
The Price is (Probably) Right: Learning Market Equilibria from
Samples

Omer Lev

Ben-Gurion University of the Negev

omerlev@bgu.ac.il

Neel Patel

University of Southern California

neelbpat@usc.edu

Vignesh Viswanathan

University of Massachusetts, Amherst

vviswanathan@umass.edu

Yair Zick

University of Massachusetts, Amherst

yzick@umass.edu

ABSTRACT
Equilibrium computation in markets usually considers settings

where player valuation functions are known. We consider the set-

ting where player valuations are unknown; using a PAC learning-

theoretic framework, we analyze some classes of common valuation

functions, and provide algorithms which output direct PAC equi-

librium allocations, not estimates based on attempting to learn

valuation functions. Since there exist trivial PAC market outcomes

with an unbounded worst-case efficiency loss, we lower-bound

the efficiency of our algorithms. While the efficiency loss under

general distributions is rather high, we show that in some cases

(e.g., unit-demand valuations), it is possible to find a PAC market

equilibrium with significantly better utility.

KEYWORDS
Fisher Markets; PAC Learning; Market Equilibria

ACM Reference Format:
Omer Lev, Neel Patel, Vignesh Viswanathan, and Yair Zick. 2021. The Price

is (Probably) Right: Learning Market Equilibria from Samples. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Do markets admit equilibrium allocations? This question has been

extensively studied for many years [37]; more recently, the econ/CS

community devoted significant effort to understanding when one

can efficiently compute market equilibria. Much of this literature

assumes that one has full access to player valuations over bundles

of goods, an unrealistic assumption in many instances: combina-

torial valuations are often difficult to elicit (especially for large

markets), precluding any possibility of running full-information

market algorithms. Machine learning techniques offer a compro-

mise – assuming access to a partial dataset, we can learn player

valuations, and use the learned valuations as a proxy. However,

this approach raises several issues too: market valuations are often

complex, and require a large number of samples to learn without

overfitting. Moreover, even if we assume that player valuations

have a simple structure, it is not immediately obvious that an exact
equilibrium for the approximate valuations acts as an approximate

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

equilibrium for the exact valuations; as we shall show, this may not

be the case.

Our work explores a relatively new paradigm: instead of learning

valuations, we focus on directly learning market equilibria from

data. We build upon the framework of Jha and Zick [26], and adopt

the PAC solution learning framework. Jha and Zick [26] show that in

order to ensure that a market outcome (i.e. an allocation of items to

players, as well as item prices) is likely to be a market equilibrium,

it suffices to show that it is consistent with the data. That is, the

prices and item allocation they induce are such that no player has a

sample in the data they can afford and would rather have over their

allocation. Finding a consistent market outcome is trivial: setting

the price of all the goods to infinity would ensure consistency.

However, this outcome would be very inefficient. Our goal is thus

to learn approximately efficient PAC market equilibria.

Our Contribution. We study Fisher markets with indivisible goods

under different classes of valuation functions, and propose algo-

rithms which output an efficient PAC market equilibrium. That is,

each player receives, with high probability, their most preferred af-

fordable bundle of goods. We examine a variety of valuation classes:

unit-demand (Section 4), single minded (Section 5), additive (Section
6) and submodular (Section 7) valuations. For each class, we provide

a tight, distribution-independent, efficiency bound. We also show

that, under more favorable distributions, we can achieve far better

efficiency guarantees for unit-demand and additive valuations.

1.1 Related Work
There is a rich body of classical literature on market equilibria

with indivisible goods [20, 23, 27, 32, 37], exchange economies

[11] and Fisher markets [4, 12–14, 34]. In recent years there is a

significant renewed interest in computing market outcomes, such

as fair allocation [21, 29], optimal pricing [24, 35], approximate

equilibria [10, 16] and markets with divisible goods [18]. However,

the above do not address learning approximately efficient market

solutions from data.

There exists a fast-growing body of literature on learning game-

theoretic solutions from data, in cooperative games [6, 9, 25, 26, 36],

auctions [15, 17, 19, 30] and optimization [7, 8, 33]. Some of this

literature propose methods to learn market outcomes as well: Mur-

ray et al. [31] and Kroer et al. [28] examine the simpler case with

divisible goods and additive valuations, Shen et al. [35] examine

markets with a single item and Viqueira and Greenwald [38] pro-

pose a method to learn market outcomes indirectly from noisy

Main Track AAMAS 2021, May 3-7, 2021, Online

755

AAMAS ’21, May 3–7, 2021, Online Omer Lev, Neel Patel, Vignesh Viswanathan, and Yair Zick

valuations. However, to the best of our knowledge, there exists no

prior work that attempts to learn market outcomes in combinatorial

markets from samples.

2 MODEL AND PRELIMINARIES
We study the Fisher market model; there is a set of players, N =
{1, 2, . . . ,n} and a set of goods, G = {д1,д2, . . . ,дk }. Each player i
has a budget bi ∈ R+ and a valuation function vi : 2

G → R+ ∪ {0}
which assigns a value vi (S) for each bundle of goods S ⊆ G. We

assume that no two players have the same budget, and that b1 >

· · · > bn . This is a standard assumption, and is not a significant

loss of generality: it is mostly done to induce some priority order

among players, and ensure that equilibria exist. When budgets are

equal, one can introduce small perturbations (this is the method

used by Budish [16]). An allocation in such a market is a tuple

(A, ®p), where A = {A1,A2, . . . ,An } is the allocation vector and

®p = {p1,p2, . . . ,pk } is the price vector. Some Ai s may be empty i.e.

ifAi = ∅, then the player receives nothing. We define the affordable
set Di (®p,bi) as the set of affordable bundles for player i given a

price vector ®p:

Di (®p,bi) = {S ⊆ G :

∑
дj ∈S

pj ≤ bi }

An allocation is a Walrasian equilibrium (or simply an equilibrium)

if all players are allocated the best possible set of goods they can

afford i.e. Ai ∈ Di (®p,bi) for all i ∈ N , and for all i ∈ N :

vi (Ai) ∈ arg max{vi (S) : S ∈ Di (®p,bi)}

Jha and Zick [26] define a learning-theoretic equilibrium notion

based on the probably approximately correct (PAC) framework [2]

called PAC Equilibria. An allocation (A, ®p) is a PAC Equilibrium if

it is unlikely that a sample from a distribution D (over bundles in

G), under the same prices, is both better than the current allocation

and affordable for any player i . It is often easier to discuss learning-

theoretic notions in terms of their expected loss; here, the loss is a
function of player valuations v and budgets

®b, a bundle S ⊆ G , and
the proposed outcome (A, ®p):

Lv , ®b (S,A,
®p) =

1 if ∃i ∈ N ,vi (Ai) < vi (S)

∧S ∈ Di (®p,bi)

0 otherwise.

