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ABSTRACT
We present a logic of evaluation which clarifies the relationship

between knowledge, values and preferences of multiple agents

in an interactive setting. Evaluation is a fundamental concept for

understanding how an ethical agent’s decision is affected by her

values. We provide a complete axiomatics for the logic and present

a dynamic extension by the concept of value expansion. We show

that value expansion indirectly affects the agents’ preferences by

inducing a preference upgrade operation.
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1 INTRODUCTION
An autonomous agent is, by definition, endowed with endogenous

motivations, commonly called goals, which determine her prefer-

ences, thereby indirectly influencing her decision-making process.

Evaluation is a core aspect of agent autonomy. It is the bridge be-

tween the agent’s goals and preferences through the lens of the

agent’s knowledge (or beliefs). This aspect is emphasized in [29] in

which an agent’s evaluation of a situation (outcome, state, etc.) is

defined to be a belief of an evaluating agent about the goodness (or

usefulness) of the situation with regard to the agent’s goals.

The concept of evaluation is paramount for psychological theo-

ries of action [20] and emotion [30] as well as for cognitive theories

of knowledge and beliefs [1]. It is also highly relevant for ethical

multiagent systems and, more generally, for machine ethics, one

of the central areas of AI nowadays [3, 18, 42]. Indeed, as pointed

out by [17], for an autonomous agent to be ethical and to behave

responsibly, some of her goals must reflect values and norms with

which she is expected to comply and which take other agents and

their welfare into consideration. This includes both abstract values

such as justice, fairness, reciprocity and equity and more concrete

ones such as “greenhouse gas emissions are reduced” and “social

distancing measures are adopted for fighting against covid-19”.
1
A

typical example of ethical autonomous agent is a robot whose set

of values includes the respect for human integrity [43].

In order to supply her expected functionality, an ethical agent

should be capable of computing her preference ordering over the

alternatives directly from her values and then use it, together with

1
According to contemporary theories of human motivation in philosophy [34] and

in economics [22], goals of a rational agent may originate either (i) from somatically-

marked motivations such as desires or physiological needs, or (ii) from ethical consid-

erations, moral values and norms. In other words, there are desire-based goals and

value-based goals. In this paper, we will focus exclusively on the latter category.
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her knowledge and belief, as input of her decision-making process.

This is what Figure 1 highlights. Specifically, by evaluating how
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Figure 1: From values to preferences via evaluation

good a situation is, the ethical agent makes an epistemic judgment

about whether and how much the situation promotes the achieve-

ment of her values. Some evaluations are comparative in the sense

that the agent’s assessment of the goodness of a certain situation is

made in relation to the goodness of another situation, depending

on which and how many values are satisfied in each of them.
2

This view of evaluation is in line with the philosophical doctrine

of pluralistic consequentialism [35, 36] and with recent theories of

reason-based choice [15, 16] according to which an ethical agent has

to weigh different, and sometimes conflicting, values and properties

to assess the relative goodness of a given option or alternative in her

choice set. It is also in accord with existing computational models

of ethical deliberation and planning in robotics [4, 41] and in AI

[2, 12, 33, 37] in which the influence of values on decision and the

evaluative component are made explicit.

The aim of this paper is to introduce a logic of evaluation which

helps to clarify the relationship between knowledge, values and

preferences of multiple ethical agents in a multi-agent setting. The

interest of having a multi-agent account of values and evaluation

lies in the possibility of modeling interactive situations in which: (i)

an agent’s value may concern other agents’ well-being, safety and

integrity, and (ii) agents’ decisions are interdependent so that the

possibility for an agent to achieve her values may depend on what

other agents decide to do. The development of a language with

a suitable syntax and semantics for specifying value preferences

of ethical agents in the context of sociotechnical systems (STSs)

was recently put forward by Murukannaiah et al. [31] as a research

challenge. In this paper, we make a first step to meet this challenge.

We are not the first to propose a logical analysis of ethical reasoning.

There are approaches based on preference logic [21], event calculus

(ASP) [9], temporal-epistemic logic [28], BDI (belief, desire, inten-

tion) agent language [13] and classical higher-order logic (HOL)

[8]. Nonetheless, none of them has taken the concept of evaluation

into account. The latter, we believe, is crucial for elucidating the

connection between values and preferences.

2
This aspect is emphasized by Dewey in his theory of valuing, where he defines

evaluation as “...an activity of rating, an act that involves comparison...” [14, p. 5].
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The paper is organized as follows. In Section 2, we discuss the

conceptual background with special emphasis on the notion of

value. In Section 3, we present the language and the semantics of

our logic of evaluation, while in Section 4 we concentrate on the

notion of choice, in connection with knowledge and value, and

show how it can be expressed in the language. Section 5 is devoted

to present complete axiomatics for our logic. In Section 6, we move

from a static to a dynamic perspective by extending our logic with

value expansion operators. We show that value expansion indirectly

affects an agent’s preferences by inducing a preference upgrade

operation in the sense of [40]. A selection of abbreviated proofs is

given in the technical annex at the end of the paper.

2 CONCEPTUAL BACKGROUND
We conceive evaluation as the computation of a preference ordering

over a set of epistemic alternatives from a set of actual values. The

evaluating agent determines whether a situation that she considers

possible is at least as good as another situation that she considers

possible in the light of which — and eventually how many — of her

values are satisfied in each situation. The evaluation criterion we

study in the paper is purely qualitative. We assume that an agent

will consider her epistemic alternative v at least as good as her

epistemic alternativew if and only if the set of her values satisfied

atw is included in the set of her values satisfied at v .
Evaluation is also leveraged by the agent to identify ideal situa-

tions in her set of epistemic alternatives, namely, those alternatives

at which all her values are satisfied. Clearly, if the agent has con-

flicting values, i.e., values that cannot be concomitantly satisfied,

then the set of ideal situations is empty since there is no epistemic

alternative at which two conflicting values are satisfied. In this case,

the agent can only identify subideal situations, i.e., situations at

which only some of her values but not all of them are satisfied.
3

Our logic of evaluation is grounded on the three primitive con-

cepts of knowledge, value and preference, in accordance with the

conceptual framework depicted in Figure 1. They will be reflected in

the language of the logic by corresponding modal operators of the

form Ki (knowledge), Vi (value) and [⪯i ] (preference), where i is
an agent identifier. The operator Ki captures the usual S5 notion of

knowledge for logically omniscient and fully introspective agents

[19]. The operator [⪯i ] is a standard S4 betterness modality [40]

reflecting a partial order over agent i’s set of epistemic alternatives.

