
Event-Action Modules for Complex Reactivity
in Logical Agents

(Extended Abstract)
Stefania Costantini, Univ. of L’Aquila, Italy and Régis Riveret, Imperial College London, UK

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence, Intel-
ligent Agents

Keywords
Agent development techniques, tools and environments, Logic-based
approaches and methods, Reasoning (single and multi-agent), Ma-
chine learning, Complex-event processing.

1. INTRODUCTION
Event processing (also called CEP, for “Complex Event Process-

ing”) has emerged as a relevant new field of software engineering
and computer science [2]. In fact, a lot of practical applications
have the need to actively monitor vast quantities of event data to
make automated decisions and take time-critical actions (cf. the
Proceedings of the RuleML Workshop Series).

Complex Event Processing is particularly important in software
agents. Naturally, most agent-oriented languages, architectures and
frameworks are to some extent event-oriented and are able to per-
form event-processing. In particular our approach is concerned
with logical agents, i.e., agents whose syntax and semantics is
rooted in Computational Logic (for a recent survey cf., e.g., [7]
and for a recent open source CEP system see e.g. ETALIS [1]).

We propose a novel conceptual view of complex events and a
possible formalization of the new concepts. We observe that a
complex event cannot always result from deterministic incremental
aggregation of simple events. Rather, an agent should be able to
possibly interpret a set of simple events in different ways, and to
assign/learn a plausibility and reliability of each interpretation. To
this aim we propose special modules, illustrated below.

1.1 Event-Action Modules
The following illustrates an Event-Action Module evaluating

symptoms of either pneumonia, or just flu, or both (clearly, we do
not aim at medical precision). We adopt syntax and keywords only
for illustration purposes. In the sample syntax, postfix ’P’ indicates
past events, i.e., events which have occurred (after the ’:’ there
is the time-stamp or the interval of occurrence). Postfix ’A’ indi-
cates actions. Connective :> indicated Event-Condition-Action
rules, while :- is the usual prolog if. An Event-Action Module will
be activated whenever the triggering events occur within a certain

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

time interval, and according to specific conditions: in the example,
whenever in the last two days both high temperature and intense
cough have been recorded.

The module is re-evaluated every time that a new occurrence of
the triggering events should arrive.

EVENT-ACTION-MODULE

TRIGGER
(high_temperatureP AND intense_coughP) : [2days]

COMPLEX _EVENTS
suspect_flu OR suspect_preumonia

suspect_flu :- high_temperatureP .
suspect_pneumonia :- high_temperatureP : [4days],

intense_coughP .

PREFERENCES
suspect_flu :- patient_is_healty .
suspect_pneumonia :- patient_is_at_risk .

ACTIONS
suspect_fluI :> stay_in_bedA.
suspect_fluI ,
high_temperatureP : [4days],
not suspect_pneumonia :> assume_antibioticA.
suspect_preumoniaI :> assume_antibioticA,

consult_lung_doctorA.
MANDATORY
suspect_preumonia :- high_temperatureP : [4days],

suspect_fluP ,
assume_antibioticP : [2days].

From given symptoms, either a suspect flu or a suspect pneu-
monia or both can be inferred, though for suspecting pneumonia
high temperature should have lasted for at least four days, accom-
panied by intense cough. This is stated in the COMPLEX_EVENTS
section, where each of the listed complex events (in the example,
suspect_flu and suspect_pneumonia) can be inferred, though ac-
cording to the specified conditions. Notice that the whole agent’s
belief base (including the history, and namely all past events that
have been recorded) is implicitly included in the definition of an
Event-Action Module. Explicit preferences are expressed, stating
that hypothesizing a flu should be preferred in case the patient is
healthy, while pneumonia is more plausible for risky patients. If
either none or both options hold, then they are equally preferred.
More involved forms of preferences might be specified, that for
lack of space we do not discuss here (cf., e.g., [4] and the refer-
ences therein). Actions to undertake in the two cases are specified.
As mentioned, the module is re-evaluated at subsequent new oc-
currences of high temperature and intense cough. Re-evaluation is
performed on the (possibly) updated belief base, i.e., on the belief
base which is actual when new event occurrences are perceived.

1503



Actions will be performed depending upon which of the differ-
ent possible scenarios the agent prefers to adopt. In particular, if a
flu is suspected then the patient should stay in bed, and if the high
temperature persists then an antibiotic should also be assumed. In
case of suspect pneumonia, an antibiotic is mandatory, plus a con-
sult with a lung doctor.

The MANDATORY section of the module specifies constraints:
in the example, some complex events must necessarily be inferred
in module (re)evaluation if certain conditions occur. Namely, it is
stated that pneumonia must to be hypothesized whenever flu has
been previously assumed, but high temperature persists despite at
least two days of antibiotic therapy.

There are other features of Event-Action Modules that for lack
of space we cannot discuss here. In particular, it is possible to rea-
son about (approximations of) possibility and necessity [3]. In the
example, it may be for instance that clinical history and conditions
of a patient force to assume a pneumonia. Anomaly management
can also be expressed.