(1)

We omit thev and
®b subscripts when they are clear from context. An

allocation is an ϵ-PAC equilibrium with respect toD if its expected

loss, denoted LD (A, ®p), is lower than ϵ

LD (A, ®p) ≜ ES∼D [Lv , ®b (S,A, ®p)] < ϵ (2)

ϵ-PAC equilibria are somewhat similar to ϵ-PAC approximations

[2]: given a function u : 2
G → R, we say that ū is an ϵ-PAC

approximation of u w.r.t. D if PrS∼D [u(S) , ū(S)] < ϵ .
We follow a standard model of learning from samples: we are

given players’ budgetsb1,b2, . . . ,bn ,m input samples S1, S2, . . . , Sm
drawn i.i.d. from a distribution D, and player valuations over the

samples: vi (Sj) for all i ∈ N and j ∈ [m]. Our goal is to find algo-

rithms, whose input is a set of i.i.d. sampled bundles and valuations

over them, that output a PAC Equilibrium (as per Equation (2)) with

probability ≥ 1 − δ (over the randomization of sampling m i.i.d.

samples from D). In other words, if (A, ®p) is the output of some

learning algorithm, then the PAC guarantee is

Pr

S1, ...,Sm
iid

∼D

[
LD (A, ®p) < ϵ

]
≥ 1 − δ

The number of samples needed, m, should be polynomial in the

number of players, the number of goods, and in
1

ϵ , log
1

δ . As men-

tioned in Section 1, PAC equilibria are not guaranteed to be efficient;

in what follows we explore market stability, envy and allocative

efficiency.
An allocation (A, ®p) is said to be envy free if all the players prefer

their bundle to every other player’s bundle that they can afford i.e.

an allocation is envy free if for all i, j ∈ N :

vi (Ai) ≥ vi (Aj) ∨Aj < Di (®p,bi) (3)

Note that if (A, ®p) is a Walrasian equilibrium, then (3) is trivially

true. The efficiency ratio of an allocation A is the ratio of the total

welfare (or utility) ofA to that of the optimal equilibrium allocation

i.e.

ERv (A) =
∑n
i=1

vi (Ai)∑n
i=1

vi (A∗i)
(4)

where A∗ is a welfare-maximizing equilibrium allocation; Unlike

simpler settings (e.g. rent division [22]), market outcomes need not

maximize social welfare in Fisher markets with indivisible goods.

Due to space constraints, some of the proofs have been omitted

or replaced by proof sketches. The full proofs can be found in the

appendix.

3 COMPUTING PAC EQUILIBRIA
We first discuss some sufficient conditions for finding a PAC Equi-

librium from samples, starting with a simple observation: if we are

able to approximate player valuation functions v using an underes-

timate v̄ , then any exact equilibrium for v̄ is a PAC equilibrium for

v .

Proposition 3.1. Let v1, . . . ,vn : 2
G → R be a player valuation

profile; let (v̄i)i ∈N be ϵ
n -PAC approximations of (vi)i ∈N w.r.t. D,

such that for all i ∈ N and all S ⊆ G, v̄i (S) ≤ vi (S). If (A, ®p) is a
market equilibrium under v̄ , then (A, ®p) is an ϵ PAC equilibrium for
v w.r.t. D.

Jha and Zick [26] prove that a PAC equilibrium can be directly

learned using only O(k) samples if one can efficiently compute a

consistent solution, that is, a market outcome that has zero loss on

the samples. More precisely, we say that a mechanismM outputs a

consistent solution if for any given set of samples S = {S1, . . . , Sm },
M outputs (A, ®p) such that the empirical loss L̂(A, ®p) is 0:

L̂(A, ®p) ≜
1

m

m∑
j=1

L(Sj ,A, ®p) = 0

Theorem 3.2 (Jha and Zick [26]). Suppose that an algorithm
M takes as input a set of m samples of goods S drawn i.i.d. from
an unknown distribution D, and outputs a consistent equilibrium

allocation. Ifm ∈ O
(

1

ϵ
(
k log

1

ϵ + log
1

δ
))

then the allocation output
byM is an ϵ-PAC Equilibrium w.p. ≥ 1 − δ .

Proposition 3.1 and Theorem 3.2 provide two paths to computing

PAC market equilibria: either compute an equilibrium for a PAC

Main Track AAMAS 2021, May 3-7, 2021, Online

756

The Price is (Probably) Right: Learning Market Equilibria from Samples AAMAS ’21, May 3–7, 2021, Online

underestimate, or directly learn market outcomes from samples. As

we mention above, our objective is finding market outcomes with

provable social welfare guarantees, with respect to the true player
valuation profile.

4 UNIT DEMAND MARKETS
We begin our exploration with a fundamental class of market valu-

ations: unit-demand markets. In a unit demand market, the value

of each bundle S ⊆ G is the value of the most valuable good in S ,
i.e. for all i ∈ N , vi (S) = maxд∈S vi ({д}). We make the standard

assumption that players have distinct values for goods, i.e. that

vi ({д}) , vi ({д
′}) if д , д′; this is mostly done to break ties (see

Budish [16]). Unit demand markets correspond to room/housing

allocation scenarios where each tenant can only stay in a single

room/buy a single home [1, 3, 22], or to gaming “loot boxes”, in

which players care mainly about the most valuable item.

The standard data-driven approach is to PAC learn the valuation

functions, and output an equilibrium allocation for the learned

valuations. We refer to this method as indirect learning, and to

outcomes computed in this manner as indirectly learned outcomes.

For unit demandmarkets this can be done quite easily, by estimating

the value of each item as the value of the least valuable sample

that contains it (creating a PAC approximation for the valuations),

and then allocating the items first to the player with the largest

budget, who gets their most valued item; then the player with the

second largest budget, who gets their most valued item which is

still available, and so on .

Such an algorithm has a simple guarantee of efficiency:

Proposition 4.1. If (A, ®p) is the output of an algorithm calculating
PAC approximations of unit demand valuations and then allocating
goods in decreasing order of player budgets, then ERv (A) ≥ 1

σ where

σ = maxi ∈N
maxд∈G vi ({д })
minд∈G vi ({д })

, the maximal ratio between a players
valuation for two different items.

The main drawback with such an algorithm is that it does not

output a PAC Equilibrium. Consider the example below:

Example 4.1. Consider a setting where N = {1, 2} and G =
{д1,д2,д3}. Player budgets are b1 = 2,b2 = 1. Player valuations

satisfy

v1({д1,д2}) = 5;v1({д3}) = 3

v2({д1,д2}) = 4;v2({д3}) = 2

We observe a distribution D which samples uniformly at random

two sets: {д1,д2} and {д3}. We can thus reasonably assume that we

observe both bundles with high probability after a small number of

i.i.d. samples. Approximating preferences would yield:

v̄1({д1}) = v̄1({д2}) = 5;v̄1({д3}) = 3

v̄2({д1}) = v̄2({д2}) = 4;v̄2({д3}) = 2

A valuation-approximating algorithm allocates one item from д1,д2

to player 1 and the other to player 2, and allocates д3 to player 2.