The operator Vi captures a logically weak notion of value whose

only positive property is closure under logical equivalence. We see

the latter as the minimal property for values. This assumption is

justified by the fact that the notion of value we study is norma-

tive (in opposition to descriptive), in the sense that it pertains to

a rational resource-unbounded agent who is capable of immedi-

ately detaching a new value thatψ from her value that φ and her

knowledge that φ andψ have the same extension.

The reason why the value operator is parameterized by an agent

identifier i is that values are assumed to be agent-relative. This

does not conflict with the objectivist view of morality, namely the

view that all agents start from the same set of ultimate ethical

3
This situation is typical of moral struggles, as defined by Levi, which “...are provoked

by inconsistencies between value commitments and information concerning the kinds

of decision problems which arise...” [25, p. 8].

principles which determine the goodness or rightness of any state

of affairs or action.
4
The variability of values between two agents

may stem from the difference between their epistemic states, despite

the fact that the two agents share the same set of ultimate ethical

principles. For example, suppose Ann and Bob share the ultimate

ethical principle that “unfair acts are deplorable”. Nonetheless, they

have different interpretations of what ‘fairness’ means, given their

different epistemic states. For instance, Ann is a fervent utilitarian,

while Bob is Rawlsian: according to Ann an act is fair if and only

if it is aimed at maximizing collective utility while, according to

Bob, an act is fair if and only if it is aimed at maximizing utility of

the most disadvantaged person. Consequently, Ann and Bob have

divergent values about implementation of fairness.

The first negative property of values we want to discuss is that

they are not necessarily closed under conjunction. Suppose Mary is

organizing a party. Her two dear friends Ann and Bob have recently

split up and are actually in a bad relationship. According to Mary,

inviting Ann and inviting Bob are both valuable options, since it

would be unfair to exclude one of her dearest friends from the party.

Nonetheless, if Ann and Bob meet at the party, they will find them-

selves in an embarrassing situation which may negatively affect the

other guests. For this reason, according to Mary, inviting both Ann

and Bob to the party is not a valuable option. This example shows

that an agent can have conflicting values, without having the value

of complying with both of them. In formal terms, it is reasonable

to assume that the following formula should be satisfiable:

Viφ ∧ Viψ ∧ ¬Vi (φ ∧ψ ).

A further negative property of values is that they are not neces-

sarily closed under disjunction. Suppose Ann is a doctor working

at the hospital intensive care unit (ICU). A first patient in a critical

situation arrives at the unit. Saving her/his life is a value for Ann,

since her commitment is to save people’s lives. Few minutes later

a second patient is taken to the unit. Saving the second patient’s

life is also a value for Ann. In this situation, Ann does not have

the disjunctive value to save the first’s patient life or to save the

second’s patient life. Indeed, she is motivated to save the lives of

both patients. This illustrates that an agent can have the value that

φ and the value thatψ , — eventually coupled with the conjunctive

value that φ ∧ψ —, without having the disjunctive value that φ ∨ψ .
In other words, the following formula should be satisfiable:

Viφ ∧ Viψ ∧ ¬Vi (φ ∨ψ ).

Note that the satisfiability of the previous formula should be in-

dependent from the fact that agent i knows that φ and ψ cannot

occur together. For example, Ann can still want to save the lives of

both patients, notwithstanding her knowledge that she is unable

to do so (e.g., because the ICU is not equipped with two automatic

ventilators for covid-19 treatment).

Values do not satisfy weakening either. Specifically, the fact that

an agent has the conjunctive value thatφ andψ does not necessarily

imply that she has the value that φ. In other words, it is reasonable

to assume that the following formula should be satisfiable:

Vi (φ ∧ψ ) ∧ ¬Viφ.

4
See [32, 35] for further discussion about the compability between moral objectivism

and agent-relativity of ethical values.
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For example, suppose Mary and Bob are discussing about the ac-

tions for schools during the covid-19 outbreak. According to Mary,

children should return to school (φ) with application of social dis-

tancing and the use ofmasks (ψ ). This does not imply that, according

to Mary, children should return to school regardless of the fact that

social distancing is applied and masks are used.

More generally, since values do not satisfy closure under disjunc-

tion or weakening, they are not closed under logical consequence.

This means that the fact that ψ is a logical consequence of φ and

an agent considers φ a valuable state of affairs does not necessarily

imply that the agent considersψ a valuable state of affairs.

We conclude this section with a remark on the concept of real-

ism for values. The question is whether a rational agent can have

values which are incompatible with her knowledge and beliefs.

For example, may a rational agent be a fervent pacifist, notwith-

standing her knowledge that aggressivity is a natural disposition

of human nature and human conflict is unavoidable? In this paper,

we study two different logics: the logic of (possibly non-realistic)

values and the logic of realistic values. The latter logic assumes

that rational agents instantaneously discard non-realistic values.

The former is less demanding, as it is prone to accept that an agent

may have utopian values in her mind and simply filter them out

at a subsequent stage. This is in line with [11], according to whom

non-realistic goals and values are not actively pursued and are not

taken into consideration during the evaluation process, thereby

having no influence on preference formation and decision-making.

3 LOGICAL FRAMEWORK
In this section, we first present a multi-agent language for describ-

ing the relationship between values, knowledge and preferences of

multiple agents. Then, we introduce the notion of evaluative model

and show how to interpret our language relative to it.

Let Atm be a countable infinite set of atomic propositions and

let Agt be a finite set of agents. We define the language L by the

following grammar:

φ ::= p | idi | ¬φ | φ1 ∧ φ2 | Kiφ | Viφ | [⪯i ]φ,
where p ranges over Atm and i ranges over Agt.

The formula Kiφ has to be read “agent i knows that φ”, while
Viφ has to be read “agent i considers φ a valuable state of affairs”

or, simply, “agent i has the value that φ”. The formula [⪯i ]φ has

to be read “φ is true at all states that according to agent i are
at least as good as the current one”. Finally, the special atomic

formula idi is meant to stand for “the actual world is an ideal

world for agent i”. The dual of the epistemic operator Ki and of the

preference operator [⪯i ] are defined as usual: K̂iφ =def ¬Ki¬φ and

⟨⪯i ⟩φ =def ¬[⪯i ]¬φ. The extended set of atomic formulas Atm+ is
defined as follows:

Atm+ = Atm ∪
⋃
i ∈Agt

{idi }.

For notational convenience, elements of Atm+ are noted x ,y, . . .
The following definition introduces evaluative models.

