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ABSTRACT
Consider a typical organization whose worker agents seek to collec-
tively cooperate for its general betterment. However, each individ-
ual agent simultaneously seeks to act to secure a larger chunk than
its co-workers of the annual increment in compensation, which usu-
ally comes from a fixed pot. As such, the agents in an organization
must cooperate and compete. Another feature of many organiza-
tions is that a worker receives a bonus, which is often a fraction of
previous year’s total profit. As such, the agent derives a reward that
is also partly dependent on historical performance. How should
the individual agent decide to act in this context? Few methods for
the mixed cooperative-competitive setting have been presented in
recent years, but these are challenged by problem domains whose
reward functions additionally depend on historical information.
Recent deep multi-agent reinforcement learning (MARL) methods
using long short-termmemory (LSTM)may be used, but these adopt
a joint perspective to the interaction or require explicit exchange of
information among the agents to promote cooperation, which may
not be possible under competition. In this paper, we first show that
the agent’s decision-making problem can be modeled as an interac-
tive partially observable Markov decision process (I-POMDP) that
captures the dynamic of a history-dependent reward. We present
an interactive advantage actor-critic method (IA2C+), which com-
bines the independent advantage actor-critic network with a belief
filter that maintains a belief distribution over other agents’ models.
Empirical results show that IA2C+ learns the optimal policy faster
and more robustly than several baselines.
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1 INTRODUCTION
Real-worldmulti-agent domains involving interactions among agents
are often not purely cooperative or competitive. For example, con-
sider a typical organization whose worker agents seek to collec-
tively cooperate for its general betterment. However, each indi-
vidual agent simultaneously also seeks to act to secure a larger
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chunk than its co-workers of the annual increment in compensa-
tion, which usually comes from a fixed pot. Another feature of many
organizations is that a worker receives a bonus, which is often a
fraction of the previous year’s total profit. Thus, the agent derives
a reward that partly depends on historical performance. The agent
in an organization then faces a context where it must cooperate
and compete while collecting history-dependent rewards.

A potential approach to solving the worker agent’s decision-
making problem is multi-agent reinforcement learning (MARL).
While traditional MARL has made significant strides in fields such
as game playing (e.g., AlphaStar [14]) and robotics, it struggles in
problems involving interactions where the individual and group
interests may conflict with each other. In response to this challenge,
MARL suited to both cooperative and competitive settings has
received attention recently [3, 4, 9]. However, most of these recent
methods take a joint perspective to the interaction and require
explicit exchange of information among the learning agents, which
may not be possible under competition.

In this paper, we first introduce and formalize the Organization
problem as a quintessential domain involving mixed cooperation-
competition, while exhibiting both partial observability and history-
dependent rewards. Next, we show that the individual agent’s deci-
sion making can be modeled using an interactive partially observ-
able Markov decision process (I-POMDP) [5] despite the presence
of history-dependent rewards in the problem, and introduce an
approach to MARL for this type of problems. In particular, we
introduce an interactive advantage actor-critic algorithm (labeled
IA2C+), which combines an independent advantage actor-critic [10]
with a belief filter that maintains a belief distribution over the other
agents’ models, and updates the belief using private observations.
We show that even when the set of models attributed to the other
agents may not contain a grain of truth, agents using IA2C+ still
converge to the optimal policy significantly faster than several rel-
evant baselines, and remain consistent for greater levels of noise in
their observations, compared to those baselines.

2 BACKGROUND
In this section, we briefly review the two main components on
which this work is built: a well-known model of decision making
in a multi-agent environment and actor-critic RL [8].

2.1 Overview of Interactive POMDPs
Interactive partially observable Markov decision processes are a
generalization of POMDPs [6] to sequential decision-making in
multi-agent environments [2, 5]. Formally, an I-POMDP for agent 𝑖
in an environment with one other agent 𝑗 is defined as,
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I-POMDP𝑖 = ⟨𝐼𝑆𝑖 , 𝐴,𝑇𝑖 ,𝑂𝑖 , 𝑍𝑖 , 𝑅𝑖 ,𝑂𝐶𝑖 ⟩
• 𝐼𝑆𝑖 denotes the interactive state space. This includes the physical
state 𝑆 as well as models of the other agent 𝑀𝑗 , which may be
intentional (ascribing beliefs, capabilities and preferences) or subin-
tentional [1]. Examples of the latter are probability distributions
and finite state machines. In this paper, we ascribe subintentional
models to the other agent.
• 𝐴 = 𝐴𝑖 ×𝐴 𝑗 is the set of joint actions of both agents.
• 𝑇𝑖 represents the transition function, 𝑇𝑖 : 𝑆 ×𝐴 × 𝑆 −→ [0, 1]. The
transition function is defined over the physical states and excludes
the other agent’s models. This is a consequence of the model non-
manipulability assumption, which states that an agent’s actions do
not directly influence the other agent’s models.
• 𝑂𝑖 is the set of agent 𝑖’s observations.
• 𝑍𝑖 is the observation function, 𝑍𝑖 : 𝐴 × 𝑆 × 𝑂 −→ [0, 1]. The ob-
servation function is defined over the physical state space only as
a consequence of the model non-observability assumption, which
states that other’s model parameters may not be observed directly.
• 𝑅𝑖 defines the reward function for agent 𝑖 , 𝑅𝑖 : 𝑆 × 𝐴 −→ R. The
reward function for I-POMDPs usually assigns preferences over
the physical states and actions only.
• 𝑂𝐶𝑖 is the subject agent’s optimality criterion, which may be a
finite horizon𝐻 or a discounted infinite horizon where the discount
factor 𝛾 ∈ (0, 1).

Without loss of generality, let the subintentional model ascribed
to 𝑗 take the form𝑚 𝑗 = (ℎ 𝑗 , 𝜋 𝑗 , 𝑍 𝑗 ) where ℎ 𝑗 is agent 𝑗 ’s action-
observation history, 𝜋 𝑗 is a candidate policy, and 𝑍 𝑗 is its observa-
tion function. Given agent 𝑖’s belief over interactive states 𝑏𝑖 , on
action 𝑎𝑖 and receiving observation 𝑜𝑖 , the belief is updated as:

𝑏 ′𝑖 (𝑖𝑠
′) ∝

∑
𝑖𝑠

𝑏𝑖 (𝑖𝑠)
∑
𝑎 𝑗

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑍𝑖 (𝑎, 𝑠 ′, 𝑜 ′𝑖 )𝑇𝑖 (𝑠, 𝑎, 𝑠
′)

×
∑
𝑜′
𝑗

𝛿𝐾 (𝐴𝑃𝑃𝐸𝑁𝐷 (ℎ 𝑗 , 𝑜 ′𝑗 ), ℎ
′
𝑗 )𝑍 𝑗 (𝑎, 𝑠

′, 𝑜 ′𝑗 ) (1)

where 𝛼 is a normalizing constant, ℎ 𝑗 and ℎ′
𝑗
are part of𝑚 𝑗 and

𝑚′
𝑗
, respectively. 𝛿𝐾 is the Kronecker-delta function, and APPEND

returns a string with the second argument appended to the first.
Each belief state 𝑏𝑖 is associated with a value given by:

𝑉 (𝑏𝑖 ) = max
𝑎𝑖 ∈𝐴𝑖

{∑
𝑖𝑠

∑
𝑎 𝑗

𝑅𝑖 (𝑠, 𝑎𝑖 , 𝑎 𝑗 )𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑏𝑖 (𝑖𝑠)

+ 𝛾
∑
𝑜𝑖 ∈𝑂𝑖

𝑃𝑟 (𝑜𝑖 |𝑎𝑖 , 𝑏𝑖 )𝑉 (𝑏 ′𝑖 (𝑖𝑠
′))

}
(2)

where 𝑏 ′
𝑖
(𝑖𝑠 ′) is obtained as shown in Equation 1.