We set the price of д1 to 2 and the price of д2 to 1. Assume w.l.o.g.

that д1 is assigned to player 1; it is possible that v1({д1}) = 0 and

v1({д2}) = 5, in which case player 1 demands д3. In that case, the

probability of observing a sample (namely {д3}) which player 1

demands is
1

2
, not an arbitrarily low ϵ > 0, so this approach does

not yield an ϵ-PAC equilibrium.

The bad behavior in Example 4.1 is not due to some intrinsic

failure of the valuation-approximating algorithm; it is impossible

to learn a consistent underestimate of a unit demand valuation.

Consider again the setting in Example 4.1: it is impossible to de-

termine whether v1({д1}) = 5 or v1({д2}) = 5; indeed, the only

viable underestimate sets both items’ values to 0. However, doing

so yields v̄1({д1,д2}) = 0 < v1({д1,д2}), an inconsistency. To con-

clude, the indirect approach does not yield a PAC Equilibrium. Let

us turn our attention to directly learning PAC market outcomes

from samples. We refer to this method as direct solution learning,
and any outcome computed from this method as a directly learned

equilibrium. Algorithm 1 directly learns a PAC equilibrium in the

unit-demand setting.

Algorithm 1 iterates over all players in decreasing order of bud-

get, and allocates the smallest bundle of goods from all available

goods with the highest possible value. We use two properties of

unit demand valuations, formalized in the following lemma.

Lemma 4.2. Given two bundles of goods S,T ⊆ G and some player
i ∈ N with unit demand valuations, if no two goods have the same
value for i then

(1) If vi (S) = vi (T) = c then vi (S ∩T) = c as well.
(2) If vi (S) > vi (T) then vi (S) = vi (S \T)

Using Lemma 4.2, we identify the smallest most valued bundle B1

i
for player i , and allocate it to the player if it contains no previously

allocated items; otherwise, we remove all such samples from S,

since we know such items are already priced out of their budget by

previous players, and we cannot use them to get information on

the next most valued set of goods for this player. We continue to

identify the next most valued bundle of minimal size for player i .
We repeat this process until we identify the smallest subset of most

valued items among unallocated items. If we allocate a bundle to i
after t steps, then player i receives a bundle containing their t-th
most valuable good – denoted Bti ; we then price the items in Bti
such that their total price is bi . Note that all samples that contain

Bti have a price of ≥ bi , which guarantees that no player i ′ > i can
afford them.

We repeat this procedure for all players. At the end of the for
loop (Algorithm 1, line 3), we allocate any leftover goods to player

n for free, and assign any good which is not present in the sample

set to player 1 at a price of 0.

We first show that Algorithm 1 outputs a consistent outcome.

Theorem 4.3. Algorithm 1 outputs a consistent market outcome.

Proof. Let the output of Algorithm 1 be (A, ®p). Let us assume

there is a sample S ∈ S such that for some player i , vi (S) > vi (Ai);
we need to show that S < Di (®p,bi). Consider the items not available

to player i when it is their turn to select a bundle, referred to as

Alloc in Algorithm 1. If S ∩ Alloc , ∅, then S must contain some

previously allocated bundle Ai′ , where bi′ > bi ; thus the price of S
is greater than bi , and S is not demanded by i . If S can be allocated

to player i and is one of the most valued bundles at the time, player

i selects their bundle (i.e. S ∈ Lti), then Bti ⊆ S ; in particular,

vi (S) = vi (B
t
i). Otherwise, vi (B

t
i) > vi (S) therefore vi (Ai) ≥ vi (S)

and i would not demand S . □

Main Track AAMAS 2021, May 3-7, 2021, Online

757

AAMAS ’21, May 3–7, 2021, Online Omer Lev, Neel Patel, Vignesh Viswanathan, and Yair Zick

Algorithm1:Directly Learning Equilibria for Unit Demand

Valuations

Input: A set of samples S, player valuations and budgets

b1 > · · · > bn
1: Alloc ← ∅
2: Allocate unobserved goods to player 1 at price 0

3: for i ← 1 to n do
4: S1

i ← S; c ← False; t ← 1

5: while c = False do
6: C t

i ← some set in arg maxT ∈Sti
vi (T)

7: Lti ← {T ∈ S
t
i |vi (T) = vi (C

t
i)}

8: Bti ←
⋂
T ∈Lti

T

9: Bti = B
t
i \

⋃
T ∈S|vi (T)<vi (Ct

i)
T

10: if Bti ∩ Alloc , ∅ then
11: t ← t + 1; Sti ← S

t−1

i \ Lti
12: end
13: else
14: c ← True; Alloc ← Alloc ∪ Bti
15: Ai ← Bti and price of each д ∈ Bti is

bi
|Bi |

16: end
17: end
18: end
19: Allocate the leftover goods to player n at price 0

While Algorithm 1 outputs a consistent outcome, it offers an

efficiency guarantee of
1

min{n,k } , under the minor assumption that

player valuations are normalised with respect to their budget.

Proposition 4.4. If for all i ∈ N , maxд∈G vi ({д}) = bi , Algorithm
1 outputs an allocation (A, ®p) with ERv (A) ≥ 1

min{n,k } .

Proposition 4.4 offers a rather weak bound: the same efficiency

ratio can be achieved by allocating all goods to the player with the

highest budget. However, the bound is tight, and is an outcome of

“bad" distributions. We show that there exists sample sets for which

no allocation can guarantee an efficiency greater than
1

min{n,k } .

Theorem 4.5. Let S,v(S) be a set of samples along with its valua-
tions; letV be the set of unit demand valuation profiles consistent with
the set of samples and are budget normalised i.e.maxд∈G vi ({д}) = bi
for all the players i ∈ N , and B ⊂ Rn+ be the set of all feasible budgets
i.e. the set of all budgets in Rn+ such that b1 > b2 > · · · > bn . Then,
we have

min

v ∈V
max

A
min

S⊆2
G , ®b ∈B

ERv (A) ≤
1

min{n,k} − δ

for any δ ∈ (0,n) where A is a consistent allocation with respect to
the samples.

