vector. For player 𝑃 , we can write his expected payoff as a
linear relationship as follow,

𝛼𝐸𝑃 + 𝛾 =
𝐷 (𝒛,𝒑, 𝒒, 𝛼𝑺𝑃 + 𝛾1)

𝐷 (𝒛,𝒑, 𝒒, 1) . (37)

The determinant value of any matrix is zero if two of its columns
are identical or one column is multiple of the other. Since that
the fourth column only contains the entries of transition probabil-
ities, the transition probabilities can equate the determinant value
𝐷 (𝒛,𝒑, 𝒒, 𝛼𝑺𝑃 +𝛾1) to 0. This will be true if transition probabilities
satisfy the case �̃� ≡ (𝑧1 − 1, 𝑧2 − 1, 𝑧3 − 1, 𝑧4 − 1, 𝑧5, 𝑧6, 𝑧7, 𝑧8) =
𝛼𝑺𝑃 + 𝛾1, which means

𝛼𝐸𝑃 + 𝛾 =
𝐷 (�̃�,𝒑, 𝒒, 𝛼𝑺𝑃 + 𝛾1)

𝐷 (�̃�,𝒑, 𝒒, 1) = 0. (38)

That is to say, the expected payoff of player 𝑃 is fixed as a constant
value,−𝛾

𝛼 .We call such transition probabilities as zero-determinant
(ZD) transition probabilities. Player 𝑃 cannot change his expected
payoff by alternating his strategies. Thus, in the stochastic game,
player 𝑃 has no motivation to update his strategies and will keep
his initial ones. Meanwhile, his opponent player 𝑄 can update his
own strategies to pursue higher expected payoffs.

Let us consider the following payoff matrices representing Pris-
oner’s Dilemma games in a stochastic game

(𝐴1, 𝐵1) =
(
3, 3 1, 4
4, 1 2, 2

)
, (𝐴2, 𝐵2) =

(
8, 8 6, 9
9, 6 7, 7

)
. (39)

With parameters 𝛼 = 0.2 and 𝛾 = −1.0, we can obtain the ZD tran-
sition probabilities �̃� = (0.6, 0.2, 0.8, 0.4, 0.6, 0.8, 0.2, 0.4) and the
value 𝐸𝑃 = −𝛾

𝛼 = 5. As shown in Figure 5, player 𝑃 does not

change his strategies, but keeps his initialized strategies. Mean-
while, player 𝑄 turns to be fully defective to pursue higher ex-
pected payoffs in the social dilemmas. State-transition replicator
dynamics can represent the theoretical analysis perfectly.

5 CONCLUSION
In this paper, we propose a new approach named state-transition
replicator dynamics for analyzing the dynamics ofmulti-agent learn-
ing in multi-state stochastic games. By describing the dynamic pro-
cess in stochastic game as a Markov chain and utilizing the prop-
erties of transition matrix, we obtain a set of replicator dynamics
to model the learning process in stochastic games.

Based on our approach and model, we have shown that tran-
sition probabilities have a significant influence on the dynamics
of strategies. If the transition probabilities between states are un-
balanced and there exists a cooperation back state, cooperative be-
haviors can prevail in this state when the strategies of players meet
some conditions which can be derived by state-transition replica-
tor dynamics. Moreover, it has also been proven in this paper that
a set of specific transition probabilities can control the expected
payoffs of players in some stochastic games. ZD transition proba-
bilities can fix the expected payoff of an player as a constant value.
No matter what strategies he applies, his expected payoffs do not
change. Thus, such player has no motivation to update his strate-
gies. Meanwhile, the opponent can update his own strategies to be
fully defective and get an extortionate payoff in the social dilem-
mas.

In this paper, we consider the stochastic games where players
have separate strategies in different states. Their strategies do not
depend on the previous actions taken by players.That is no-memory
strategy. However, many previous works have been shown that
memory-one strategy, such as TFT, WSLS and ZD strategies have
a great impact on the evolution of cooperation. We think that it
is straight to extend our method to investigate the dynamics of
memory-one strategies in stochastic games. If a player can make
decisions based on the previous actions, what is the dominant strate-
gies in stochastic games and what kind of transition probabilities
can influence the dynamics of strategies are worth to be investi-
gated.
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