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ABSTRACT
In this abstract, we propose a general robustness definition for a de-
sired equilibrium and a practical robustness measure against a non-
equilibrium strategy, inspired by the studies of evolutionary game
theory. We also propose a framework to quantitatively evaluate the
robustness, and provide theoretical analysis of the framework.
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1. INTRODUCTION
Game theory provides a powerful theoretical framework to ana-

lyze strategic interactions where the payoff of a player depends on
its strategy and those of others. Incentive mechanisms, based on
game theoretical analysis, have been designed to promote the de-
sired behavior of rational players [5]. However, in realistic scenar-
ios, players with bounded rationality may deviate from the desired
equilibrium strategy, causing other rational players to also deviate,
and as a result the incentive mechanisms may fail to achieve the
expected performance.

The study of the bounded rationality is increasingly important in
the field of mechanism design. Bergemann and Morris [1] intro-
duce the concept of bounded rationality for incentive mechanisms
where players may make mistakes unintentionally due to reasons
unknown to mechanism designers. Filtering approaches have been
proposed to eliminate the impact of naive Byzantine (irrational)
players who randomly deviate from equilibrium strategies. More-
over, qualitative analysis of the robustness against various attack-
s has been proposed, where a mechanism is claimed to be either
resistent or vulnerable with respect to an attacking strategy. One
common limitation of existing approaches is that they cannot tell to
what extent incentive mechanisms are robust against specific non-
equilibrium strategies. This work provides an evaluation measure-
ment for researchers to develop a practical incentive mechanism.
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2. ROBUSTNESS MEASURE
Our robustness measure of incentive mechanisms is inspired by

the concept of evolutionary stable strategy (ESS) as studied in evo-
lutionary game theory — the application of game theory to biolo-
gy [4] — to study the evolution of strategies in the population(s)
of individuals who are competing with each other for survival and
reproduction. Players’ equilibrium strategy profile1 is called a de-
sired strategy profile (equilibrium) which leads to the desired out-
come of the mechanism, assuming that the players are rational.
Players who instead adopt a non-equilibrium strategy is regarded
as bounded rational players.

An incentive mechanism in a game has n players I = {1, ..., n}
which are modeled by n populations: for each player position, there
is a large population of individuals (agents), and each such individ-
ual is choosing a fixed action or following a pure strategy. Let Si=
{si1, ..., simi

} be the set of pure strategies available to the individuals
of population i and ∆i = {xi ∈ Rmi |

∑
sij∈Si

xi(j) = 1, xi(j) ≥
0, j = 1, ...,mi} be the set of possible strategy profiles for popula-
tion i, i.e., each xi(j) corresponds to the fraction of individuals in
the population i playing strategy sij ∈ Si. Note that xi is formally
equivalent to a mixed strategy for the player i ∈ I in the n-player
game. The combination of n population profiles is x ∈ Θ where
Θ = ×i∈I∆i. Suppose ε ∈ (0, 1) proportion of the population i
invade the mechanism by playing a different profile yi ∈ ∆i. As
a result, the new population profile for population i becomes xεi =
ε·yi+(1−ε)xi. If we denote the set of payoff functions for all pop-
ulations as u = {u1, ..., un} where the payoff of an agent in pop-
ulation i taking strategy sij is ui(sij , x−i). The average payoff of
the rational players in the population i before and after the invasion
can be expressed as ui(xi, x−i) =

∑mi
j=1 xi(j)ui(s

i
j , x−i) and

ui(xi, x
ε
−i) =

∑mi
j=1 xi(j)ui(s

i
j , x

ε
−i) respectively and the aver-

age payoff of the mutant invaders in population i is ui(yi, xε−i) =∑mi
j=1 yi(j)ui(s

i
j , x

ε
−i). Now, we can describe a general mech-

anism as M = {I,Θ, u} and the robustness of a desired equi-
librium can be defined as follows.

DEFINITION 1. [Robustness of a desired equilibrium] Given
an incentive mechanismM = {I,Θ, u}with a desired equilibrium
x ∈ Θ, the robustness of x is R such that

R=argmax
ε∈[0,1]

ui(xi, x
ε
−i)>ui(yi, x

ε
−i),∀y∈Θ(y 6= x),∀i∈I. (1)

In other words, the robustness of a desired equilibrium is the maxi-
mum proportion of invaders such that the desired equilibrium stra-
tegy is still the best strategy for rational players in each population.