Proof Sketch. Suppose the only sample you have is the set of

goods G. Then the only consistent allocation which can guarantee

a non-zero efficiency is one which allocates the entire set of goods

to player 1. Any allocation which partitions the set of goods and

allocates it to multiple players cannot offer any efficiency guaran-

tees. This leaves us with allocating all goods to player 1. There exist

allocations which provide a total utility of ≥ (min{n,k} − δ) × b1;

however, allocating the set of goods to player 1 guarantees a utility

of b1, which yields the upper bound
1

min{n,k }−δ . □

While Algorithm 1 offers no reasonable welfare guarantees for

general distributions, its performance guarantees improve signifi-

cantly under certain distributional assumptions. Specifically, this

holds true ifD is a product distribution with a bounded probability

of sampling each good. Recall that D is a product distribution over

G if there exist values p1, . . . ,pk ∈ [0, 1] such that for every S ⊆ G ,
PrD [S] =

∏
дj ∈S pj . Product distributions offer more amenable wel-

fare guarantees for two reasons: first, by definition, the presence of

a particular good in the sample is independent of the presence of

any other good (offering us a better chance of observing players’

valuations for individual items); second, goods are sampled with

non-zero probability (thus we observe all goods in some bundle

with high probability). Theorem 4.8 shows that Algorithm 1 outputs

a PAC equilibrium with an efficiency ratio of 1 with exponentially

high probability, when samples are drawn i.i.d. from a product

distribution; the proof requires that player preference orders over

items are sufficiently distinct. Before we prove Theorem 4.8, we

present two technical results – Lemma 4.6 and Lemma 4.7 – which

we use to prove Theorem 4.8.

Lemma4.6. In unit demandmarkets with unequal budgets and strict
preferences over items, any equilibrium allocation assigns player i the
best possible available good, i.e. {д∗i } equals arg maxд∈Gi vi (д) (G1 =

arg maxд∈G v1(д) and for i > 1, Gi = G \ {
⋃i−1

l=1
Gl }). Moreover, all

equilibria have the same social welfare
∑
i vi (д

∗
i).

In Lemma 4.6, we show that the social welfare for any equilibrium

for unit demand players is unique and each player i gets the good
д∗i . Therefore to show that the efficiency of Algorithm 1 is 1 with

high probability, it is sufficient to show that Algorithm 1 assigns д∗i
for all i with high probability.

We now present Lemma 4.7, in which we prove that for any

player i , if Sti at t−th iteration of the while loop in Algorithm 1

contains more than k2
samples then the corresponding Bti con-

tains only the best available good for player i in
⋃

S ∈Sti

S , with high

probability.

Lemma 4.7. Suppose that D is a product distribution such that for

all д ∈ G, 1 −
√

2e
−1/k − 1 < PrS ∈D (д ∈ S) < 1

2
+

√
2e
−1/k−1

2
. If

|Sti | ≥ k2 (at the t−th iteration of the while loop in Algorithm 1 for
player i), the corresponding Bti equals {д̂i } to player i with at least

1 − e
− k

2 probability, where

д̂i ∈ arg max{vi ({д}) : д ∈
⋃
S ∈Sti

S}

We are now ready to prove Theorem 4.8. We show that when we

assume agent preferences sufficiently differ – no two agents have

exactly the same favorite O(log(max(n,k))) goods – Algorithm 1 is

optimal with high probability..

Theorem 4.8. Suppose that D is a product distribution, such that
PrS∼D [д ∈ S] ∈ [α, β]. Assume that for every agent i , |{д ∈ G :

vi (д) > vi (д
∗
i)}| <

max{logn,logk }
log(1

1−β)
1.

1д∗i is defined as in Lemma 4.6: {д∗i } = arg maxд∈Gi
vi (д) (G1 = arg maxд∈G v1(д)

and for i > 1, Gi = G \ {
⋃i−1

l=1
Gl }.

Main Track AAMAS 2021, May 3-7, 2021, Online

758

The Price is (Probably) Right: Learning Market Equilibria from Samples AAMAS ’21, May 3–7, 2021, Online

If k > 3, 1 −
√

2e
−1/k − 1 ≤ α and β ≤ 1

2
+

√
2e
−1/k−1

2
, the output

of Algorithm 1, (A, ®p), satisfies

Pr[ERv (A) = 1] ≥ 1 −
2n max{logn, logk}

log

(
1

(1−β)
) e

−
max{k ,n}

4

Proof Sketch. When we have max{k4,n2k2} samples, if the

condition on the valuation functions is satisfied, then for every

player i , there is some t forwhich |Sti | ≥ k2
andд∗i ∈ arg max{vi ({д}) :

д ∈
⋃

S ∈Sti

S}. Therefore, using induction and Lemma 4.7, every

player gets allocated д∗i w.h.p., resulting in an efficiency ratio of

1. □

As β decreases (provided β > 1 −
√

2e
−1/k − 1), the condition

in Theorem 4.8 on the difference between players’ preferences be-

comes less stringent. Moreover, if either n or k is large, the exponen-

tial term in the probability guarantee dominates, and Algorithm 1

is highly likely to output an efficient outcome. However, if β is

smaller, the efficiency guarantee is less likely to hold. Note that

when β = 1, i.e., there is a good д that appears in all samples, the

performance of Algorithm 1 depends on which player gets д. If the
most preferred good for all players is д, Algorithm 1 allocates д to

player 1 and will not be able to continue: it is impossible to identify

the second preferred good (and beyond). Therefore, Algorithm 1

has an efficiency ≥ 1

ρn since we can only guarantee that the highest

budget player will receive their optimal equilibrium allocation.

We can generalize the efficiency bound in Theorem 4.8 for any

preference order over the items for all players. We observe that

with at least max(k4,n2k2) samples, the first ∼ max(logk, logn)
players will be assigned д∗i with high probability. We show the

efficiency guarantee for algorithm 1 for any preference order in

Proposition 4.9, and its connection to the disparity in valuation

functions between agents.

Proposition 4.9. If D is a product distribution such that for all

дj ∈ G, 1 −
√

2e
−1/k − 1 < PrS ∈D (д ∈ S) <

1

2
+

√
2e
−1/k−1

2
and k >

3. Then, with exponentially high probability, Algorithm 1 allocates
goods with an efficiency ratio ERv (A) ≥

logn
ρn log

(
1

1−β

) where ρ =

maxд∈G
maxi∈N vi (д)
mini∈N vi (д)

and β = maxдj ∈G PrS ∈D (д ∈ S).

Furthermore, in Corollary 4.10, we show the efficiency bound

when each good is sampled i.i.d. w.p.
1

2
.

Corollary 4.10. If the distribution D is uniform over the set 2
G

and k > 3, with exponentially high probability. Algorithm 1 allocates
goods with an efficiency ERv (A) >

logn
ρn where

ρ = max

д∈G

maxi ∈N vi (д)

mini ∈N vi (д)

using a polynomial number of samples.