2.2 Actor-Critic RL
RL problems are typically modeled using Markov decision processes
or MDPs [12], which is defined by the tuple ⟨𝑆,𝐴,𝑇 , 𝑅⟩. The param-
eters in the tuple have their standard semantics for single-agent
contexts. The agent’s goal is to learn a policy 𝜋 : 𝑆 ↦→ 𝐴 that
maximizes the sum of current and future rewards from any state 𝑠 ,
given by,

𝑉 𝜋 (𝑠) = E𝑇 [𝑅(𝑠, 𝜋 (𝑠)) + 𝛾𝑅(𝑠 ′, 𝜋 (𝑠 ′)) + 𝛾2 . . .]

where 𝑠, 𝑠 ′, . . . are successive samplings from the distribution 𝑇

following the Markov chain with policy 𝜋 , and 𝛾 ∈ (0, 1) is a
discount factor. This is sometimes facilitated by learning an action
value function, 𝑄 (𝑠, 𝑎) given by

𝑄 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +max
𝜋

𝛾
∑
𝑠′

𝑇 (𝑠, 𝑎, 𝑠 ′)𝑉 𝜋 (𝑠 ′). (3)

There are two main categories of reinforcement learning: value-
based and policy-based RL. Value-based RL learns an optimal value
function (e.g., 𝑉 given above) that maps each state (or state-action
pair) to a value. It is more sample efficient and stable compared to
policy-based RL, but it usually requires that the action space be
finite. Policy-based RL learns the optimal policy directly, sometimes
without using a value function. It is useful when the action space is
continuous, and it has a faster convergence due to directly searching
the policy space.

Actor-critic methods take advantage of both value-based and
policy-based RL while eliminating some drawbacks. It splits the
model into two components, an actor and a critic, where the actor
controls how the agent acts by learning the optimal policy, and the
critic evaluates the actor’s actions by computing the action value
(𝑄 value in Equation 3) function, or directly the value function
(𝑉 ). The actor and the critic are optimized separately during the
training. The interaction and complement allow the architecture to
be more robust than if the two models were used individually.

Value-based RL methods typically display a high variance due
to the uncertainty embedded in the agent’s experience. To mitigate
this, instead of using the 𝑄 value for the critic, advantage actor-
critic (A2C) uses advantage values, given for a policy 𝜋 by

𝐴(𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) −𝑉 𝜋 (𝑠)

= 𝑅(𝑠, 𝑎) + 𝛾
∑
𝑠′

𝑇 (𝑠, 𝑎, 𝑠 ′)𝑉 𝜋 (𝑠 ′) −𝑉 𝜋 (𝑠).

Advantage represents how much better a particular action is at a
state compared to the value of the state. While the critic can be
optimized by reducing the mean square of the advantages estimated
from samples, the actor, 𝜋𝜽 (parametrized by 𝜽 ) can be optimized
by gradient descent using gradients:

E𝑠∼𝑑𝜋𝜽 ,𝑎∼𝜋𝜽∇𝜽 log𝜋𝜽 (𝑎 |𝑠)𝐴(𝑠, 𝑎),

where 𝑑𝜋𝜽 (𝑠) = ∑∞
𝑡=0 𝛾

𝑡𝑃𝑟 (𝑠𝑡 = 𝑠 |𝑠0, 𝜋𝜽 ) is the discounted state
distribution that results from following policy 𝜋𝜽 .

In an I-POMDP setting, the state is not directly observable; in-
stead the learner receives an observation that is usually (noisily)
correlated with the (hidden) state and other agents’ actions. The
advantage function can be reformulated in terms of belief as

𝐴(𝑏𝑖 , 𝑎𝑖 ) =
∑
𝑖𝑠

{∑
𝑎 𝑗

𝑅𝑖 (𝑠, 𝑎𝑖 , 𝑎 𝑗 )𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑏𝑖 (𝑖𝑠)

+ 𝛾
∑
𝑜𝑖

𝑃𝑟 (𝑜𝑖 |𝑎𝑖 , 𝑏𝑖 )𝑉 𝜋 (𝑏 ′𝑖 (𝑖𝑠
′)) −𝑉 𝜋 (𝑏𝑖 (𝑖𝑠))

}
(4)

Assuming 𝜋𝜽 maps beliefs to actions, its gradients are

E𝑏∼𝑏𝜋𝜽 ,𝑎∼𝜋𝜽∇𝜽 log𝜋𝜽 (𝑎 |𝑏)𝐴(𝑏, 𝑎) . (5)

where 𝑏𝜋𝜽 (𝑖𝑠) = ∑∞
𝑡=0 𝛾

𝑡𝑃𝑟 (𝑖𝑠𝑡 = 𝑖𝑠 |𝑖𝑠0, 𝜋𝜽 ) is the discounted belief
distribution that results from following policy 𝜋𝜽 .
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Very Low Low Medium

State (Financial Health Level)

High Very High

Meager Several

Observation (Orders Received)

Many

Figure 1: States of the organization domain and the non-
deterministic public observations.

3 THE ORGANIZATION DOMAIN
We introduce the newOrganization domain, which models a typical
business organization featuring a mix of cooperation toward the
overall improvement of the organization and individual competition.
Notably, the reward function may not have the Markovian property.
For example, a proportion of the rewards from the past is added
to the current reward as a bonus to the worker if the organization
operated well in the past year. We call this a history-dependent
reward. The goal of each agent is to maximize the sum of all reward
signals that it receives, including the history-dependent reward.

3.1 Specification
3.1.1 State and Observation Sets. The state space of the problem
represents the organization’s financial health level, which is dis-
cretized into five states: very low (denoted as 𝑠𝑣𝑙 ), low (𝑠𝑙 ), medium
(𝑠𝑚), high (𝑠ℎ), and very high (𝑠𝑣ℎ). Agents cannot directly observe
the financial health level of the organization; instead, they only
receive observations of the number of orders received by the or-
ganization as well as other agents’ actions. We assume that the
observation is decomposed into public and private observations.
While public observation is common to all agents and depends on
the underlying state only, the private observation informs about
other agents’ actions and is perceived by the corresponding agent
only. There are three possible public observations pertaining to
the number of orders:𝑚𝑒𝑎𝑔𝑒𝑟 (𝑜𝑒 ), 𝑠𝑒𝑣𝑒𝑟𝑎𝑙 (𝑜𝑠 ), and𝑚𝑎𝑛𝑦 (𝑜𝑚). 𝑜𝑒
indicates the organization is in either 𝑠𝑣𝑙 or 𝑠𝑙 , 𝑜𝑠 indicates the or-
ganization is in either 𝑠𝑚 or 𝑠ℎ , and 𝑜𝑚 indicates the organization
is in 𝑠𝑣ℎ . Three private observations represent the agents’ three
possible actions, respectively, albeit noisily. Agents have 0.8 prob-
ability of perceiving the actual action of the other agent, and 0.2
probability of receiving either private observation corresponding
to actions which the other agent did not take. Figure 1 illustrates
the relationship between states and public observations.