Definition 3.1 (Evaluative model). An evaluative model (EM) is a

tupleM = (W , (≡i )i ∈Agt ,N , (⪯i )i ∈Agt ,V ) where:
• W is a non-empty set of worlds or states,

• ≡i is an equivalence relation onW ,

• N : Agt ×W −→ 2
2
W

is a neighbourhood function,

• ⪯i is a partial preorder onW ,

• V :W −→ 2
Atm+

is a valuation function,

and that satisfies the following constraints, for every w,v ∈ W ,

X ⊆W and i ∈ Agt:

(C1) ⪯i ⊆ ≡i ,
(C2) if X ∈ N (i,w) then X ⊆ ≡i(w),
(C3) ifw ≡i v then N (i,w) = N (i,v),
(C4) w ⪯i v if and only if SatM (i,w) ⊆ SatM (i,v),
(C5) idi ∈ V (w) if and only if SatM (i,w) = N (i,w),

with ≡i (w) = {v ∈ W : w ≡i v} and SatM (i,w) = {X ∈ N (i,w) :
w ∈ X }. The class of EMs is denoted by M.

The equivalence relation ≡i is an epistemic indistinguishability

relation. In particular, for each w ∈ W , ≡i (w) is agent i’s infor-
mation set at worldw . The neighbourhood function specifies the

agents’ values at each world. Specifically, if X ∈ N (i,w) then X is a

value of agent i at worldw , i.e., atw agent i considers X a valuable

(or ideal) state of affairs. The relation ⪯i specifies a preference or-
dering for agent i over the possible worlds. SatM (i,w) is the set of
agent i’s values that are satisfied atw . According to Constraint C1,

an agent’s preference ordering is relative to worlds in her informa-

tion set. Similarly, according to Constraint C2, an agent’s value is

relative to worlds in her information set. Constraint C3 captures

introspection for values, i.e., an agent’s set of values should be the

same in all worlds in the agent’s information set. Constraints C4

and C5 are the central properties of evaluation. They are used to

compute an agent’s preference ordering and set of ideal worlds

from her set of values. According to C4, world v is for agent i at
least as good as worldw if and only if the set of i’s values satisfied
at w is included in the set of i’s values satisfied at v .5 According
to C5, a world is ideal for an agent if and only if it satisfies all her

values. The set of worlds that agent i considers ideal at worldw of

modelM (aka i’s set of subjectively ideal worlds atw ofM) is:

IM (i,w) =
{
v ∈ ≡i(w) : idi ∈ V (v)

}
.

Since ≡i is an equivalence relation, if w ≡i v then IM (i,w) =
IM (i,v). Moreover, thanks to Constraints C3 and C5, if v ∈ I (i,w)
then v ∈ ⋂

X ∈N (i,w ) X . This means that an agent’s subjectively

ideal world is a world that satisfies all actual values of the agent.

We introduce the usual notation for strict preference, indifference

and incomparability:

≺i= {(w,v) ∈W ×W : w ⪯i v and v ⪯̸i w},
⪰i= {(w,v) ∈W ×W : v ⪯i w},
≻i= {(w,v) ∈W ×W : w ⪰i v and v ⪰̸i w},
∼i= {(w,v) ∈W ×W : w ⪯i v and v ⪯i w},
||i= {(w,v) ∈W ×W : w ⪯̸i v and v ⪯̸i w}.

The following definition precisely defines the realism condition

for values we briefly discussed in Section 2.

Definition 3.2 (Value realism). Let M = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be an EM. We say that M satisfies value realism (VR)

5
A similar idea of computing a preorder from a neighbourhood structure or a priority

graph can be found in evidence logic [38, 39] and in the logic of preference [26].

Main Track AAMAS 2021, May 3-7, 2021, Online

829



if and only if, for everyw ∈W , X ⊆W and i ∈ Agt,

if X ∈ N (i,w) then ≡i(w) ∩ X , ∅.
As we pointed out in Section 2, an agent can have conflicting

values. The following definition restricts to the limit case in which

an agent’s values are globally consistent, i.e., there exists at least

one subjectively ideal world for the agent.

Definition 3.3 (Value consistency). LetM = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be an EM. We say thatM satisfies value consistency (VC)

if and only if, for everyw ∈W and i ∈ Agt, we have IM (i,w) , ∅.
Formulas of the languageL are interpretedwith respect a pointed

evaluative model, i.e., an evaluative model and a world in it.

Definition 3.4 (Satisfaction relation). LetM = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be an EM and letw ∈W . Then:

M,w |= x ⇐⇒ x ∈ V (w),
M,w |= ¬φ ⇐⇒ M,w ̸ |= φ,

M,w |= φ ∧ψ ⇐⇒ M,w |= φ andM,w |= ψ ,
M,w |= Kiφ ⇐⇒ ∀v ∈W : ifw ≡i v thenM,v |= φ,
M,w |= Viφ ⇐⇒ ||φ | |Mi,w ∈ N (i,w),

M,w |= [⪯i ]φ ⇐⇒ ∀v ∈W : ifw ⪯i v thenM,v |= φ,
with | |φ | |Mi,w = {v ∈W : M,v |= φ}∩ ≡i(w).

Note that the interpretation of agent i’s value operator Vi is
relative to i’s subjective truth set for φ (i.e., | |φ | |Mi,w ), namely, the

worlds in i’s information set in which φ is true.
6

For every X ⊆ {VR,VC}, we denote by MX the class of EMs

satisfying every property in X , where VR and VC are, respectively,

the value realism and value consistency condition of Definitions

3.2 and 3.3. Since value consistency implies value realism, we have

MVC ⊆ MVR . Clearly,M∅ = M. For each model classMX , notions

of validity and satisfiability for formulas in L relative to MX are

defined in the usual way. We write |=MX φ to denote the fact that

φ is valid relative to the class MX .

4 CHOICE OPERATOR
In this section we define a rational choice operator and study its

relationship with the notions of value and knowledge. As a pre-

liminary step towards this definition, we introduce the following

notion of best alternative as a world in the agent’s information set

which is either at least as good or incomparable with any other

world in the agent’s information set.

Definition 4.1 (Best alternatives). LetM = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be an EM, let i ∈ Agt and letw ∈W . Agent i’s set of best
alternatives atw is defined as follows:

Best(i,w) =
{
v ∈≡i(w) : ∀u ∈≡i(w),u ⪯i v or u ||i v

}
.