5 SINGLE MINDED MARKETS
In single minded markets, each player has a particular bundle of

goods, Di ⊆ G they desire; every bundle that does not contain Di
has no value i.e.

vi (S) =

{
1 Di ⊆ S

0 otherwise.

We show that a PAC underestimate for single-minded valuations

can be efficiently learned, and an equilibrium for single-minded

valuations can be efficiently computed. Therefore, using Proposition

3.1, a PAC Equilibrium is computable in polynomial time.

Proposition 5.1. The class of single minded valuation functions can
be efficiently PAC learned, such that the learned valuation function
weakly underestimates players’ true valuations.

Proof. From a given set of samples S, set D̄i =
⋂
S ∈S:vi (S)>0

S .

If, for a player i ∈ N , no sample hasvi (S) > 0, then set D̄i = G . This
learned valuation is consistent and weakly lower than the actual

valuations since Di ⊆ D̄i (i.e., a sample containing a set of items

that is in Di but not all of D̄i will be given a value 0 instead of 1).

The total number of possible valuation functions, i.e., size of the

hypothesis class, is 2
k
(the number of possible choices for Di). Thus,

in order to PAC-learn Di , we need a number of samples polynomial

in
1

ϵ , log
1

δ and log |H | ∈ O(k) (a classic learning result for finite
hypothesis classes, see Anthony and Bartlett, 1999). □

Brânzei et al. [14] present an algorithm to compute equilibria

under equal budgets. We extend this algorithm to settings where

all budgets are different.

Theorem 5.2. Algorithm 2 outputs a market equilibrium for single
minded players with all different budgets.

Proof. Algorithm 2 iteratively allocates goods while keeping

track of players’ remaining budgets. If a good is demanded by

multiple players, it is priced such that only one player can afford it,

and allocated to that player. The SetPrice function ensures that no

two players have the same remaining budget, by slightly increasing

the price; this ensures that there are no ties when selecting the next

player to allocate a good to.

All players either get their desired set or a subset of their desired

set if it is unaffordable. Thus the resulting allocation is an equilib-

rium: players who do not receive their desired set are not able to

afford it. □

The key difference between our approach and that of Brânzei

et al. [14] is how over-demanded goods are priced. Brânzei et al.

[14] assign the good to the player with the smallest desired set

at a price equal to their budget. In our case, player budgets differ

and therefore, ties cannot be broken by desired set size; rather, we

instead break ties by remaining budgets.

Computing an equilibrium with total welfare at least K has been

shown to be NP-hard by Brânzei et al. [13] when players have equal

budgets. In Theorem 5.3, we show this for our setting as well.

Theorem 5.3. It is NP-Complete to decide if a single minded mar-
ket has an equilibrium with total welfare at least K

Theorem 5.5 shows that despite this, it is possible to compute a

PAC equilibrium with an efficiency ratio ≥ 1

min{n,k } . We now turn

to establishing the efficeincy bounds of the algorithm.

Lemma 5.4. Algorithm 2 assigns at least one player its desired set.

Theorem 5.5. Let (A, ®p) be the output of Algorithm 2 on valua-
tions learned as in Proposition 5.1; then ERv (A) ≥ 1

min{n,k } .

Main Track AAMAS 2021, May 3-7, 2021, Online

759

AAMAS ’21, May 3–7, 2021, Online Omer Lev, Neel Patel, Vignesh Viswanathan, and Yair Zick

Algorithm 2: Competitive Equilibrium for Single Minded

Valuations and Different Budgets

Notation :b∗i is the remaining budget for player i ; prices are
represented by ®p .

1: ®p = ®0; ®b∗ = {b1, b2, . . . , bn }
2: B = {D1, D2, . . . , Dn }
3: for each дj ∈ G do
4: if дj is only demanded by one player then
5: Allocate дj to that player at pj = 0

6: end
7: else if дj is demanded by multiple players then
8: pj ← SetPrice(дj , ®b∗, B)
9: Allocate дj to the player that can afford it at price pj
10: UpdateDemand (B, ®p, ®b∗)
11: end
12: end
13: Allocate all unallocated goods to player n at price 0

14: Function SetPrice (дj , ®b∗, B):
15: s = arg maxi∈N∧дj ∈Di

b∗i
16: t = arg maxi∈N \s∧дj ∈Di

b∗i

17: pj = b∗t +
b∗s−b

∗
t

n2

18: b∗s = b
∗
s − pj

19: while ∃i , s : b∗i = b
∗
s do

20: b∗s = b
∗
s −

b∗s−b
∗
t

n2
, pj = pj +

b∗s−b
∗
t

n2

21: end
22: return pj
23: Function UpdateDemand (B, ®p, ®b∗):
24: for i ∈ N do
25: if (Di , ∅) ∧ (p(Di) > b∗i) then
26: Di = ∅

27: end
28: end

Proof. From Lemma 5.4, we get that at least one player will

receive his desired set. This desired set is the learned desired set

which is a superset of the actual desired set (see Proposition 5.1).

Therefore, the player who receives his learned desired set also

receives his actual desired set. This means that the total welfare

obtained is at least 1. The maximum welfare any allocation can

obtain is min{n,k} since the total number of players getting their

desired set is upper bounded by k and n. Thus, the efficiency of the

computed PAC Equilibrium is ≥ 1

min{n,k } □

Similar to unit demand markets, we show that our result in The-

orem 5.5 is tight and no algorithm can guarantee a better efficiency.

Theorem 5.6. Let S,v(S) be a set of samples along with its val-
uations, V be the set of single minded valuation function profiles
which are consistent with the set of samples and B ⊂ Rn+ be the
set of all feasible budgets i.e. the set of all budgets in Rn+ such that
b1 > b2 > · · · > bn . Then, we have

min

v ∈V
max

A
min

S⊆2
G , ®b ∈B

ERv (A) ≤
1

min{n,k}

where A is a consistent allocation with respect to the samples.

We also show that our learned allocations are envy free.

Proposition 5.7. Let (A, ®p) be the output of Algorithm 2 on valua-
tions learned as in Proposition 5.1; then (A, ®p) is envy free.

6 ADDITIVE MARKETS
In additive markets, each player has additive valuations. The valua-

tion of a bundle is equal to the sum of the valuations of every good

in that bundle: vi (S) =
∑
д∈S vi ({д}). While additive valuations

are PAC-Learnable, we cannot use Proposition 3.1 to learn a PAC-

Equilibrium since in a lot of cases, we cannot learn an underestimate

of the valuations. This can be seen using Example 4.1.