However, the computational cost of formally analyzing the ro-
bustness measure in Definition 1 makes such analysis infeasible.
1For ease of analysis, we consider a single desired equilibrium of a
mechanism. It can be extended to handle multiple equilibria.
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First, the size of the population corresponding to each player po-
sition is assumed to be infinite in the definition so as to model all
possible mixed strategies of the player. The payoff of a population
is thus difficult to calculate through aggregating all the individuals’
utilities. Second, the strategy of the mutants y 6= x is continu-
ous and it may be impossible to verify Equation (1) for all y ∈ Θ.
Moreover, the size of players I in a realistic game could be very
large, making the robustness measure computationally prohibitive.
Given the difficulty of formally analyzing the robustness of incen-
tive mechanisms, we consider only finite populations to be able to
realistically measure the robustness of these incentive mechanisms.

Moreover, the mutants or invaders in a realistic mechanism al-
ways attack the mechanism using several mature techniques or stra-
tegies, e.g., constant attack and whitewashing attack in reputation
systems [2]. It is also observed that these attacks are typically con-
ducted by a single player. Thus, it is practical to measure the robust-
ness of an incentive mechanism against representative types (and
their combinations) of mutants in a single population.

We note that the robustness measure in Definition 1 is a stat-
ic concept. A mechanism is always implemented in real time and
players could dynamically adjust their strategies as time goes on,
which could be modeled by the well-known replicator dynamics
(RD) [4] model for capturing long-range evolutionary dynamics
with natural selection forces. If agents using the desired equi-
librium strategy could achieve higher payoff (fitness) in a popula-
tion, then they are more likely to reproduce and produce offsprings
which use the same strategy (replicator) and eventually through this
process the strategy distribution of the population will converge to
a stable equilibrium profile.

Figure 1: Evaluating Robustness based on Replicator Dynamics

We now propose an evolutionary dynamics based practical ro-
bustness measure that evaluates the robustness of an equilibrium
against any specific non-equilibrium strategy (Figure 1). In this
approach, agents adopting non-equilibrium strategy yk 6= xk are
gradually added to the original rational population (population with-
out mutants) and the resultant populations repeatedly interacts un-
der the mechanism. The strategy distribution of the rational popu-
lations evolves through RD until convergence. Successively more
mutants are added until the population converges to distribution d-
ifferent from the desired equilibrium.

DEFINITION 2. [Robustness against a non-equilibrium strategy]
The robustness of an incentive mechanism M, with desired equi-
librium strategy profile x, against a non-equilibrium strategy yk,
used by bounded-rational invaders, is

R(M,yk) =
N

N +M
(2)

where M is the finite population size for each player position and
N is the maximum number of bounded rational invaders such that
the converged strategy profile, under RD, does not deviate from the
desired equilibrium.

We assume that each player position has the same population
size and the robustness of an incentive mechanism is a function of
the population size and the non-equilibrium strategy.

However, there are still two challenges imposed on theoretically
evaluating the robustness of a realistic incentive mechanism: (1)
the strategy yk launched by bounded rational agents may be too

complex to be theoretically modeled; (2) the settings of incentive
mechanisms may be too complex to be theoretically abstracted.

3. EVALUATION FRAMEWORK
Therefore, based on the practical robustness measure defined in

Definition 2, we have proposed a simulation based framework in [3]
to quantitatively evaluate the robustness of an incentive mechanism
against a non-equilibrium strategy. In this framework, we gradu-
ally add agents taking a specific non-equilibrium strategy and let
the populations evolve over time to observe the converged strategy
profile. We stop inserting more agents when the equilibrium stra-
tegies are abandoned by the rational populations in the converged
population profile after a sufficiently large number of evolutionary
dynamics steps with a small probability ε. Regarding the parame-
ter ε, we study its effects in measuring the robustness value in the
evaluation framework.

PROPOSITION 1. There exists ε = G(M) where dG(M)
dM

< 0
such that the evaluated robustness of a mechanism is independent
of the population size M .

PROPOSITION 2. When ε = ε0 is a constant, the robustness
of a mechanism increases with the population size M where M >
1
ε0

+ 1, and finally converges at a value when the agents of a pop-
ulation taking a non-equilibrium strategy can achieve ε0

1−ε0
times

payoff more than that of the desired equilibrium strategy.

We have shown that the robustness of an incentive mechanism
measured in the evaluation framework is an increasing function of
the population size and is lower bounded, provided that ε is a con-
stant. As ε is set to be very large (e.g. 1), then the framework
would allow the non-equilibrium to achieve ε0

1−ε0
→ +∞ times

payoff than the equilibrium strategy when the population is large.
To avoid this impractical phenomenon, in the simulations of [3], we
thus set ε = 0.05 and gradually increase the population size until
the robustness value converges.

4. CONCLUSION AND FUTURE WORK
In this abstract, we have proposed formal definitions of a robust-

ness measure for incentive mechanisms in the presence of bounded
rational players. In Future work, the evaluation framework [3] will
be extended to search for the worst non-equilibrium strategy, and
also study the robustness of incentive mechanisms when rational
players form coalitions to take cooperative strategies.
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