A candidate choice for agent i is a ∼i -equivalence class relative
to agent i’s set of best alternatives.

Definition 4.2 (Candidate choices). LetM = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be an EM, let i ∈ Agt and let w ∈ W . Agent i’s set of
candidate choices atw , denoted by Choice(i,w), is the partition of

the set Best(i,w) induced by the indifference relation ∼i .
6
A similar interpretation for the notion of explicit belief is used in [5].

Intuitively, a candidate choice is a state of affairs that it would

be rational for an agent to try to attain.

The previous notion of candidate choice is syntactically ex-

pressed through the following abbrevation:

Ciφ =def K̂i (φ ∧ [⪯i ]φ),

where Ciφ has to be read “agent i can rationally choose that φ”.
As the following proposition highlights, the operatorCi correctly

represents the idea that an agent can rationally choose that φ if,

from her point of view, φ is a consequence of one her candidate

choices.

Proposition 4.3. LetM = (W , (≡i )i ∈Agt ,N , (⪯i )i ∈Agt ,V ) be an
EM, let i ∈ Agt and letw ∈W . Then,

M,w |= Ciφ if and only if ∃X ∈ Choice(i,w) such that X ⊆ ||φ | |Mi,w .

It is worth noting that, under the assumption of value consis-

tency, the choice operator Ci becomes normal. Indeed, we have the

following validity for the class MVC :

|=MVC

(
Ciφ ∧ Ci (φ → ψ )

)
→ Ciψ (1)

Moreover, the rule of necessitation is admissible for the class M:

If |=M φ then |=M Ciφ (2)

The reason for the normality of the operator Ci in MVC is that the

set of candidate choices Choice(i,w) is a singleton in every model

of this class. Specifically, Choice(i,w) only includes the set of ideal

worlds which satisfy all agent i’s values atw . Therefore, under the

value consistency assumption, an agent has exactly one candidate

choice, hence the formulaCiφ can simply be read “agent i rationally
chooses that φ”. The following example illustrates the interrelation

between the concepts of knowledge, value and choice.

Example 4.4. There are two mobile robots 1 and 2 who have to

collect objects in a room and an obstacle obstructing the access

to the battery charger station. Each robot can decide either to

remove the obstacle or to exploit the other robot by letting it remove

the obstacle. In order to formalize the example, we assume that

the set Atm includes the following atomic propositions with their

associated meanings: r1 (“robot 1 removes the obstacle”), r2 (“robot
2 removes the obstacle”), c1 (“robot 1 charges its battery”), c2 (“robot
2 charges its battery”), f (“the access to the battery charger station

is free of obstacles”), e1 (“robot e1 is exploited”) and e2 (“robot 2
is exploited”). Each robot is motivated by two values, namely, the

value of preserving its own well-functioning by keeping its battery

charged and the value of refraining from exploiting the other robot.

This is captured by the following abbreviation:

φ1 =def V1c1 ∧ V2c2 ∧ V1¬e2 ∧ V1¬e1.

Since each robot has no additional values, it knows that a situation

in which it keeps its battery charged without exploiting the other

robot is an ideal situation:

φ2 =def K1
(
(c1 ∧ ¬e2) → id1

)
∧ K2

(
(c2 ∧ ¬e1) → id2

)
.

Furthermore, each robot knows that the only way to charge a

battery is by freeing the access to the battery charger station, and
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that the only way to free the access to the battery charger station

is by one of them removing the obstacle:

φ3 =def
∧

i ∈{1,2}

(
Ki

(
(c1 ∨ c2) → f

)
∧ Ki

(
f → (r1 ∨ r2)

) )
.

Finally, each robot knows that if one removes the obstactle while

the other does not do it, then this counts as an act of exploitation:

φ4 =def
∧

i ∈{1,2}
Ki

( (
(r1 ∧ ¬r2) → e1

)
∧
(
(r2 ∧ ¬r1) → e2

) )
.

It is routine exercise to check that, under the previous four hypothe-

ses and the assumption that the robots’ values are consistent, each

robot can rationally choose to remove the obstacle, but it cannot

rationally choose to refrain from doing it:

|=MVC (φ1 ∧ φ2 ∧ φ3 ∧ φ4) →
∧

i ∈{1,2}
(Ciri ∧ ¬Ci¬ri ).

If, moreover, both robots have knowledge about the four hypotheses,

then they also have knowledge about each other’s choices:

|=MVC

∧
i ∈{1,2}

(
Ki (φ1 ∧ φ2 ∧ φ3 ∧ φ4) → Ki

∧
i ∈{1,2}

(Ciri ∧ ¬Ci¬ri )
)
.

5 AXIOMATIZATION
In this section, we present an axiomatics for the set of validities

of the language L. In order to prove its completeness relative to

the semantics defined in Section 3, it is useful to define a weaker

semantics based on quasi-models.

Definition 5.1 (Quasi-model). A quasi-evaluative model (quasi-

EM) is like an EM, as defined in Definition 3.1, except that Con-

straints C4 and C5 are replaced by the following four constraints,

for everyw,v ∈W , X ⊆W and i ∈ Agt:

(C6) ifw ⪯i v then SatM (i,w) ⊆ SatM (i,v),
(C7) if idi ∈ V (w) then SatM (i,w) = N (i,w),
(C8) ifw ≡i v and idi ∈ V (v) thenw ⪯i v ,
(C9) ifw ⪯i v and idi ∈ V (w) then idi ∈ V (v).
For every X ⊆ {VR,VC}, the class of quasi-EMs satisfying each

semantic property in X is denoted by QMX .

It is routine exercise to verify that every EM is also a quasi-EM.

Truth conditions of formulas in L relative to quasi-EMs are just

like truth conditions relative to EMs (Definition 3.4). For every

X ⊆ {VR,VC}, notions of validity and satisfiability relative to the

classes QMX are also defined in the usual way.

As the following theorem highlights, the language L is not ex-

pressive enough to distinguish the semantics based on quasi-models

from the semantics based on models.

Theorem 5.2. Let φ ∈ L andX ⊆ {VR,VC}. Then, φ is satisfiable
for the class MX if and only if it is satisfiable for the class QMX .

In the following definition, we precisely define a family of logics

of evaluation. We will show that they are sound and complete

relative to both the quasi-model and the model semantics.