Although additive Fisher markets with indivisible goods have re-

cently received a lot of attention, there are still many open questions

regarding the efficient computation of a market clearing equilib-

rium. Babaioff et al. [4] examine the specific case where there are

only two players and Brânzei et al. [13] show that it is computation-

ally intractable to decide if a market has a competitive equilibrium

when budgets are equal. This dearth of positive algorithmic results

means that even if we could accurately learn the valuation of each

good (which is not guaranteed and depends on the samples), we

may not be able to compute an equilibrium in polynomial time. In

this paper, we take a different approach and attempt to learn an

equilibrium directly (using Theorem 3.2); however, our outcome is

not necessarily market clearing.

Our approach is described in Algorithm 3. The algorithm has

three steps. First, we pre-process the samples to ensure that there

are no proper subsets in the samples. This is done to ensure that

no sample which is a superset of another sample is allocated. We

can remove the supersets and replace them by the set difference

between the superset and the subset: we can derive the value of

this bundle under additive valuations, as executed in the function

PreProcess.

The second step allocates samples to players. To each player, the

algorithm allocates the favourite sample among all the unallocated

samples. Here, a sample is unallocated if no good in the sample has

been allocated. It then prices each good equally such that the total

price is equal to the budget of the player.

The last step ensures consistency, it checks each of the original

samples to see if a player prefers it over their own sample and can

afford it. If there exists such a player, the algorithm proceeds to set

the price of one of the goods in the sample to infinity to ensure that

no player can afford it. This good is chosen as follows: if the sample

has an unallocated good, then the unallocated good is chosen. If

the sample does not have an unallocated good, the algorithm takes

away a good from the sample which belonged to the player with

the least budget and then sets its price to infinity. We refer to the

act of setting the price of a good to infinity as burning a good.

It is easy to see because of the third step that the algorithm

is always consistent. It also worth noting that as long as we can

underestimate the valuation in Line 25 in Algorithm 3, we will

always end up with a consistent outcome. This means that this

algorithm could be modified for any class of valuations to output a

consistent outcome.

We now prove two efficiency bounds for our algorithm. These

bounds hold only for additive valuations. To start with, we show

that when the valuations are budget normalised, then the efficiency

Main Track AAMAS 2021, May 3-7, 2021, Online

760

The Price is (Probably) Right: Learning Market Equilibria from Samples AAMAS ’21, May 3–7, 2021, Online

Algorithm 3: Consistent Allocation For Additive Markets

Input: A set of samples S, player valuations for these samples

v(S) and budgets b1 > b2 > · · · > bn
1 S′, ṽ(S′) = PreProess(S, v(S))
2 for i ← 1 to n do
3 Bi = some set in arg maxT ∈S′ ṽi (T)
4 Allocate Bi to player i i.e. Ai = Bi , ṽi (Ai) = ṽi (Bi)

5 Set pд =
bi
|Bi |
∀д ∈ Bi

6 S′ = S′ \
⋃
S∈S′:S∩Bi,∅ S

7 end
8 while ∃i ∈ N , S ∈ S s.t ṽi (Ai) < vi (S) ∧

∑
д∈S pд ≤ bi do

9 if ∃д ∈ S s.t. д <
⋃
i∈N Ai then

10 Set pд = ∞
11 end
12 else
13 j = arg mini∈N :S∩Ai,∅ bi
14 д = any good in Aj ∩ S
15 pд = ∞
16 Aj = Aj \ {д }
17 ṽj (Aj) = 0

18 end
19 end
20 Allocate all leftover goods to player 1 at price 0

21 Function PreProess(S, v(S)):
22 S′ = S

23 ṽ(S′) = v(S)
24 while ∃S ′, S ′′ ∈ S′ s.t. S ′ ⊊ S ′′ do
25 ṽi (S ′′) = ṽi (S ′′) − ṽi (S ′) ∀i ∈ N
26 S ′′ = S ′′ \ S ′

27 end
28 return S′, ṽ(S′)

is inversely related to the number of goods. Before that, we show

that no good in player 1’s initially allocated sample gets taken away

in Lemma 6.1.

Lemma 6.1. In Algorithm 3, no good in player 1’s initially allocated
sample gets taken away.

Theorem 6.2. When ∀i ∈ N ,maxд∈G vi ({д}) = bi , then Algo-
rithm 3 outputs an allocation with ERv (A) ≥ 1

k

Proof. Algorithm 3 always ensures the first player has a bundle

with valuation at least b1. If the first player’s favourite good is not

present in any sample, he receives at price 0 resulting in a valuation

of at least b1.

If the first player’s favourite good is present in the samples, then

there exists a sample (with the first player’s favourite good in it)

which is valued at at least b1 by the first player. Since the first player

is allocated his favourite sample, he is given a bundle whose value

is at least b1. By Lemma 6.1, none of these goods are taken away

and their final utility is at least b1.

Since the largest amount of value a good can give a player is b1.

The total utility of any allocation is upper bounded by kb1. This

gives us the following bound:

ERv (A) =
∑
i ∈N vi (Ai)∑
i ∈N vi (A

∗
i)
≥

v1(A1)∑
i ∈N vi (A

∗
i)
≥

b1

kb1

=
1

k

□

We now show that this bound is tight for general distributions.

Theorem 6.3. Let S,v(S) be a set of samples along with its val-
uations, V be the set of additive valuation function profiles which
are consistent with the set of samples and are budget normalised i.e.
maxд∈G vi ({д}) = bi for all the players i ∈ N and B ⊂ Rn+ be the
set of all feasible budgets i.e. the set of all budgets in Rn+ such that
b1 > b2 > · · · > bn . Then, we have

min

v ∈V
max

A
min

S⊆2
G , ®b ∈B

ERv (A) ≤
1

k − δ

for any δ ∈ (0,k) where A is a consistent allocation with respect to
the samples.

Our next bound does not require the valuations to be normalised

but imposes conditions on the samples and depends on the disparity

in the valuations of goods.

In Proposition 6.4, we show that when samples are disjoint, the

efficiency varies inversely with the disparity in valuations

Proposition 6.4. When all the samples in S are pairwise disjoint,
then Algorithm 3 outputs an allocation with ERv (A) ≥ 1

ρ where

ρ = maxд∈G
maxi∈N vi ({д })
mini∈N vi ({д })

7 SUBMODULAR MARKETS
In submodular markets, each player has monotone submodular

valuations i.e. each player’s valuation function vi : 2
G 7→ R+ ∪ {0}

satisfies the following three conditions:

(a) vi (∅) = 0

(b) For any two S,T ⊆ G such that S ⊆ T , vi (S) ≤ vi (T).
(c) For any two S,T ⊆ G,

vi (S) +vi (T) ≥ vi (S ∪T) +vi (S ∩T) (5)

The class of monotone submodular valuations contains the class of

additive valuations, as well as many others. This increase in com-

plexity comes with an even greater dearth of positive algorithmic

results. In addition to this, monotone submodular valuations cannot

be efficiently PAC learned [5]. So, we cannot use Proposition 3.1 to

learn a PAC Equilibrium.