3.1.2 Action Space and Transition Function. Each agent has three
possible actions: 𝑠𝑒𝑙 𝑓 , 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , and 𝑔𝑟𝑜𝑢𝑝 . The 𝑠𝑒𝑙 𝑓 action solely
benefits the agent while the 𝑔𝑟𝑜𝑢𝑝 action benefits the organization
at the expense of self. The 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 action benefits both self and the
organization. A joint action is determined by the distribution of
the individual agent’s actions. If the number of agents who picked
𝑠𝑒𝑙 𝑓 equals the number of agents who picked 𝑔𝑟𝑜𝑢𝑝 , then joint
action is a 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 action. 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 joint action does not change the
underlying state. If the number of agents who pick 𝑠𝑒𝑙 𝑓 is greater
than those who pick 𝑔𝑟𝑜𝑢𝑝 , the joint action will be a 𝑠𝑒𝑙 𝑓 action.

𝑆𝑒𝑙 𝑓 joint action brings down the health level (the current state)
by one when the current state is higher than 𝑠𝑣𝑙 ; otherwise, the
state remains unchanged. If the number of agents who pick 𝑠𝑒𝑙 𝑓
is smaller than the number who pick 𝑔𝑟𝑜𝑢𝑝 , the joint action will
be a 𝑔𝑟𝑜𝑢𝑝 action. 𝐺𝑟𝑜𝑢𝑝 joint action increases the current health
level by one when the current state is lower than 𝑠𝑣ℎ , otherwise, the
state remains unchanged. Besides, if all agents performed 𝑔𝑟𝑜𝑢𝑝
individual action, the state increases by two. Figure 2 demonstrates
state transitions of the organization domain.

(a) (b)

(c) (d)

Figure 2: Agents picking individual, balance, and group ac-
tions are colored in red, yellow, and green, respectively. (a)
If all agents pick group action, the state increases by two. (b)
The majority picks individual action, state decreases by one.
(c) There is no majority action, state remains unchanged.
(d) Unanimously picking group action can only increase the
state by one when the current state is 𝑠ℎ ; therefore, minority
agents may pick other actions to receive higher individual
rewards.

3.1.3 Reward Function. At time step 𝑡 , each agent receives a sum
of individual and group rewards, and the bonus. The agent 𝑖’s
individual reward, 𝑅𝑖 , depends on the state and its own action:

𝑅𝑡𝑖 ← 𝑅𝑖 (𝑠𝑡 , 𝑎𝑡𝑖 ).

The group reward, common to all agents, depends on the current
state and joint action:

𝑅𝑡0 ← 𝑅(𝑠𝑡 , 𝑎𝑡 ) .

The bonus or history-dependent reward is a proportion of the total
reward from the previous time step. For 𝜙 ∈ (0, 1),

𝑅𝑡−1 = 𝜙 (
∑

𝑖
𝑅𝑡−1𝑖 + 𝑅𝑡−10 ) .

The goal of agent 𝑖 is to optimize the expected sum of individual,
group, and history rewards, E𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠

[∑
𝑡 𝛾
𝑡 (𝑅𝑡0 + 𝑅

𝑡
𝑖
+ 𝑅𝑡−1)

]
.

The𝐺𝑟𝑜𝑢𝑝 action is cooperative giving 𝑅𝑖 = 0 and 𝑅0 = 𝑟 , where
𝑟 ∈ R. The 𝑆𝑒𝑙 𝑓 action benefits an agent giving reward 𝑅𝑖 = 𝛽𝑟 to
the agent, where 𝛽 > 1, and𝑅0 = 0.𝐵𝑎𝑙𝑎𝑛𝑐𝑒 action gives𝑅𝑖 = 𝑐

1+𝛽
𝛼 𝑟 ,

where 0 < 𝑐 < 1 and 𝑟 <
1+𝛽
𝛼 < 𝛽 and 𝑅0 = (1 − 𝑐) 1+𝛽𝛼 𝑟 , thereby

benefiting both the agent and the business. If the organization
reaches state 𝑠𝑣𝑙 , each agent receives a penalty of 𝑝 no matter
which individual action was picked.
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3.2 Importance of History-Dependent Reward
In this subsection, we demonstrate the importance of history-
dependent reward in the Organization domain. Suppose that policy
𝜋0 leads to the reward sequence {𝛽𝑟, 𝛽𝑟, 𝑟, 𝛽𝑟, . . .} for an agent, and
policy 𝜋1 leads to the reward sequence {𝛽𝑟, 𝛽𝑟, 1+𝛽𝛼 𝑟,

1+𝛽
𝛼 𝑟, . . .}. For

convenience, we set 𝑑 =
1+𝛽
𝛼 . For horizon 𝐻 = 4, the total reward

from performing policy 𝜋0 is:

𝛽𝑟 + (𝜙𝛽𝑟 + 𝛽𝑟 ) + (𝜙2𝛽𝑟 + 𝜙𝛽𝑟 + 𝑟 ) + (𝜙3𝛽𝑟 + 𝜙2𝛽𝑟 + 𝜙𝑟 + 𝛽𝑟 )
= 𝜙3𝛽𝑟 + 2𝜙2𝛽𝑟 + 2𝜙𝛽𝑟 + 𝜙𝑟 + 3𝛽𝑟 + 𝑟

The total reward from performing policy 𝜋1 is:

𝛽𝑟 + (𝜙𝛽𝑟 + 𝛽𝑟 ) + (𝜙2𝛽𝑟 + 𝜙𝛽𝑟 + 𝑑𝑟 ) + (𝜙3𝛽𝑟 + 𝜙2𝛽𝑟 + 𝜙𝑑𝑟 + 𝑑𝑟 )
= 𝜙3𝛽𝑟 + 2𝜙2𝛽𝑟 + 2𝜙𝛽𝑟 + 𝜙𝑑𝑟 + 2𝛽𝑟 + 2𝑑𝑟

Figure 3: The total reward from policy 𝜋0 and 𝜋1 with varying 𝛽
and 𝜙 for horizon of 4.

Then we can compare the total rewards from these two policies
with varying choices of 𝛽 and 𝜙 . We use a simple program to check
if𝜙 can affect which of the two policies is optimal for horizon𝐻 ≥ 4
when 𝑑 is set to 9

4 . The result shows that for every horizon from
4 to 100, the history-dependent parameter 𝜙 is always a deciding
factor in finding the optimal policy. Figure 3 shows the total reward
from policy 𝜋0 and 𝜋1 with varying 𝛽 and 𝜙 for horizon 4. Notice
that 𝜙 influences when each surface has the higher total reward.