Definition 5.3 (Logic). We define LEV (Logic of Evaluation) to be

the extension of classical propositional logic given by the following

axioms and rule of inference:

(
Kiφ ∧ Ki (φ → ψ )

)
→ Kiψ (KKi )

Kiφ → φ (TKi )

Kiφ → KiKiφ (4Ki )

φ → Ki K̂iφ (BKi )(
[⪯i ]φ ∧ [⪯i ](φ → ψ )

)
→ [⪯i ]ψ (K[⪯i ])

[⪯i ]φ → φ (T[⪯i ])

[⪯i ]φ → [⪯i ][⪯i ]φ (4[⪯i ])
Kiφ → [⪯i ]φ (MixKi ,[⪯i ])
Ki (φ ↔ ψ ) → (Viφ → Viψ ) (Mix1Ki ,Vi )
Viφ → KiViφ (Mix2Ki ,Vi )
(Viφ ∧ φ) → [⪯i ]φ (MixVi ,[⪯i ])
(Viφ ∧ idi ) → φ (MixVi , idi )
[⪯i ]φ → Ki (idi → φ) (Mix1[⪯i ], idi )
idi → [⪯i ]idi (Mix2[⪯i ], idi )
φ

Kiφ
(NecKi )

For every X ⊆ {RealVi ,ConsVi }, we define LEVX to be the ex-

tension of the logic LEV by each axiom in X , where RealVi and
ConsVi are the following axioms:

Kiφ → ¬Vi¬φ (RealVi )

K̂i idi (ConsVi )

Note that the base logic LEV is the same as LEV∅ . For each logic

LEVX , notions of theorem and consistency are defined in the usual

way. We denote by ⊢LEVX φ the fact that φ is a theorem of LEVX .

We have all S5-principles for the epistemic operator Ki (Axioms

KKi , TKi , 4Ki and BKi , and Rule NecKi ) and the S4-principles for

the betterness operator [⪯i ] (Axioms K[⪯i ], T[⪯i ] and 4[⪯i ]). Ac-
cording to Axiom MixKi ,[⪯i ], if an agent knows that φ, then φ has

to be true at all worlds which are for the agent at least as good

as the current one. Indeed, an agent’s preference is relative to her

epistemic state. Axiom Mix1Ki ,Vi is a sort of ‘co-extensionality’
principle for values: if φ andψ are equivalent (co-extensional) ac-

cording to agent i , then i has the value that φ if and only if she

has value that ψ . According to Axiom Mix2Ki ,Vi , an agent has

introspection over her values. Axioms MixVi ,[⪯i ] and MixVi , idi
are the principles relating values with preferences. According to

MixVi ,[⪯i ], if the actual world satisfies a certain value, then all

better worlds should also satisfy it. According toMixVi , idi , if the
actual world is an ideal world, then it should satisfy all values. Ac-

cording to AxiomMix1[⪯i ], idi , if φ is true at all better worlds for

the agent then, according to the agent, is true at all ideal worlds.

Finally, according to Axiom Mix2[⪯i ], idi , all better worlds of an
ideal world are also ideal worlds. Axioms RealVi and ConsVi are,
respectively, the value realism and the value consistency axiom.

The following rule of necessitation for the preference operator

and rule of equivalence for the value operator are derivable in LEV

Main Track AAMAS 2021, May 3-7, 2021, Online

831



by means of AxiomMixKi ,[⪯i ], AxiomMix1Ki ,Vi and Rule NecKi :
φ

[⪯i ]φ
(3)

φ ↔ ψ

Viφ ↔ Viψ
(4)

Let fc be the correspondence function associating each axiom

in {RealVi ,ConsVi } to its corresponding semantic property in

{VR,VC}:
fc (RealVi ) = VR,

fc (ConsVi ) = VC.

Our first result is about soundness and completeness relative to

quasi-models.

Theorem 5.4. Let X ⊆ {RealVi ,ConsVi }. Then, the logic LEVX
is sound and complete for the class QM{fc (x ):x ∈X } .

Soundness and completeness relative to models is a direct corol-

lary of Theorem 5.2 and Theorem 5.4.

Corollary 5.5. LetX ⊆ {RealVi ,ConsVi }. Then, the logic LEVX
is sound and complete for the class M{fc (x ):x ∈X } .

6 VALUE EXPANSION
So far, we have only considered the static aspects of evaluation. In

this section, we look at the dynamic aspects by exploring the connec-

tion between value change and preference change. We extend the

language L introduced in Section 3 by operators of the form [+Jφ],
which are used to describe the consequences of a value expansion

operation by all agents in the coalition J . We call L+(Atm,Agt) the
resulting language and define it by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 | Kiφ | Viφ | [⪯i ]φ | [+Jψ ]φ,
where p ranges over Atm, i ranges over Agt and J ranges over the
set of coalitions 2

Agt∗ = 2
Agt \ {∅}. The new formula [+Jψ ]φ is

meant to stand for “φ holds, after every agent in J has expanded her
set of values withψ ”. We assume that value expansion operations

are public, i.e., if an agent expands her set of values with ψ , then
this is common knowledge among all agents. This assumption

could be relaxed by using a variant of event models [6] for our

semantics, which would allow us to model private and semi-private

value change operations. The following definition provides truth

conditions for this new type of formulas.

Definition 6.1 (Satisfaction relation (cont.)). Let M = (W , (≡i
)i ∈Agt ,N , (⪯i )i ∈Agt ,V ) be an EM and letw ∈W . Then:

M,w |= [+Jψ ]φ ⇐⇒ M+Jψ ,w |= φ,

where M+Jψ = (W +Jψ , (≡+Jψi )i ∈Agt ,N+Jψ , (⪯
+Jψ
i )i ∈Agt ,V +Jψ )

such thatW +Jψ =W , and for every i ∈ Agt andw ∈W :

≡+Jψi =≡i ,

N+Jψ (i,w) =
{
N (i,w) ∪ {| |ψ | |Mi,w } if i ∈ J ,

N (i,w) if i < J ,

⪯+Jψi =

{
⪯i \

{
(w,v) : M,w |= ψ andM,v |= ¬ψ

}
if i ∈ J ,

⪯+Jψi =⪯i if i < J ,

V +Jψ (w) = V (w) \
{
idi ∈ Atm+ : w < | |ψ | |Mi,w and i ∈ J

}
.

The value expansion operation +Jψ only affects the mental at-

titudes of the agents in J , while keeping unchanged the mental

attitudes of the agents outside J . Specifically, for every agent i in
J , (i) it extends i’s value set with ψ , (ii) it upgrades i’s preference
relation by removing from i’s information set all preferences of a

ψ -world over a ¬ψ -world and, finally, (iii) it shrinks i’s set of ideal
worlds toψ -worlds. This update operation is well-defined since it

preserves the properties of the model the class M.

