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ABSTRACT
In this work, we focus on the novel application of learn-
ing the diffusion dynamics of visitors among attractions at
a large theme park using only aggregate information about
waiting times at attractions. Main contributions include for-
mulating optimisation models to compute diffusion dynam-
ics. We also developed algorithm capable of dealing with
noise in the data to populate parameters in the optimization
model. We validated our approach using cross validation on
a real theme park data set. Our approach provides an accu-
racy of about 80% for popular attractions, providing solid
empirical support for our diffusion models.
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1. INTRODUCTION
Diffusion dynamics refers to how entities spread in an

underlying network. Understanding mobility pattern in a
theme park is interesting for several reasons. First, it help-
s predict and control the contagion spread in a multiagent
system. Secondly, understanding this mobility pattern is
attractive as better strategies can be adopted to ease the
overall congestion at different attractions. However, due
to prohibitive cost of instrumentation, obtaining individual
movement is difficult. Therefore, diffusion dynamics must
be learned from aggregate or collective data about the un-
derlying flow.

Reasoning with noisy aggregate data is an emerging re-
search area. Collective graphical models (CGMs) are re-
cently developed as a general framework for reasoning with
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aggregate data in the context of a probabilistic graphical
model [2]. Our work is a special case of CGMs. The key dif-
ferentiator in our work is that we exploit the structured dy-
namics of visitor movement to develop simpler and tractable
optimization-based formulations of the diffusion dynamic-
s problem. Furthermore, we apply our techniques to the
real-world theme park problem, which has not been done
previously.

Recently, Kumar et al. [1] formulated the problem of learn-
ing turn-probabilities at road intersections in a traffic net-
work based on aggregate information about vehicle inflow
and outflow. Our work addresses an enriched version of this
problem as flow conservation is more complex in a theme
park owing to the presence of queues at each attraction. A
significant contribution is to formulate and validate diffusion
models with real world data, which is not provided in [1].

We consider a real theme park in Singapore, where the
problem of severe congestion has been observed consistently
over the last few years. Since congestion is primarily asso-
ciated with major attractions, we learn diffusion models for
the 9 major attractions. For achieving this goal, we have
access to a 5-month long data set of wait times throughout
the day for all the attractions.

2. VISITOR DIFFUSION MODEL
We use a layered time indexed graph to represent the flow

dynamics. Each layer and node represents one time slice
and attraction, respectively. We denote the service rate at
an attraction i in a single time interval using si. Service
rate typically depends on the nature of attraction. Bold let-
ters n,x and p are used to represent vectors composed of
all individual elements. nd,t,i denotes the number of visi-
tors waiting to be serviced at node i, time t in cascade d.
Similarly, xd,t,i,j corresponds to the number of people mov-
ing from node i to j; pt,i,j represents the probability that a
visitor would move from node i to j.

In the Observation Model, the goal is to learn the parame-
ters p from observations x. In reality, it is impractical to get
the vector x. In this work, we focus on Partial Observation
Model. In this model, we focus on learning the underlying
diffusion model using only aggregate observation n.

Three diffusion models are followed showing how their pa-
rameters can be learned based on partial observations.

Multinomial Distribution Based Diffusion: The like-
lihood of the complete data x,n is given as:
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Variables: p,x

Maximize:
∑
d

∑
i

∑
t

(
log
(
(
∑
j

xd,t,i,j)!
)

−
∑
j

log(xd,t,i,j !) +
∑
j

xd,t,i,j log(pt,i,j)

)
Subject to:

nd,t+1,i = nd,t,i+
∑
k

xd,t,k,i−
∑
j

xd,t,i,j ∀d, t, i (3)

∑
j

xd,t,i,j ≤ min(si, nd,t,i) ∀d, t, i (4)

∑
j

pt,i,j = 1 ∀t, i (5)

xd,t,i,j ∈ N0 ∀d, t, i, j (6)

0 ≤ pt,i,j ≤ 1 ∀t, i, j (7)

Table 1: GetDiffusionDynamics(n, s)

L(p;x,n) =
∏
d∈D

∏
i∈A

∏
t∈T

(
∑

j xd,t,i,j)!∏
j∈A

xd,t,i,j !

∏
j∈A

p
xd,t,i,j

t,i,j (1)

where D denotes the observed cascades, A denotes the set of
all attractions and T is the set of time slices. Total outflow
visitors of node i at time t is

∑
j xd,t,i,j . This corresponds

to the total number of trials in the multinomial distribu-
tion. Each subsequent attraction represents the number of
possible outcomes in the multinomial distribution.

To compute p, we maximize the likelihood and use follow-
ing approximation to make it computationally simpler:

max
p,x

logP (n,x;p) (2)

The above optimization problem can be formulated as a non-
linear program shown in Table 1. Objective function is the
log of Eq. (1). The first and the second constraint jointly
represent the flow conservation at each node. The rest en-
force some basic properties of the diffusion model. We use
Lingo to solve the optimization problem in Table 1.

Dirichlet-Multinomial Based Diffusion: The Dirichlet-
Multinomial distribution provides a prior α for the genera-
tion of the diffusion model. Instead of constraints (5) and (7)
on p, we used a lower bound of 2 and upper bound of 4 for
αt,i,j values.

Poisson Distribution Based Diffusion: Similarly, the
key parameter of interest in addition to x with Poisson dis-
tribution is λλλ. The optimization formulation in Table 1 is
appropriately modified to reflect this change.

3. EVALUATION
We use a 5-month long data set of wait times at a theme

park to evaluate our approaches. To account for lack of da-
ta on visitors entering and exiting the theme park as well
as taking breaks, we introduce a new attraction called the
’leisure’ node. This attraction is numbered as ’A10’ with
infinite service rate and capacity. As we maximize the likeli-
hood, our formulation in Table 1 ensures the diffusion model
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Figure 1: Accuracy with respect to the attractions

has the fewest possible population as transitioning to and
from the ‘leisure’ attraction. Moreover, the ‘leisure’ attrac-
tion also has the positive effect of accounting for errors in
reporting of wait times without violating the flow conserva-
tion constraints.

3.1 Results by Cross Validation
In order to understand the accuracy of transitions pre-

dicted using the formulation in Table 1 and others, we apply
5-fold cross validation with following steps:

• We first solve the formulation in Table 1 on the training
data set to obtain the underlying parameters p (α for
Dirichlet-multinomial and λ for Poisson) of the distribu-
tions corresponding to each attraction.

• We then use the parameters obtained by solving the op-
timization problem to assess the accuracy.

• By considering fixed confidence intervals, we count the
total accuracy of prediction at each time step.

Accuracy results are provided in Figure 1 with respect
to individual attractions for the 30% confidence interval-
s. From the figure 1, multinomial distribution consistently
provides higher accuracy than the other two distribution-
s. A key insight is that the Poisson distribution performed
significantly worse. Our result indicates that Poisson distri-
bution may not be ideal to represent a network of queues,
where the status of one queue depends on the status of oth-
er queues. One practically important observation is that
attractions that have high wait times (3, 5, 8 and 9) also
have a higher accuracy of prediction (70%-87%).
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