3.3 Modeling the Org Domain as an I-POMDP
The I-POMDP framework is suited to modeling Organization from
an individual agent 𝑖’s perspective. We formulate such an I-POMDP
in this section. Suppose that if we remove the history-dependent
rewards, then the residual environment has perfectly Markovian
dynamics, with functions 𝑇 (𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 , 𝑠 ′𝑓 ), 𝑍 (𝑎𝑖 , 𝑎 𝑗 , 𝑠𝑓 , 𝑠

′
𝑓
, 𝑜 ′
𝑓
), and

𝑅(𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 ), where 𝑠𝑓 is an ordinary physical state and 𝑜 𝑓 is an
observation related to this state. (Note that we assume 𝑍 depends
on both 𝑠𝑓 and 𝑠 ′𝑓 , unlike in Section 2.1, as this is needed for our
formulation.) To preserve the Markov property even when 𝑅−1 is
introduced, we add a continuous-valued feature, 𝑠𝑟 ∈ R, to the
state space that memorizes the reward from the last step. The new
I-POMDP for agent 𝑖 in the Organization domain with one other
agent 𝑗 has an expanded definition:

I-POMDP𝑖 = ⟨𝐼𝑆𝑖 , 𝐴,𝑇𝑖 ,Ω𝑖 ,𝑊𝑖 , 𝑍𝑖 ,𝑂𝑖 , 𝑅𝑖 ,𝑂𝐶𝑖 ⟩

• The interactive state space 𝐼𝑆𝑖 now includes the physical state 𝑆𝑓 ,
the history-reward state 𝑆𝑟 , as well as models of the other agent
𝑀𝑗 . We let the latter be subintentional in this domain.
• 𝐴 = 𝐴𝑖 ×𝐴 𝑗 is the set of joint actions of both agents.
• 𝑇𝑖 represents the transition function, now defined as:

𝑇𝑖 (⟨𝑠𝑓 , 𝑠𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 , ⟨𝑠 ′𝑓 , 𝑠
′
𝑟 ⟩)

=

{
𝑇 (𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 , 𝑠 ′𝑓 ), if 𝑠 ′𝑟 = 𝑅(𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 ) + 𝜙 · 𝑠𝑟
0 otherwise

(6)

• Ω𝑖 is the set of agent 𝑖’s private observations.
•𝑊𝑖 : 𝐴 × Ω𝑖 → [0, 1] is the private observation function.
•𝑂𝑖 = 𝑂 𝑓 ×𝑂𝑟 is the set of agent 𝑖’s public observations, where𝑂 𝑓
informs about the state and 𝑂𝑟 = 𝑆𝑟 , allowing the agent to observe
the past reward.
• 𝑍𝑖 is the observation function, defined as:

𝑍𝑖 (𝑎𝑖 , 𝑎 𝑗 , ⟨𝑠𝑓 , 𝑠𝑟 ⟩, ⟨𝑠 ′𝑓 , 𝑠
′
𝑟 ⟩, ⟨𝑜 ′𝑓 , 𝑜

′
𝑟 ⟩)

=

{
𝑍 (𝑎𝑖 , 𝑎 𝑗 , 𝑠𝑓 , 𝑠′𝑓 , 𝑜

′
𝑓
), if (𝑠′𝑟 = 𝑅 (𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 ) + 𝜙 · 𝑠𝑟 ) ∧ (𝑜′𝑟 = 𝑠′𝑟 )

0 otherwise
(7)

• 𝑅𝑖 defines the reward function for agent 𝑖:

𝑅𝑖 (⟨𝑠𝑓 , 𝑠𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 ) = 𝑅(𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 ) + 𝜙 · 𝑠𝑟 (8)

•𝑂𝐶𝑖 is as defined previously in Section 2. In our experiments, we
use the discounted infinite horizon with 𝛾 is set to 0.9.

The belief update equation for the new I-POMDP formulation is:

𝑏 ′𝑖 (𝑖𝑠
′ |𝑏𝑖 , 𝑎𝑖 , 𝑜 ′𝑖 , 𝜔

′
𝑖 ) = 𝑏 ′𝑖 (⟨𝑠

′
𝑓
, 𝑠 ′𝑟 ⟩|𝑏𝑖 , 𝑎𝑖 , 𝑜 ′𝑖 , 𝜔

′
𝑖 ) ×

𝑏 ′𝑖 (𝑚
′
𝑗 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑏𝑖 , 𝑎𝑖 , 𝑜 ′𝑖 , 𝜔

′
𝑖 ) (9)

where the first term can be derived as:
𝑏′𝑖 ( ⟨𝑠′𝑓 , 𝑠

′
𝑟 ⟩ |𝑏𝑖 , 𝑎𝑖 , 𝑜′𝑖 , 𝜔′𝑖 ) ∝

∑
𝑎 𝑗

∑
𝑠𝑓 ,𝑠𝑟 =

𝑜′𝑟 −𝑅𝑖 (𝑠𝑓 ,𝑎𝑖 ,𝑎𝑗 )
𝜙

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )

×𝑇 (𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 , 𝑠′𝑓 ) 𝑏𝑖 ( ⟨𝑠𝑓 , 𝑠𝑟 ⟩) 𝑍 ; (𝑎𝑖 , 𝑎 𝑗 , 𝑠𝑓 , 𝑠
′
𝑓
, 𝑜′
𝑓
)

×𝑊𝑖 (𝑎𝑖 , 𝑎 𝑗 , 𝜔′𝑖 ) 𝛿𝑘 (𝐴𝑃𝑃𝐸𝑁𝐷 (ℎ 𝑗 , 𝑎 𝑗 , 𝑜′𝑓 ), ℎ
′
𝑗 ) .

Recall that 𝑜 ′
𝑓
is a public observation received by both agents. We

derive the second term of the belief update decomposition in the
next subsection. For convenience, we summarize the full update as
𝜏 (𝑏𝑖 , 𝑎𝑖 , 𝑜 ′𝑖 , 𝜔

′
𝑖
, 𝑏 ′
𝑖
).

The Bellman’s equation for the new I-POMDP is:

𝑉 (𝑏𝑖 ) = max
𝑎𝑖


∑
𝑠𝑓 ,𝑠𝑟

∑
𝑎 𝑗

𝑅𝑖 (⟨𝑠𝑓 , 𝑠𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 )𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑏𝑖 (⟨𝑠𝑓 , 𝑠𝑟 ⟩)

+ 𝛾
∑
𝑎 𝑗

∑
𝑠′
𝑓
,𝑠′𝑟=𝑅 (𝑠𝑓 ,𝑎𝑖 ,𝑎 𝑗 )+𝜙 ·𝑠𝑟

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )
∑
𝑜′
𝑖
,𝜔′
𝑖

𝑇 (𝑠𝑓 , 𝑎𝑖 , 𝑎 𝑗 , 𝑠 ′𝑓 )

× 𝑏𝑖 (⟨𝑠𝑓 , 𝑠𝑟 ⟩)𝑍 (𝑎𝑖 , 𝑎 𝑗 , 𝑠𝑓 , 𝑠 ′𝑓 , 𝑜
′
𝑓
)𝑊𝑖 (𝑎𝑖 , 𝑎 𝑗 , 𝜔 ′𝑖 ) 𝑉 (𝜏 (𝑏𝑖 , 𝑎𝑖 , 𝑜