Proposition 6.2. Let ψ ∈ L+ and J ∈ 2
Agt∗. Then, if M ∈ M

thenM+Jψ ∈ M.

We leave for future work the definition of variants of the value

expansion operation for themodel classesMVR andMVC . Just notice

that, in order to preserve value realism, it would be necessary

to make the execution of the update operation dependent on the

satisfaction of the condition K̂iψ . In other words, an agent in J will
expand her valueswithψ , only ifψ is consistent with her knowledge.

In order to preserve value consistency, the update operation should

be made subject to the satisfaction of the condition K̂i (ψ ∧ idi ). In
other words, for an agent in J to expand her set of values withψ ,ψ
has to be consistent with i’s set of (envisaged) ideal situations.

It is time to define the the logic DLEV (Dynamic LEV) which

extends the logic LEV by the dynamic operators [+Jψ ].

Definition 6.3. We define DLEV to be the extension of the logic

LEV of Definition 5.3 generated by the following reduction axioms

for the dynamic operators [+Jψ ]:

[+Jψ ]p ↔p (Red+Jψ ,p )

[+Jψ ]¬φ ↔¬[+Jψ ]φ (Red+Jψ ,¬)

[+Jψ ](φ1 ∧ φ2) ↔([+Jψ ]φ1 ∧ [+Jψ ]φ2) (Red+Jψ ,∧)

[+Jψ ]Kiφ ↔Ki [+Jψ ]φ (Red+Jψ ,Ki )

[+Jψ ]Viφ ↔
(
Vi [+Jψ ]φ∨
Ki (ψ ↔ [+Jψ ]φ)

)
if i ∈ J (Red1+Jψ ,Vi )

[+Jψ ]Viφ ↔Vi [+Jψ ]φ if i < J (Red2+Jψ ,Vi )

[+Jψ ][⪯i ]φ ↔
( (
ψ → [⪯i ](ψ → [+Jψ ]φ)

)
∧(

¬ψ → [⪯i ][+Jψ ]φ
) )

if i ∈ J (Red1+Jψ ,[⪯i ])

[+Jψ ][⪯i ]φ ↔[⪯i ][+Jψ ]φ if i < J (Red2+Jψ ,[⪯i ])

[+Jψ ]idi ↔(idi ∧ψ ) if i ∈ J (Red1+Jψ , idi )

[+Jψ ]idi ↔idi if i < J (Red2+Jψ , idi )

and the following rule of inference:

ψ1 ↔ ψ2
φ ↔ φ[ψ1/ψ2]

(RRE)

It is routine exercise to verify that the equivalences in Definition

6.3 are valid for class M and that Rule RRE preserves validity.

The completeness of DLEV for this class of models follows from

Theorem 5.5, in view of the fact that the reduction axioms and the

rule of replacement of proved equivalents can be used to find, for

any L+-formula, a provably equivalent L-formula.

Theorem 6.4. The logic DLEV is sound and complete for the class
M.
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7 CONCLUSION
We have presented a logical analysis of both the static and the

dynamic aspects of evaluation with the support of a multimodal

language for knowledge, values and preferences. Moreover, we have

provided sound and complete axiomatics for a family of logics of

evaluation.

The evaluation criterion we have studied is purely qualitative.

It is based on the idea that, for a world v to be at least as good

another worldw , the set of values satisfied atw should be included

in the set of values satisfied at v . Future work will be devoted to

study a variant of the logic LEV based on the following quantitative

criterion:

w ⪯i v if and only if |SatM (i,w)| ≤ |SatM (i,v)|.

This alternative criterion makes the preference ordering ⪯i com-

plete and only works under the assumptions that an agent’s value

set is countable and that the agent’s values have all the same weight.

Future work will also be devoted to study further types of value

change operation having an indirect influence on preferences in-

cluding value forgetting — which removes a value from an agent’s

value set —, and value revision — which expands the agent’s value

set first and then restores global consistency of the agent’s value

set —. This latter operation is particularly relevant for the model

class MVC .

A more long-term objective is to introduce a variant of the logic

of evaluation in which values are graded (i.e., an agent can have

values with different weight or priority) and the preference ordering

over the worlds in built by taking the values’ priorities into account.

We also plan to compare the notion of choice in the seeing to it
that (STIT) logic [7, 24, 27] with the notion we defined in Section

4. While in STIT choices are given as primitives, in our approach

they are computed from values.

Last but not least, we plan to study decidability and complex-

ity of satisfiability checking for the three logics LEV, LEV{RealVi }
and LEV{ConsVi } . Concerning decidability, we believe we can use

filtration techniques to prove it. The limitation of filtration is that,

by using it for satisfiability checking, one has to guess a model

exponential in the size of the formula to be checked. Thus, by fil-

tration argument, we could only prove that satisfiability checking

is in NEXPTIME. Our conjecture is that satisfiability checking for

our logics is EXPTIME-complete. It is certaintly EXPTIME-hard

since, given Constraint C1 in Definition 3.1, the S5-modality Ki
plays the role of the universal modality with respect to the S4-

modality [⪯i ]. As shown in [23], adding the universal modality to a

multimodal logic with independent modalities such as [⪯i ] causes
EXPTIME-hardness.

A SELECTED PROOFS
A.1 Proof of Theorem 5.2

Proof. The left-to-right direction is trivial since every EM is

also a quasi-EM.

In order to prove the right-to-left direction, we start with a quasi-

EM satisfyingφ and transform it to obtain an EMwhich satisfies the

same formulas as the original model. LetM = (W , (≡i )i ∈Agt ,N , (⪯i
)i ∈Agt ,V ) be a quasi-EM andw ∈W such thatM,w |= φ.

We define the structureM ′ = (W ′, (≡′
i )i ∈Agt ,N

′, (⪯′
i )i ∈Agt ,V

′)
as follows:

• W ′ = {w1 : w ∈W } ∪ {w2 : w ∈W };
• for every x ,y ∈ {1, 2} and wx ,vy ∈ W ′

, wx ≡′
i vy if and

only ifw ≡ iv ;
• for every x ,y ∈ {1, 2} and wx ,vy ∈ W ′

, wx ⪯′
i vy if and

only if:

– x = y andw ⪯i v , or
– v ∈ IM (i,w);

• for every x ∈ {1, 2} andwx ∈W ′
, V ′(wx ) = V (w);

• for every x ∈ {1, 2} andwx ∈W ′
,

N ′(i,wx ) =
{
{w1 : w ∈ X } ∪ {w2 : w ∈ X } : X ∈ N (i,w)

}
∪⋃

vy ∈≡i(wx ) and vy<IM′ (i,wx )

{
⪯′(vy ) ∪ IM ′(i,wx )

}
.