Each Event-Action Module can be translated in a fully auto-
mated way into an Answer Set Programming (ASP) module [8,
3], where ASP is a well-established logic programming paradigm
where a program have a number (none, one or several) answer
sets expressing possible solutions. This except sections ACTIONS,
ANOMALY_MANAGEMENT_ACTIONS and PRECONDITIONS,
which are sets of simple reactive rules and action preconditions, to
be added to the main agent program. Translation into ASP has two
aspects: (i) providing a formal semantics to Event-Action Mod-
ules, as ASP is fully logical; (ii) making Event-Action Modules
executable, as ASP is fully implemented, and as many efficient im-
plementations are publicly available.

2. EVALUATING OUTCOMES
VIA REINFORCEMENT LEARNING

Outcomes of an Event-Action Module are not always univocal:
thus, at each stage the agent has to choose among the answer sets
of the corresponding ASP module. Though, as we have seen in the
example, preferences may help the agent in choosing an outcome
rather than another one, knowledge can be incomplete or partial
about reliability of such preferences, and in general about plausi-
bility of the choice.

To address this issue, we consider a self-improving process so
that an agent will learn over time to make the ‘best’ choice over
the answer sets of each module Π (i.e., over the outcomes of each
Event-Action Module). For this purpose, an agent is endowed with
a simple reinforcement learning mechanism: at each evolution step,
occurring at a time t, an agent: (i) senses its environment; (ii) eval-
uates Π obtaining the answer sets M1, . . . ,Mk; (iii) adopts one
of them, say M , and re-evaluates its “quality” Q(M). In order to
evaluate the quality of an answer set, we assume that at stage t, a
numerical value denoted V t(M) can associated to it: this value can
be either epistemic or practical, but in any case its expression shall
be dependent on the application so we leave it unspecified in the
description of the present general framework. At time t, the quality
of the selected model M will be computed as a discounted moving
average of its value over time:

Qt+1(M) = Qt(M) + α.(V t(M) −Qt(M))

Then, an agent will draw an answer set M with probability
P t(M) amongst all the alternative setsM1, . . . ,Mk using a Gibbs-
Boltzmann distribution:

P t(M) = eQ
t(M)/τ/

∑
i

eQ
t(Mi)/τ

where τ is a ‘learning temperature’ to balance the exploitation and
the exploration of possible models. To merge this reinforcement
learning mechanism with preferences, a possibility is to modify the
choice mechanism: instead of ’sharply’ adopting the answer set
with highest probability, the most preferred among the best rated
ones can be selected.

3. CONCLUDING REMARKS
In future work, other event aggregation and recognition patterns

might be introduced. The approach might be extended to the defi-
nition of complex actions, and to the choice among possible action
patterns. Learning mechanisms might be refined based on exper-
imentations. We also intend to introduce ‘deeper’ forms of learn-
ing: Event-Action Modules might be defined in a tentative or em-
bryonic form, then module elements might be learnt via a suitable
training phase, and refined according to agent’s subsequent signifi-
cant experiences. At present there is no full implementation of the
proposed approach, though its most important features have been
implemented or simulated using the DALI language [5, 6]. Imple-
mentation and experiments are an important future objective.

4. ACKNOWLEDGMENTS
Part of this work is supported by the Marie Curie Intra-European

Fellowships PIEF-GA-2012-331472.

5. REFERENCES
[1] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Real-time

complex event recognition and reasoning-a logic
programming approach. Applied Artificial Intelligence,
26(1-2):6–57, 2012.

[2] M. K. Chandy, O. Etzion, and R. von Ammon. 10201
Executive Summary and Manifesto – Event Processing. In
K. M. Chandy, O. Etzion, and R. von Ammon, editors, Event
Processing, number 10201 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2011. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

[3] S. Costantini. Answer set modules for logical agents. In
O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors,
Datalog Reloaded: First International Workshop, Datalog
2010, volume 6702 of LNCS. Springer, 2011. Revised selected
papers.

[4] S. Costantini and G. D. Gasperis. Complex reactivity with
preferences in rule-based agents. In A. Bikakis and A. Giurca,
editors, Research and Applications - 6th Intl. Symp., RuleML
2012, Proceedings, volume 7438 of Lecture Notes in
Computer Science, pages 167–181. Springer, 2012.

[5] S. Costantini and A. Tocchio. A logic programming language
for multi-agent systems. In Logics in Artificial Intelligence,
Proc. of the 8th Europ. Conf.,JELIA 2002, LNAI 2424.
Springer-Verlag, Berlin, 2002.

[6] S. Costantini and A. Tocchio. The DALI logic programming
agent-oriented language. In Logics in Artificial Intelligence,
Proc. of the 9th European Conference, Jelia 2004, LNAI
3229. Springer-Verlag, Berlin, 2004.

[7] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni.
Computational logics and agents: a road map of current
technologies and future trends. Computational Intelligence
Journal, 23(1):61–91, 2007.

[8] M. Gelfond. Answer sets. In Handbook of Knowledge
Representation, chapter 7. Elsevier, 2007.

1504