′
𝑖 , 𝜔
′
𝑖 , 𝑏
′
𝑖 ))

]
(10)

3.4 Model Belief Update
The belief update in Equation 9 updates the belief over states and
other agent’s model simultaneously. The state belief update and
model belief update can be separated in case when the two parts
are not handled by a single network. In a two-agent setting, agent
𝑗 ’s model set at time step 𝑡 is denoted as𝑀𝑗 , where𝑀𝑗 contains a
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finite number of pre-defined models𝑚 𝑗 . Given agent 𝑖’s action 𝑎𝑖 ,
public observation ⟨𝑜 ′

𝑓
, 𝑜 ′𝑟 ⟩, private observation 𝜔 ′

𝑖
, and previous

belief 𝑏𝑖 , the model belief update is defined as below:

𝑏 ′𝑖 (𝑚
′
𝑗 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑏𝑖 , 𝑎𝑖 , 𝑜 ′𝑖 , 𝜔

′
𝑖 ) =

𝑃𝑟 (𝑚′
𝑗
, 𝜔 ′
𝑖
|⟨𝑠 ′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑜 ′𝑖 , 𝑏𝑖 )

𝑃𝑟 (𝜔 ′
𝑖
|⟨𝑠 ′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑜 ′𝑖 , 𝑏𝑖 )

∝
∑

𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )𝑃𝑟 (𝑚′𝑗 , 𝜔
′
𝑖 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑜 ′𝑖 ,𝑚 𝑗 )

∝
∑

𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑

𝑎 𝑗
𝑃𝑟 (𝑚′𝑗 , 𝜔

′
𝑖 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑜 ′𝑖 ,𝑚 𝑗 , 𝑎 𝑗 )

× 𝑃𝑟 (𝑎 𝑗 |⟨𝑠 ′𝑓 , 𝑠
′
𝑟 ⟩, 𝑎𝑖 , 𝑜 ′𝑖 ,𝑚 𝑗 )

∝
∑

𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑
𝑎 𝑗

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑃𝑟 (𝑚′𝑗 , 𝜔
′
𝑖 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 , 𝑜 ′𝑖 ,𝑚 𝑗 )

∝
∑
𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑
𝑎 𝑗

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 ) 𝑃𝑟 (𝜔 ′𝑖 |𝑚
′
𝑗 , ⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 , 𝑜 ′𝑖 ,𝑚 𝑗 )

× 𝑃𝑟 (𝑚′𝑗 |⟨𝑠
′
𝑓
, 𝑠 ′𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 , 𝑜 ′𝑖 ,𝑚 𝑗 )

∝
∑
𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑
𝑎 𝑗

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝑊𝑖 (𝑎𝑖 , 𝑎 𝑗 , 𝜔 ′𝑖 ) 𝑃𝑟 (𝑚
′
𝑗 |𝑎𝑖 , 𝑎 𝑗 , 𝑜

′
𝑖 ,𝑚 𝑗 ) .

(11)

The last equation follows because the private observation function
does not condition the private observation on the physical state. To
simplify the term 𝑃𝑟 (𝑚′

𝑗
|𝑎, 𝑜 ′

𝑖
,𝑚 𝑗 ), we substitute𝑚′𝑗 with its com-

ponents:𝑚′
𝑗
= (𝜋 ′

𝑗
, ℎ′
𝑗
), where ℎ′

𝑗
is agent 𝑗 ’s action-observation

history at next time step and 𝜋 ′
𝑗
is 𝑗 ’s policy.

𝑃𝑟 (𝑚′𝑗 |𝑎𝑖 , 𝑎 𝑗 , 𝑜
′
𝑖 ,𝑚 𝑗 ) = 𝑃𝑟 (𝜋 ′𝑗 , ℎ

′
𝑗 |𝑎𝑖 , 𝑎 𝑗 , 𝑜

′
𝑖 , 𝜋 𝑗 , ℎ 𝑗 )

= 𝑃𝑟 (ℎ′𝑗 |𝜋
′
𝑗 , 𝑎𝑖 , 𝑎 𝑗 , 𝑜

′
𝑖 , 𝜋 𝑗 , ℎ 𝑗 )𝑃𝑟 (𝜋

′
𝑗 |𝜋 𝑗 , 𝑎𝑖 , 𝑎 𝑗 , 𝑜

′
𝑖 , ℎ 𝑗 )

= 𝑃𝑟 (ℎ′𝑗 |𝜋
′
𝑗 , 𝑎𝑖 , 𝑎 𝑗 , 𝑜

′
𝑖 , 𝜋 𝑗 , ℎ 𝑗 )𝑃𝑟 (𝜋

′
𝑗 |𝜋 𝑗 , 𝑎𝑖 , 𝑎 𝑗 , ℎ 𝑗 )

= 𝛿𝐾 (𝐴𝑃𝑃𝐸𝑁𝐷 (ℎ 𝑗 , 𝑎 𝑗 , 𝑜 ′𝑖 ), ℎ
′
𝑗 )𝛿𝐾 (𝜋 𝑗 , 𝜋

′
𝑗 ) (12)

where 𝜋𝑡
𝑗
is 𝑗 ’s policy contained in𝑚𝑡

𝑗
(note that the action-

observation history in a model expands with time steps, but the
policy in the model does not change).

By substituting 𝑃𝑟 (𝑚′
𝑗
|𝑎𝑖 , 𝑎 𝑗 , 𝑜𝑖 ,𝑚 𝑗 ) with Equation 12, we can

rewrite Equation 11 as

𝑏′𝑖 (𝑚′𝑗 | ⟨𝑠′𝑓 , 𝑠
′
𝑟 ⟩, 𝑏𝑖 , 𝑎𝑖 , 𝑜′𝑖 , 𝜔′𝑖 ) ∝

∑
𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑

𝑎 𝑗
𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )

𝑊𝑖 (𝑎𝑖 , 𝑎 𝑗 , 𝜔′𝑖 )𝛿𝐾 (𝜋 𝑗 , 𝜋 ′𝑗 )
∑

𝑜′
𝑖

𝛿𝐾 (𝐴𝑃𝑃𝐸𝑁𝐷 (ℎ 𝑗 , 𝑎 𝑗 , 𝑜′𝑖 ), ℎ′𝑗 ) . (13)

The second Kronecker-delta function 𝛿𝐾 is 1 if the updated history
matches the one in𝑚′

𝑗
, it is 0 otherwise. When modeling more than

one agent, the set 𝑀𝑗 becomes a Cartesian product of the sets of
models attributed to each agent being modeled.