The first thing to verify is thatM ′
is an EM. It is routine exercise

to check that every ≡′
i is an equivalence relation and that every ⪯′

i
is a partial preorder. Clearly, it satisfies Constraints C1, C2 and C3 in

Definition 3.1 sinceM satisfies them too. Let us prove that it satisfies

Constraint C4. We distinguish two cases: (Case 1)wx < IM ′(i,wx ),
and (Case 2)wx ∈ IM ′(i,wx ).

Case 1. We first prove the left-to-right direction. Supposewx ⪯′
i

vy . By definition of ⪯′
i , we have (i) (x = y andw ⪯i v

)
or (ii)

v ∈ IM (i,w). Since M is a quasi-EM which satisfies Constraints

C3, C6 and C7, if v ∈ IM (i,w) then SatM (i,v) = N (i,v) = N (i,w),
and if w ⪯i v then SatM (i,w) ⊆ SatM (i,v). Thus, SatM (i,w) ⊆
SatM (i,v). By construction of M ′

, the fact that wx ⪯′
i vy , the

transitivity of ⪯′
and the fact that SatM (i,w) ⊆ SatM (i,v), both (i)

and (ii) imply SatM ′(i,wx ) ⊆ SatM ′(i,vy ).
As for the right-to-left direction, suppose vy < ⪯′

i (wx ). By
definitions of ⪯i and V ′

, the latter implies that vy < IM ′(i,wx ).
Thus, vy <

(
⪯′
i (wx ) ∪ IM ′(i,wx )

)
. Since wx < IM ′(i,wx ), by

definition of N ′
, we have

(
⪯′
i (wx ) ∪ I ′(i,wx )

)
∈ N ′(wx ). More-

over,wx ∈⪯′
i (wx ). Therefore, SatM ′(i,wx ) ⊈ SatM ′(i,vy ). Conse-

quently, SatM ′(i,wx ) ⊆ SatM ′(i,vy ) implieswx ⪯i vy .
Case 2. As for the left-to-right direction, suppose wx ⪯′

i vy .
The latter means that (i) x = y and w ⪯i v , or (ii) v ∈ IM (i,w).
Suppose (i). SinceM is a quasi-EM which satisfies Constraint C9,

by definition of V ′
and the fact thatwx ∈ IM ′(i,wx ), we have v ∈

IM (i,w). Thus, both (i) and (ii) implyw ∈ IM (i,w) andv ∈ IM (i,w).
Hence, by construction of M ′

and the fact that M is a quasi-EM

which satisfies Constraints C3 and C7, we have SatM ′(i,wx ) =
SatM ′(i,vy ).

As for the right-to-left direction, suppose v1 < ⪯′
i (wx ). By

definition of ⪯′
i , v < IM (i,w). Therefore, v1 < IM ′(i,wx ). Let

X =
(
⪯′
i (v1)∪IM ′(i,wx )

)
andX ′ =

(
⪯′
i (v2)∪IM ′(i,wx )

)
. Because

of v1 <⪯′
i (wx ) and v1 < I ′(i,wx ), by definitions of N ′

and ⪯′
i , we

have X ,X ′ ∈ N ′(i,wx ), X , X ′
, v1 ∈ X and v1 < X

′
. Since wx ∈

IM ′(i,wx ), by construction ofM ′
, we have SatM ′(i,wx ) = N ′(i,wx ).

It follows that SatM ′(i,wx ) ⊈ SatM ′(i,v1). We can conclude that

SatM ′(i,wx ) ⊆ SatM ′(i,v1) implieswx ⪯i v1. In an analogous way,

we can prove that SatM (i,wx ) ⊆ SatM (i,v2) implieswx ⪯i v2.
In order to prove thatM ′

satisfies Constraint C5, we first observe

that, by construction ofM ′
, if vy ∈ IM ′(i,wx ) then SatM ′(i,vy ) =

N ′(i,vy ).
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Now, suppose v1 < IM ′(i,wx ) and v1 ∈≡i(wx ). Thus, by defini-

tion of V ′
, v < I (i,w) and v2 < I ′(i,wx ). Therefore, by definition

of ⪯′
i and N ′

, v1 <
(
⪯′
i (v2) ∪ I ′(i,wx )

)
and

(
⪯′
i (v2) ∪ I ′(i,wx )

)
∈

N ′(i,wx ). Thus, SatM ′(i,v1) , N ′(i,v1). We can conclude that

SatM ′(i,v1) = N ′(i,v1) and v1 ∈ ≡i (wx ) imply v1 ∈ I ′(i,wx ).
The proof that SatM ′(i,v2) = N ′(i,wx ) and v2 ∈ ≡i (wx ) imply

v2 ∈ I ′(i,wx ) is analogous.
It is easy to show that, for every X ⊆ {VR,VC}, if M satisfies

every property in X , thenM ′
satisfies them too.

By induction on the structure of the formula φ, we can prove

that M,w |= φ if and only if M ′,wx |= φ, for every x ∈ {1, 2} and
w ∈W . □

A.2 Proof of Theorem 5.4
Proof. It is routine to check that the axioms of LEV are all valid

relative to the class of quasi-EMs and that the rule of inference

NecKi preserves validity with respect to this class.

To prove completeness, we use a canonical model argument.

We consider maximally consistent sets of formulas in L (MCSs).

The following proposition specifies some usual properties of MCSs.

Proposition A.1. Let Γ be a MCS and let φ,ψ ∈ L. Then:

• if φ,φ → ψ ∈ Γ thenψ ∈ Γ;
• φ ∈ Γ or ¬φ ∈ Γ;
• φ ∨ψ ∈ Γ iff φ ∈ Γ orψ ∈ Γ.

The following is the Lindenbaum’s lemma for our logic. As the

proof is standard (cf. [10, Lemma 4.17]) we omit it here.

Lemma A.2. Let ∆ be a LEV-consistent set of formulas. Then, there
exists a MCS Γ such that ∆ ⊆ Γ.