We, instead, use a direct learning approach similar to that of ad-

ditive markets but modify our algorithm slightly due to two reasons.

First, the pre-process step that worked for additive valuations will

not work for submodular valuations since we cannot accurately

determine the value of the bundle that results when you remove a

subset from a set. However, we can underestimate it using equation

(5) as follows: given two sets A,B ⊆ G such that A ⊆ B, then by

substituting S = B \A and T = A in equation (5) we get

vi (B \A) ≥ vi (B) −vi (A)

Therefore, vi (B) − vi (A) gives us an underestimate of vi (B \ A).
Furthermore, the inequality does not change if we replace vi (B)
with an underestimate of vi (B).

Second, because we have to underestimate valuations, our effi-

ciency guarantee may not hold. In order to prevent this, we modify

our algorithm so that it can use extra information about the valu-

ations. This is done using an additional input parameter ci for all
i ∈ N which specifies an underestimate of the value of the highest

Main Track AAMAS 2021, May 3-7, 2021, Online

761

AAMAS ’21, May 3–7, 2021, Online Omer Lev, Neel Patel, Vignesh Viswanathan, and Yair Zick

valued good i.e., for all i ∈ N : ci ≤ maxд∈G vi ({д}). Note that when
there is no available information about the value of ci , we can set

ci = 0.

The algorithm has been described in Algorithm 4. The algorithm

has the same three steps as that of Algorithm 3 but the first two

steps are modified to work for submodular valuations.

The PreProcess step removes any supersets from the set S and

replaces them with the set difference between the superset and the

subset. It also computes the set of goods which could have a value

≥ ci and stores it in the set Fi . Note that Fi is never empty and has

a value of at least ci to player i . The following lemma proves it.

Lemma 7.1. In the set F output by the PreProcess function of Algo-
rithm 4, Fi , ∅ and vi (Fi) ≥ ci ∀i ∈ N .

We then use this in the second step to give a player a bundle

of value at least ci when no other sample guarantees a value of at

least ci . Of course, this is not applicable when an element of Fi has
been allocated to some other player.

The third step remains the same and ensures consistency since

ṽi is an underestimate of vi . So, if for any S ∈ S, vi (S) > vi (Ai),
then, vi (S) > ṽi (Ai).

We now show that when valuations are budget normalised, then

the algorithm has an efficiency of at least
1

k . But before we do that,

we show that even in this algorithm, none of player 1’s goods get

taken away.

Lemma 7.2. In Algorithm 4, none of player 1’s goods get taken away.

This brings us to our final proof. When we have budget nor-

malised valuations, then Algorithm 4 gives us an allocation with

efficiency at least
1

k

Theorem 7.3. When maxд∈G vi ({д}) = bi , then Algorithm 4
outputs an allocation with efficiency ERv (A) ≥ 1

k

Since additive valuations are a subset of monotone submodular

valuations, Theorem 6.3 applies in this case as well. This means the

bound in Theorem 7.3 is tight.

8 CONCLUSIONS AND FUTUREWORK
This work shows the benefit of directly learning equilibrium states,

instead of learning utility functions, and calculating equilibria states

from them. We deal with several valuation function families, and

in all of them show algorithms to produce a PAC-approximation,

with our results being tight, i.e., no better approximation can be

guranteed.

We believe that this work is the tip of the iceberg in showing

how PAC learning can help in reaching economic, game-theoretic

results, directly from the data, without using the data to construct

intermediate steps (such as learning utility functions). Plenty of

problems are still open – from expanding results to a larger family

of functions (XOS, gross substitutes), to further type of results (e.g.,

other desirable states beyond equilibria).

ACKNOWLEDGEMENTS
Lev, Patel and Zick were supported by the Singapore NRF Research

Fellowship #R-252-000-750-733. Patel and Zick were also supported

by the AI Singapore Award #AISG-RP-2018-009. Viswanathan was

Algorithm 4: Submodular Markets Consistent Allocation

Input: A set of samples S, player valuations for these samples

v(S), budgets b1 > b2 > · · · > bn and

ci ≤ maxд∈G vi ({д })∀i ∈ N
1 S′, ṽ(S′), F = PreProess(S, v(S))
2 for i ← 1 to n do
3 if ṽi (S ′) < ci ∀S ′ ∈ S′ ∧ Fi ∩

⋃i−1

j=1
Aj = ∅ then

4 Allocate Fi to player i i.e. Ai = Fi , ṽi (Ai) = ci
5 end
6 else
7 Bi = some set in arg maxT ∈S′ ṽi (T)
8 Allocate Bi to player i i.e. Ai = Bi , ṽi (Ai) = ṽi (Bi)
9 end

10 Set pд =
bi
|Ai |
∀д ∈ Ai

11 S′ = S′ \
⋃
S∈S′:S∩Ai,∅ S

12 end
13 while ∃i ∈ N , S ∈ S s.t ṽi (Ai) < vi (S) ∧

∑
д∈S pд ≤ bi do

14 if ∃д ∈ S s.t. д <
⋃
i∈N Ai then

15 Set pд = ∞
16 end
17 else
18 j = arg mini∈N :S∩Ai,∅ bi
19 д = any good in Aj ∩ S
20 pд = ∞
21 Aj = Aj \ {д }
22 ṽj (Aj) = 0

23 end
24 end
25 Allocate all leftover goods to player 1 at price 0

26 Function PreProess(S, v(S)):
27 S′ = S

28 ṽ(S′) = v(S)
29 for S ′ ∈ S′ do
30 while ∃S ∈ S s.t. S ⊊ S ′ do
31 ṽi (S ′) = ṽi (S ′) − vi (S) ∀i ∈ N
32 S ′ = S ′ \ S
33 end
34 end
35 if ∃S ′, S ′′ ∈ S′ s.t. S ′ ⊊ S ′′ then
36 Remove S ′ from S′

37 end
38 F = {F1, F2, . . . , Fn }

39 Fi =
(⋃

S∈S:vi (S)≥ci S \
⋃
S ′∈S:vi (S ′)<ci S

′

)
∪

(
G \⋃

S∈S S
)
∀i ∈ N

40 return S′, ṽ(S′), F

supported by the IITKGP Foundation Award. Most of the work

was done while all the authors were at the National University of

Singapore. The authors would also like to thank the anonymous

reviewers of AAAI 2020, AAMAS 2020 and AAMAS 2021 for their

informative comments.

REFERENCES
[1] Ahmet Alkan, Gabrielle Demange, and David Gale. Fair allocation of indivisible

goods and criteria of justice. Econometrica, 59(4):1023–1039, 1991.