4 INTERACTIVE A2C+
Most current deep reinforcement learning methods require explicit
exchange of information among agents. Some methods use maxi-
mum likelihood estimation (MLE) to predict other agents’ actions
from historical information in scenarios where agents cannot ex-
change information. However, the result is unsatisfactory in com-
plex domains with large state and action spaces, as comparative
evaluations have shown [9]. In this paper, we present IA2C+, which
extends advantage actor-critic by maintaining predictions of other

agents’ actions based on dynamic beliefs over models. We imple-
ment A2C with one input layer, one hidden layer with 𝑡𝑎𝑛ℎ ac-
tivation, followed by one output layer. We published the code at
https://github.com/khextendss/IA2C. For simplicity, we assume that
both the critic and the actor networks map observations rather than
beliefs, and that the critic maps observations to joint action values,
𝑄 (⟨𝑜 𝑓 , 𝑜𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 ). We estimate Equation 4 as:
𝐴( ⟨𝑜 𝑓 , 𝑜𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 ) = 𝑎𝑣𝑔 [𝑟 + 𝛾𝑄 ( ⟨𝑜′𝑓 , 𝑜

′
𝑟 ⟩, 𝑎′𝑖 , 𝑎′𝑗 ) −𝑄 ( ⟨𝑜 𝑓 , 𝑜𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗) ]

while the actor’s gradient (Equation 5) is estimated as:
𝑎𝑣𝑔 [∇𝜃 log𝜋𝜃 (𝑎𝑖 | ⟨𝑜 𝑓 , 𝑜𝑟 ⟩)𝐴( ⟨𝑜 𝑓 , 𝑜𝑟 ⟩, 𝑎𝑖 , 𝑎 𝑗 ) ]

where 𝑟, ⟨𝑜 ′
𝑓
, 𝑜 ′𝑟 ⟩ and 𝑎′𝑖 are samples, 𝑎 𝑗 and 𝑎′𝑗 are predicted actions

(see next section), and the 𝑎𝑣𝑔 is taken over sampled trajectories.

4.1 Belief Filter
We implement a Bayesian belief filter, integrated with the critic
within the deep RL pipeline, to complete the model belief update.
We further decompose the model belief update of Equation 13 into
two steps. The first step is the prediction, which accounts for other
agent’s actions:

𝑏′𝑖 (𝑚′𝑗 ) =
∑
𝑚 𝑗

𝑏𝑖 (𝑚 𝑗 )
∑
𝑎 𝑗

𝑃𝑟 (𝑎 𝑗 |𝑚 𝑗 )𝛿𝐾 (𝜋 𝑗 , 𝜋 ′𝑗 )𝛿𝐾 (𝐴𝑃𝑃𝐸𝑁𝐷 (ℎ 𝑗 , 𝑎 𝑗 , 𝑜′𝑖 ), ℎ′𝑗 ) .

Second step corrects the predictions using perceived observations:

𝑏 ′𝑖 (𝑚
′
𝑗 ) ∝ 𝑏

′
𝑖 (𝑚
′
𝑗 )
∑

𝑎 𝑗
𝑊𝑖 (𝑎𝑖 , 𝑎 𝑗 , 𝜔 ′𝑖 ).

CRITIC

Belief Filter

ACTOR

ENVIRONMENT

bi(mj)

BMi

|Mj| × |Of | × |Or|

∗
convolution

|A| Vi0
|Mj| × |Of | × |Or|

× Σ Indexing

η normalize

|A| ki
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update

âj
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P (wi|aj) of , or

ai

adv

Figure 4: Belief filter samples agent 𝑗 ’s action based on
model distribution, and passes the predicted action to agent
𝑖’s interactive A2C network.

Note that at each time step, the belief is represented by a |𝑀𝑗 | ×
|𝑂 𝑓 | × |𝑂𝑟 | tensor. To keep the dimension of the belief matrix finite,
we round 𝑂𝑟 to one decimal place. The prediction step is done by
performing convolution on belief tensors using |𝐴|-many convo-
lution filters. After the convolution, we obtain |𝐴| belief vectors
corresponding to each possible joint action. Then the correction
step is executed by multiplying each belief vector with the proba-
bility of perceiving its corresponding private observation. Finally,
we sum up all result vectors and index all possible models by public
observations. This step represents the Kronecker-delta function.
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We use model leveraging to sample a predicted action of the other
agent. Figure 4 shows the network architecture used by each agent.

5 EXPERIMENTS
We evaluate the performance of the A2C method with belief filter-
ing, labeled as IA2C+, on the cooperative-competitive Organization
domain using four sets of experiments. First, we show that a method
that does not account for the history-dependent rewards fails to
reach optimality. Second, we evaluate the need for cooperation in
Organization and that agents using the IA2C+ can learn to cooper-
ate. Third, we explore the performances of other recent deep MARL
methods on Organization and compare them with IA2C+. Finally,
we explore the impact of increasing noise levels in the observations
on the convergence to the optimal policy by the various methods.

In order to model the partial observability of the problem, we
extend the public observation ⟨𝑜 𝑓 , 𝑜𝑟 ⟩ used in the indexing proce-
dure to a short-term observation history that contains the current
public observation as well as the previous public observation, i.e.
{⟨𝑜𝑡−1

𝑓
, 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑓 , 𝑜

𝑡
𝑟 ⟩}. We include 5 models of the other agent in

the pre-defined model set𝑀𝑗 . Three models lead to solely picking
𝑠𝑒𝑙 𝑓 , 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , and 𝑔𝑟𝑜𝑢𝑝 action, respectively, no matter which ob-
servation sequence is perceived. One model picks 𝑔𝑟𝑜𝑢𝑝 action for
observation sequences {⟨𝑜𝑡−1𝑒 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑒 , 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑒 , 𝑜𝑡𝑟 ⟩},
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 action for observation sequence {⟨𝑜𝑡−1𝑒 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩},
{⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩}, and 𝑠𝑒𝑙 𝑓 action for observation sequences
{⟨𝑜𝑡−1𝑚 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑚, 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑚 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩,
⟨𝑜𝑡𝑚, 𝑜𝑡𝑟 ⟩}. The last model picks 𝑠𝑒𝑙 𝑓 action for observation se-
quences {⟨𝑜𝑡−1𝑒 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑒 , 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑒 , 𝑜𝑡𝑟 ⟩}, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ac-
tion for observation sequences {⟨𝑜𝑡−1𝑒 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩,
⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩}, and 𝑔𝑟𝑜𝑢𝑝 action for observation sequences {⟨𝑜𝑡−1𝑚 , 𝑜𝑡−1𝑟 ⟩,
⟨𝑜𝑡𝑚, 𝑜𝑡𝑟 ⟩}, {⟨𝑜𝑡−1𝑚 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑠 , 𝑜𝑡𝑟 ⟩}, and {⟨𝑜𝑡−1𝑠 , 𝑜𝑡−1𝑟 ⟩, ⟨𝑜𝑡𝑚, 𝑜𝑡𝑟 ⟩}.

5.1 History-Dependent Rewards
We introduce a baseline method, IA2C− that does not include the
extra state and observation feature revealing the history-dependent
reward. To compensate, it utilizes the LSTM for both actor and
critic networks, in order to model the dependence of its immediate
rewards on the history of interactions. We establish the need for
utilizing recurrence in this case and thereby the need to correctly
model the dependence on history, by comparing its performance
with IA2C− that does not use LSTMs, using convolutional neural
networks (CNN) instead in the actor and critic.