Let the canonical quasi-EM model be the tuple

Mc = (W c , (≡ci )i ∈Agt ,N
c , (⪯ci )i ∈Agt ,V

c ) such that:

• W c
is set of all MCSs;

• for all w,v ∈ W c
and i ∈ Agt, w ≡ci v iff, for all φ ∈ L, if

Kiφ ∈ w then φ ∈ v ;
• for all w,v ∈ W c

and i ∈ Agt, w ⪯ci v iff, for all φ ∈ L, if

[⪯i ]φ ∈ w then φ ∈ v ;
• for all w ∈ W c

and i ∈ Agt, N c (i,w) = {Aφ (i,w) : Viφ ∈
w};

• for allw ∈W c
and p ∈ Atm, p ∈ V c (w) iff p ∈ w ;

with Aφ (i,w) =
{
v ∈≡ci (w) : φ ∈ v

}
.

We have to prove thatMc
is a quasi-EM by showing that, for ev-

ery i ∈ Agt, ≡ci is an equivalence relation and ⪯i is partial preorder,
and that Conditions C1, C2, C3, C6, C7, C8 and C9 in Definitions

3.1 and 5.1 are satisfied. The proof uses Proposition A.1: Axiom TKi
guarantees that ≡ci is reflexive, Axiom 4Ki guarantees that it is tran-
sitive, and Axiom BKi guarantees that it is symmetric; Axiom T[⪯i ]
guarantees that ⪯ci is reflexive, while Axiom 4[⪯i ] guarantees that
it is transitive. We are going to show thatMc

satisfies Constraints

C1, C2, C3 and C6 as an example. We leave to the reader the task

of proving that it satisfies Constraints C7, C8 and C9 as well.

As for C1, suppose w ⪯vi v and w .ci v . By definition of ≡ci ,
Kiφ ∈ w and φ < v for some φ. By Axiom MixKi ,[⪯i ] and Propo-

sition A.1, [⪯i ]φ ∈ w . Hence, by definition of ⪯ci , we have φ ∈ v
which leads to a contradiction.

As for C2, suppose X ∈ N c (i,w). The latter means that X =
{u ∈≡ci (w) : φ ∈ u} and Viφ ∈ w for some φ. Thus, clearly,
X ⊆≡ci (w).

As for C3, suppose w ≡ci v , X ∈ N c (i,w) and X < N c (i,v).
By definition of N c

, X = Aφ (i,w) for some φ such that Viφ ∈ w
and Viφ < v . Hence, by Axiom Mix2Ki ,Vi and Proposition A.1,

KiViφ ∈ w . Because of w ≡ci v , the latter implies Viφ ∈ v which

leads to a contradiction. Since the relation w ≡ci v is symmetric,

in an analogous way we can prove thatw ≡ci v , X < N
c (i,w) and

X ∈ N c (i,v) also leads to a contradiction.

As for C6, suppose w ⪯ci v and w ∈ X for some X ∈ N c
i (i,w).

We are going to prove that v ∈ X and X ∈ N c
i (i,v). Suppose not.

Thus, either v < X or X < N c
i (i,v). X ∈ N c

i (i,w) means that X =
Aφ (i,w) for some Viφ ∈ w . By AxiomMix2Ki ,Vi and Proposition

A.1, the latter implies that X = Aφ (i,w) and KiViφ ∈ w . Thus, by

definition of ≡ci , Viφ ∈ v . Consequently, since Aφ (i,w) = Aφ (i,v),
X = Aφ (i,w) ∈ N c

i (i,v)which is in contradictionwithX < N
c
i (i,v).

We only need to show thatv < X also leads to a contradiction. From

w ∈ X and X ∈ N c
i (i,w), we have w ∈ X and X = Aφ (i,w) for

some Viφ ∈ w . Thus, by definition of Aφ (i,w), φ ∈ w and Viφ ∈ w .

By AxiomMixVi ,[⪯i ] and Proposition A.1, the latter implies that

[⪯i ]φ ∈ w . Thus, since w ⪯ci v , φ ∈ v . Hence, since w ≡ci v , we
have v ∈ X which is in contradiction with the initial assumption.

The next step in the proof is the following existence lemma. The

proof is again standard (cf. [10, Lemma 4.20]) and we omit it.

Lemma A.3. Let φ ∈ L andw ∈W c . If K̂iφ ∈ w , then there exists
v ∈W c such thatw ≡ci v and φ ∈ v .

Finally, we can prove the following truth lemma.

Lemma A.4. Let φ ∈ L andw ∈W c . Then,Mc ,w |= φ iff φ ∈ w .

Proof. The proof is by induction on the structure of the formula.

The cases with φ atomic, Boolean, and the form Kiψ are provable

in the standard way (cf. [10, Lemma 4.21]).

The proof for the case φ = Viψ goes as follows.

(⇒) Suppose Mc ,w |= Viψ . Thus, {u ∈≡ci (w) : Mc ,u |= ψ } ∈
N c (i,w). Hence, by definition of N c

, there exists χ such that Vi χ ∈
w and {u ∈≡ci (w) : χ ∈ u} = {u ∈≡ci (w) : Mc ,u |= ψ }. Thus, by
induction hypothesis, {u ∈≡ci (w) : χ ∈ u} = {u ∈≡ci (w) : ψ ∈ u}.
Now, suppose that Ki (χ ↔ ψ ) < w . By Proposition A.1, it follows

that ¬Ki (χ ↔ ψ ) ∈ w . This means that K̂i ((χ∧¬ψ )∨(¬χ∧ψ )) ∈ w .

By Lemma A.3, the latter implies that there existsv ∈W c
such that

w ≡ci v and ((χ ∧ ¬ψ ) ∨ (¬χ ∧ψ )) ∈ v which is in contradiction

with {u ∈≡ci (w) : χ ∈ u} = {u ∈≡ci (w) : ψ ∈ u}. Thus, we
have Ki (χ ↔ ψ ) ∈ w . From Vi χ ∈ w and Ki (χ ↔ ψ ) ∈ w , by

Proposition A.1 and Axiom Mix1Ki ,Vi , it follows that Viψ ∈ w .

(⇐) Suppose Viψ ∈ w . Thus, by definition of N c
, Aψ (i,w) =

{v ∈≡ci (w) : ψ ∈ v} ∈ N c (i,w). Hence, by induction hypothesis,

{v ∈≡ci (w) : Mc ,v |= ψ } ∈ N c (i,w). Therefore,Mc ,w |= Viψ . □

To conclude the proof, suppose φ is a LEV-consistent formula in

L. By Lemma A.2, there existsw ∈W c
such that φ ∈ w . Hence, by

Lemma A.4, there existsw ∈W c
such thatMc ,w |= φ. □
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