Main Track AAMAS 2021, May 3-7, 2021, Online

762

The Price is (Probably) Right: Learning Market Equilibria from Samples AAMAS ’21, May 3–7, 2021, Online

[2] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[3] Enriqueta Aragones. A derivation of the money rawlsian solution. Social Choice
and Welfare, 12(3):267–276, 1995.

[4] M. Babaioff, N. Nisan, and I. Talgam-Cohen. Competitive equilibria with indivisi-

ble goods and generic budgets. arXiv preprint arXiv:1703.08150, 2017.
[5] Maria-Florina Balcan and Nicholas J.A. Harvey. Learning submodular functions.

In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC),
2011.

[6] M.F. Balcan, A.D. Procaccia, and Y. Zick. Learning cooperative games. In Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI),
pages 475–481, 2015.

[7] Eric Balkanski and Yaron Singer. Minimizing a submodular function from samples.

In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NIPS), pages 814–822, 2017.

[8] Eric Balkanski and Yaron Singer. The sample complexity of optimizing a convex

function. In Proceedings of the 30th Conference on Computational Learning Theory
(COLT), pages 275–301, 2017.

[9] Eric Balkanski, Umar Syed, and Sergei Vassilvitskii. Statistical cost sharing.

In Proceedings of the 30th Annual Conference on Neural Information Processing
Systems (NIPS), pages 6221–6230, 2017.

[10] Siddharth Barman and Sanath Krishnamurthy. On the proximity of markets

with integral equilibria. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI), pages 1748–1755, 2019.

[11] S. Bikhchandani and John W. Mamer. Competitive equilibrium in an exchange

economy with indivisibilities. Journal of Economic Theory, 74(2):385 – 413, 1997.

[12] Allan Borodin, Omer Lev, and Tyrone Strangway. Budgetary effects on pricing

equilibrium in online markets. In Proceedings of the 15th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 95–103,
Singapore, 2016.

[13] Simina Brânzei, Hadi Hosseini, and Peter Bro Miltersen. Characterization and

computation of equilibria for indivisible goods. In Algorithmic Game Theory,
pages 244–255, 2015.

[14] Simina Brânzei, Yuezhou Lv, and Ruta Mehta. To give or not to give: Fair divi-

sion for single minded valuations. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), pages 123–129, 2016.

[15] Gianluca Brero, Benjamin Lubin, and Sven Seuken. Combinatorial auctions

via machine learning-based preference elicitation. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI), pages 128–136,
2018.

[16] Eric Budish. The combinatorial assignment problem: Approximate competitive

equilibrium from equal incomes. Journal of Political Economics, 119(6):1061–1103,
2011.

[17] Richard Cole and Tim Roughgarden. The sample complexity of revenue max-

imization. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 243–252, 2014.

[18] Nikhil R Devanur, Christos H Papadimitriou, Amin Saberi, and Vijay V Vazirani.

Market equilibrium via a primal–dual algorithm for a convex program. Journal
of the Association for Computing Machinery, 55(5):22, 2008.

[19] Nikhil R. Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample

complexity of auctions with side information. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC), pages 426–439, 2016.

[20] Edmund Eisenberg. Aggregation of utility functions. Management Science, 7(4):
337–350, 1961.

[21] Alireza Farhadi, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, Sébastien

Lahaie, David Pennock, Masoud Seddighin, Saeed Seddighin, and Hadi Yami.

Fair allocation of indivisible goods to asymmetric agents. Journal of Artificial
Intelligence Research, 64(1):1–20, 2019. ISSN 1076-9757.

[22] Ya’akov (Kobi) Gal, Moshe Mash, Ariel D. Procaccia, and Yair Zick. Which is

the fairest (rent division) of them all? Journal of the Association for Computing
Machinery, 64(6):39:1–39:22, 2017.

[23] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87(1):95–124, 1999.

[24] Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire

Kenyon, Frank McSherry, and Frank McSherry. On profit-maximizing envy-free

pricing. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1164–1173, 2005.

[25] Ayumi Igarashi, Jakub Sliwinski, and Yair Zick. Forming probably stable commu-

nities with limited interactions. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI), pages 2053–2060, 2019.

[26] Tushant Jha and Yair Zick. A learning framework for distribution-based game-

theoretic solution concepts. In Proceedings of the 21st ACM Conference on Eco-
nomics and Computation (EC), pages 355–377, 2020.

[27] Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation,

and gross substitutes. Econometrica, 50(6):1483–1504, 1982. ISSN 00129682,

14680262. URL http://www.jstor.org/stable/1913392.

[28] Christian Kroer, Alexander Peysakhovich, Eric Sodomka, and Nicolas E Stier-

Moses. Computing large market equilibria using abstractions. In Proceedings of
the 19th ACM Conference on Economics and Computation (EC), 2019.

[29] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. When can the maximin

share guarantee be guaranteed? In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI), pages 523–529, 2016.

[30] Jamie H Morgenstern and Tim Roughgarden. On the pseudo-dimension of

nearly optimal auctions. In Proceedings of the 28th Annual Conference on Neural
Information Processing Systems (NIPS), pages 136–144, 2015.

[31] Riley Murray, Christian Kroer, Alex Peysakhovich, and Parikshit Shah. Robust

market equilibria with uncertain preferences. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), 2020.

[32] Renato Paes-Leme and Sam Chiu-Wai Wong. Computing walrasian equilibria:

Fast algorithms and structural properties. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 632–651, 2017.

[33] Nir Rosenfeld, Eric Balkanski, Amir Globerson, and Yaron Singer. Learning

to optimize combinatorial functions. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 4374–4383, 2018.

[34] Erel Segal-Halevi. Competitive equilibrium for almost all incomes. In Proceed-
ings of the 16th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 1267–1275, 2017.

[35] Weiran Shen, Sebastien Lahaie, and Renato Paes-Leme. Learning to clear the

market. In Proceedings of the 36th International Conference on Machine Learning
(ICML), pages 5710–5718, 2019.

[36] J. Sliwinski and Y. Zick. Learning hedonic games. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI), pages 2730–2736,
2017.

[37] H. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9:63–91,
1974.

[38] Enrique Areyan Viqueira and Amy Greenwald. Learning competitive equilibria

in noisy combinatorial markets. In Proceedings of the 2nd Games, Agents, and
Incentives Workshop (GAIW@AAMAS 2020), 2020.

Main Track AAMAS 2021, May 3-7, 2021, Online

763

http://www.jstor.org/stable/1913392

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Preliminaries
	3 Computing PAC Equilibria
	4 Unit Demand Markets
	5 Single Minded Markets
	6 Additive Markets
	7 Submodular Markets
	8 Conclusions and Future Work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 44.68, 719.27 Width 529.92 Height 22.86 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 44.6792 719.2665 529.9155 22.8591

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryList_V1
 qi2base