Notice from Figure 5 that IA2C− without LSTM converges, but
not to the optimal policy in contrast to IA2C− with LSTM that
converges to the optimal policy. From this observation, we con-
clude that our approach to accommodating history in Section 3.3
is not only sufficient but also necessary, because if an alternative I-
POMDP model existed that exhibited Markovian dynamics without
requiring the extra feature to enable optimal decisions, then IA2C−
without LSTM would have reached the optimal policy as well. We
will use IA2C− with LSTM as a baseline to compare with IA2C+.

5.2 Cooperation in the Organization Domain
The optimal policy for the Organization domain involves perform-
ing the 𝑔𝑟𝑜𝑢𝑝 joint action in response to observation history that
pertain to states 𝑠𝑣𝑙 , 𝑠𝑙 , and 𝑠𝑚 ; the 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 joint action in response

Figure 5: IA2C− without LSTM (uses a CNN instead) exhibits
poor rewards for low numbers of episodes as wemay expect,
and eventually converges to a policy that is not optimal.

to observations that pertain to state 𝑠ℎ ; and the 𝑠𝑒𝑙 𝑓 action in re-
sponse to observations that pertain to state 𝑠𝑣ℎ . Notice that this
involves cooperation among the agents at various states. To quan-
tify this, we compare the value of the optimal policy with that of
performing the 𝑠𝑒𝑙 𝑓 joint action for all observations and the𝑏𝑎𝑙𝑎𝑛𝑐𝑒
joint action for all observations. Table 1 shows a significant differ-
ence between the three values indicating that both cooperation as
well as self-interestedness play a role in this domain.

Table 1: Values of the optimal policy and other default be-
haviors for two agents.

Optimal Only Group Only Balance
226.9 132 198

We hypothesize that independently-learning agents may not
converge to the cooperation needed in this domain. Consequently,
we compare the performance of agents utilizing IA2C+ with CNN
as the neural net architecture with those utilizing IA2C− and in-
dependent actor-critic (IAC) without belief filter on Organization
with four learning agents. Figure 6a shows that agents learning
using IA2C+ and IA2C− learn the optimal policy within 30,000
episodes. We show the mean and standard deviation of 5 runs of
each method in this chart. Four agents learn to unanimously pick
the 𝑔𝑟𝑜𝑢𝑝 individual action to raise the organization’s financial
health level. When the organization is in a better financial health
level, the four agents coordinated to pick two 𝑔𝑟𝑜𝑢𝑝 actions, one
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 action, and one 𝑠𝑒𝑙 𝑓 action in order to maximize the total
reward. However, IA2C+ converges faster than IA2C− with the
former requiring 20,000 episodes compared to the 30,000 episodes
needed by the latter. It takes IA2C+ about 3 hours to converge on a
standard Linux 2.3GHz quad-core i7 processor with 8GB memory,
while IA2C− takes about 10 hours to converge on the same machine.
We ran IA2C+ on Organization with up to 8 agents – it took 69
hours and 61,000 episodes to converge to optimal. On the other
hand, plain IAC based learning failed to learn the optimal policy.

5.3 Comparison with MARL Techniques
Next, we explore the performance of state-of-the-art MARL meth-
ods such as MADDPG [9] and COMA [4] on two-agent Organiza-
tion. We also include the results of IA2C− mentioned in Section 5.1
and a variant of IA2C+ with LSTM.We disabled the policy exchange
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Figure 6: (a) Four agents, each utilizing IA2C+ or IA2C−, converges (value loss becomes zero) to the optimal policy whereas
IAC converges but not to the optimal policy. (b) IA2C+ requires fewer episodes to converge to the optimal policy compared to
MADDPG, COMA, and IAC. (c) Number of runs (out of 10) in which the optimal policy was learned as a function of the noise
levels in private observations. IA2C+ shows the most robust performance among the MARL techniques allowing for noise up
to 0.3 while still learning the optimal policy.

among agents as performed by MADDPG; instead each agent re-
ceives a noisy action whose noise probabilities are the same as those
of the private observations in the Organization domain. As such,
this simulates the effect of private observations, and makes it di-
rectly comparable to IA2C+. As COMA employs a centralized critic,
we noised the action sent by each actor to the critic to simulate the
private observations.

We show the results in Figure 6b. We point out that all methods
eventually converge as their respective value losses become zero.
While IA2C+ with CNN and IA2C+ with LSTM converges to the
optimal policy at 20,000 episodes, and IA2C− converges to the
optimal policy at 30,000 episodes, both MADDPG and COMA do
not converge within these many episodes, instead requiring almost
twice as many episodes. IA2C+ with CNN has similar performance
with IA2C+ with LSTM while only using half the time to train.
Closer inspection revealed that the belief filtering often predicted
the true action of the other agent with a high probability despite
the noisy observations. This more accurate prediction of the other
agent’s actions in about 88.6% of the episodes, despite none of the
models in𝑀𝑗 being individually correct, results in faster convergence
to the optimal policy for each agent. IAC without belief filter shows
the worst performance as we may expect, and fails to converge to
the optimal policy as seen in the previous subsection.

5.4 Varying Private Observation Noise
Finally, we vary the noisiness of the private observations to test the
robustness of the methods to increasing uncertainty. We gradually
increase the noise level from 0 to 0.5, where noise level 0 means
that the other agent’s actions are perfectly observed, and noise
level 0.5 means that there is only a 0.5 probability that the received
observations indicate the correct actions of the other agent.

We record the number of runs out of 10 for which each method
learned the optimal policy for various noise levels. Figure 6c shows
the result of this experiment. IA2C+ is able to consistently learn
the optimal policy when the private observation noise level is in-
creased up to 0.3. Between noise levels 0.3 and 0.5, we observe an
increasing number of runs where it fails to learn the optimal policy,

failing completely beyond noise level 0.5. IA2C+ with LSTM has
a slightly higher performance than IA2C+ with CNN, however, it
requires almost twice as many episodes as IA2C+ with CNN to
converge. In contrast, COMA and MADDPG start to fail from noise
level of around 0.1, and fail completely beyond noise levels 0.35
and 0.4, respectively. Though the pre-defined models used in IA2C+
belief update may have deviations from other agents’ true mod-
els, beliefs over this set leads to highly accurate action predictions.
We conclude that IA2C+ demonstrates consistent learning and ro-
bustness to higher levels of noise compared to the baselines in the
Organization domain.

6 RELATEDWORK
While multi-agent RL mainly addresses purely cooperative or com-
petitive tasks, there has been some work recently that address a mix
of the two settings. We first discuss one prominent integrative work,
the cooperative-competitive process (CCP), and then discuss recent
work in MARL more generally, relating them to our contributions.

6.1 Organization Domain as a CCP
CCP [15] is a framework formodelingmixed cooperative-competitive
sequential decision problems. It blends both by introducing a slack
parameter which controls the amount of cooperation versus com-
petition. A group-dominant CCP first maximizes the group reward,
then optimizes the individual reward while allowing a deviation of
up to the slack from the optimal group reward. Individual-dominant
CCP follows a similar pattern but with a reversed preference. Non-
linear programming is used for solving the CCPs. Our work can
be seen as a pragmatic generalization of the CCP, situated in a
MARL context. Instead of manually defining a parameter to choose
between cooperate or compete, Kleiman-Weiner et al. [7] present a
hierarchical model that integrates low-level action plans to high-
level strategy. An agent can infer other agents’ high level strategy
before deciding whether to select a cooperative or a competitive
strategy, and thus perform corresponding low-level actions speci-
fied by selected strategies.
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Because the CCP as is cannot modelOrganization, we generalize
it to a history-dependent CCP by adding 𝑅−1 to the reward vector.
In addition, we decompose the observation into public and private.
Public observations depend on the state and the joint action, while
private observations depend on other agent’s individual actions.
Also, the individual rewards𝑅𝑖 depend on agent 𝑖’s individual action
only, instead of the joint action in the original CCP definition. The
history-dependent CCP for Organization is given below.
• 𝐼 = {1, 2, . . . , 𝑛} is the set of 𝑛 agents
• 𝑆 = 𝑆𝑓 × 𝑆𝑟 , where 𝑆𝑓 = {𝑠𝑣𝑙 , 𝑠𝑙 , 𝑠𝑚, 𝑠ℎ, 𝑠𝑣ℎ} and 𝑆𝑟 is the contin-
uous state feature for memorizing the previous reward
• ®𝐴 = {𝑠𝑒𝑙 𝑓 , 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑔𝑟𝑜𝑢𝑝} is the set of 3 joint actions, deter-
mined by the majority choices of the 𝑛 agents, as given in Sec-
tion 3.1.2
• 𝑇 : 𝑆× ®𝐴×𝑆 → [0, 1] is the state transition functionmapping state
𝑠 and joint action ®𝑎 to successor state 𝑠 ′, such that 𝑇 (𝑠, ®𝑎, 𝑠 ′) =
𝑃𝑟 (𝑠 ′ |𝑠, ®𝑎)
• 𝑂 = {𝑜𝑒 , 𝑜𝑠 , 𝑜𝑚} is the set of public observations
• 𝑍 : ®𝐴×𝑆×𝑂 → [0, 1] is the public observation function mapping
joint action ®𝑎 and successor state 𝑠 ′ to a public observation such
that 𝑍 ( ®𝑎, 𝑠 ′, 𝑜) = 𝑃𝑟 (𝑜 | ®𝑎, 𝑠 ′)
• Ω = {𝜔𝑠 , 𝜔𝑏 , 𝜔𝑔 } is the set of 3 private observations of each agent
• 𝑊 : 𝐴 × Ω → [0, 1] is the private observation function map-
ping individual action 𝑎 𝑗 to a private observation 𝜔𝑖 such that
𝑊 (𝑎 𝑗 , 𝜔𝑖 ) = 𝑃𝑟 (𝜔𝑖 |𝑎 𝑗 )
• ®𝑅 = [𝑅−1, 𝑅0, 𝑅1, 𝑅2, . . . , 𝑅𝑛] is the vector of rewards; for each
state 𝑠 , 𝑅0 (𝑠, ®𝑎) is a group reward for all agents and 𝑅𝑖 (𝑠, 𝑎𝑖 ) is an
individual reward for each agent 𝑖 . 𝑅−1 is the discounted history-
dependent component of the reward, 𝑅−1 (⟨𝑠𝑓 , 𝑠𝑟 ⟩) = 𝜙 · 𝑠𝑟 .

When 𝜙 = 0 and Ω is empty, the history-dependent CCP reduces
to the original CCP. While Wray et al. [15] solve the original CCP
in a centralized manner for all agents, our approach is analogous
to solving this variant from each individual agent’s perspective.

6.2 Multi-agent RL
Multi-agent deep deterministic policy gradient (MADDPG) [9]
is a MARL algorithm that can be applied to mixed cooperative-
competitive settings. It extends actor-critic by exchanging policies
among agents’ critic, while the actor only has access to local infor-
mation. After training is completed, only the actors are deployed
in the environment. When direct policy exchange is not possible,
each agent maintains an approximation to the true policies of the
other agents. The approximation is done by maximizing the log
likelihood of the other agents’ actions (which the learner is able to
observe). However, when the other agents’ actions are not perfectly
observed due to noise, MADDPG is unable to learn the optimal
policy, as our experiments on Organization have shown.

Learning with opponent-learning awareness (LOLA) [3] is an-
other actor-critic method where the agents attempt to directly influ-
ence the policy updates of other agents. Instead of learning the best
response, LOLA learns to maximize the expected return after the op-
ponent updates its policy with one naive learning step. In this way,
a LOLA learner explicitly accounts for the learning of other agents
in the environment, within its own learning. LOLA is suitable for
both cooperative and competitive problems. Nevertheless, LOLA
requires that the agents have access to each others’ exact gradients.

LOLA with opponent modeling removes this requirement, by es-
timating the other agent’s gradients from the trajectories, using
maximum likelihood estimation. However, it is not straightforward
to accommodate either the exact gradients or the estimated ones as
private observations, in a manner consistent with the private obser-
vations of IA2C+, or those of our modified MADDPG and COMA
for Organization, thus precluding a fair comparison with these
methods in our experiments. For this reason, we have excluded
LOLA from our set of baselines.

Independent deepQ-Learning (IQL) [13] extends deepQ-Learning
network (DQN) [11] architecture to multi-agent settings by allow-
ing the agents to select actions independently, and to receive sep-
arated individual rewards from the environment. IQL can learn
policies ranging from fully cooperative to competitive by tuning
the reward function. It demonstrates the possibility of decentralized
learning in complex multi-agent environments. As we have already
included IAC in our set of baselines, and Q-learning is an off-policy
technique compared to the on-policy actor-critic based algorithms
used in our experiments, we exclude IQL from our set of baselines.

Counterfactual multi-agent policy gradients (COMA) [4] consists
of a centralized critic and multiple (decentralized) actors. COMA
uses a centralized critic to compute the agent-specific advantage
functions that compares the estimated return for the current joint
action to a counterfactual baseline that marginalizes out one single
agent’s action at a time, while keeping all other agents’ actions
fixed. However, COMA requires access to the true state or the joint
action-observation history.

7 CONCLUDING REMARKS
We introduced the Organization domain, inspired by typical real-
world businesses, where agents must both cooperate and compete
to attain optimal behavior. Agents in this domain not only receive
noisy observations about the state and others’ actions, but also
obtain rewards that, in part, depend on the total reward of the
previous time step, analogous to bonus pay. Subsequently, the Or-
ganization domain offers substantially more realistic challenges
than previous MARL domains. The presence of history-dependent
rewards challenges the applicability of traditional decision-making
frameworks and the need for cooperation precludes independent
learning in this domain. We presented a new method that combined
decentralized actor-critic based learning with maintaining beliefs
over a finite set of candidate models of the other agents. It differs
from existing actor-critic methods by not requiring the exact ac-
tions performed by other agents. It also handles the non-Markovian
reward function of the domain by introducing a new state feature
to capture the history-dependent reward. This method is compar-
atively robust to noisy observations and converges significantly
faster to the optimal policy in the Organization domain compared
to previous state-of-the-art MARL baselines. An immediate avenue
of future work is to further scale the number of agents beyond eight
to better simulate real-world business organizations.
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