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ABSTRACT
This work considers a stateless Q-learning agent in iterated
Prisoner’s Dilemma (PD). We have already given a condition
of PD payoffs and Q-learning parameters that helps stateless
Q-learning agents cooperate with each other [2]. That con-
dition, however, has a restrictive premise. This work relaxes
the premise and shows a new payoff condition for mutual
cooperation. After that, we derive the payoff relations that
will elicit mutual cooperation from the new condition.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems
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1. INTRODUCTION
In this paper, we consider a learning agent that chooses

appropriate actions in a multiagent environment. In partic-
ular, we will discuss what an “independent” reinforcement
learning algorithm can do in a multiagent environment.
Prisoner’s Dilemma (PD) [1] has the property that both

players obtain larger payoffs when they“cooperate”although
the (individually) rational action is to “defect”, and we hu-
mans often “cooperate” with each other. What happens
when two independent stateless reinforcement learners play
iterated PD (IPD)? According to Sandholm and Crites [3],
mutual cooperation did not occur.
However, it is not the case in all IPDs. We have already

given a condition of PD payoffs and Q-learning parameters
that helps stateless Q-learning agents cooperate with each
other [2]. That work shows a condition that the Q-value of
“cooperation”overcomes that of“defection”after one mutual
cooperation occurred by mistakes.
Nevertheless, that condition assumes that the Q-value of

“defection” is minimum at the time the mutual coopera-
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tion occurs. In this paper, we relax the minimum Q-value
premise and show a new condition of PD payoffs where state-
less Q-learning agents can cooperate with each other. After
that, we derive the payoff relations that will elicit mutual
cooperation from the new condition.

2. COOPERATION-ELICITING PAYOFFS
In this section, we introduce a new condition relaxing the

minimum Q-value premise by considering the “Temptation”
payoff of PD. After that, we derive the cooperation-eliciting
payoff relations. Let XY be the action pair when the target
agent chooses X and the opponent chooses Y , while C and
D show“cooperation”and“defection”, respectively. Also, let
the learning rate α and the discount factor γ be constants in
(0, 1), and let Q(C) and Q(D) be the Q-values of C and D,
respectively. The payoffs are shown as T , R, P and S when
the action pair is DC, CC, DD, and CD, respectively. Note
that T > R > P > S in PD.

2.1 Effect of the “Temptation” payoff
Figure 1 shows the movement of Q-values as a schematic

view. In this figure, DC happens at time τ , DD continues
from τ + 1 to τ + l (≡ t), and CC happens at t + 1. Q(D)
becomes highest when T is given by DC. After that, it
decreases by P given by DD. If DD continues infinitely,
Q(D) returns to the limit as supposed in the previous work.
However, if Q(D) does not return to the limit with a paucity
of DDs like in the figure, the previous condition is not valid
because its premise is unsatisfied.

The following is the new condition that makes Q(C) ≥
Q(D) by one mutual cooperation in the case of Figure 1.

Theorem 1. Suppose that Qτ−1(D) = P/(1 − γ),
Qτ−1(C) = S + γP/(1− γ), and, after DC happens at time
τ , DD continues from τ +1 to τ + l (≡ t). Then, when CC
happens at t+ 1, the condition s.t. Qt+1(C) ≥ Qt+1(D) is

αR ≥ P − (1− α)S + α(1− αγ)ζl(T − P )

where ζl = (1− α+ αγ)l.

2.2 Worst case analyses
We know that Q(D) has the maximum value T/(1 − γ)

when continuing DC infinitely, whereas Q(C) is already
minimum in Theorem 1. Then, we can get the following
corollary as the worst case of Theorem 1.
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Figure 1: Movement of Q-values

Corollary 1. Suppose that Qτ (D) = T/(1 − γ),
Qτ (C) = S + γP/(1 − γ), and DD continues from τ + 1
to τ + l (≡ t). When CC happens at t+1, the condition s.t.
Qt+1(C) ≥ Qt+1(D) is

αR ≥ P − (1− α)S +
1− αγ

1− γ
ζl(T − P )

where ζl = (1− α+ αγ)l.

Suppose that both players use ε-greedy action selection
method. Let εs be the target agent’s random action proba-
bility and εo the opponent’s one. The probabilities that af-
fect the number of mutual cooperations are (i) the probabil-
ity that the first CC appears by chance when Q(C) < Q(D)
in both agents (p1), (ii) the probability that the first CC
makes Q(C) ≥ Q(D) in both agents (p2), and (iii) the
probability that the agents take CC when Q(C) > Q(D)
in both agents (p3). We know that p1 = εs/2 × εo/2 and
p3 = (1 − εs/2)(1 − εo/2) from the definition of ε-greedy
action selection method. Let us consider p2 in the following.
From Corollary 1, we can get the condition of l as follows:

l ≥ 1

log(1− α+ αγ)
log

(1− γ)(αR− P + (1− α)S)

(1− αγ)(T − P ) .

Note that it is valid only when αR > P − (1 − α)S. Let
lmin be the right-hand side of this formula. Since l fol-
lows a geometric distribution, the probability that Q(C) ≥
Q(D) after one CC can be derived from the cumulative dis-
tribution function where the interval is not shorter than
m ≡ max{dlmine, 0}, i.e., P (l ≥ m) = P (l > m − 1) =
1− P (l ≤ m− 1) = (1− εs/2)

m(1− εo/2)
m. Note that it is

slightly restrictive because it divides the interval when CD
occurs which does not affect Q(D). Let ms be the interval
m of the target agent and mo that of the opponent; then,
p2 = (1− εs/2)

max{ms,mo}(1− εo/2)
max{ms,mo}.

Next, let us consider the number of mutual cooperation.
There are two directions after the first CC appeared by
chance: (i) CC continues for a while because Q(C) becomes
larger than Q(D) in both agents by the first CC, or (ii) CD,
DC, or DD happens in the next iteration because Q(C) can-
not overcome Q(D) in at least one agent by the first CC.
Once Q(C) ≥ Q(D) in both agents, CC will continue

p3/(1 − p3) times because the number follows a geometric
distribution. Then, ncc, the expected number of mutual
cooperation per iteration when Q(C) < Q(D), becomes

ncc = p1(1− p2) +
p1p2p3
1− p3 .

Table 1: Total numbers and probabilities of mutual
cooperations in the experiment

R #CC Prob. CC
10 10255 0.0114
50 94843 0.1054
90 608490 0.6761
99 660637 0.7340

Finally, let us investigate how ncc changes when the pay-
offs change. When both agents have same ε and m, the
partial derivative of ncc with respect to m is

∂ncc

∂m
=
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It is smaller than 0 when p3 > 1/2, i.e., ε < 2 −
√
2 '

0.5858. It means that more mutual cooperations will oc-
cur as m becomes smaller. Since m ≡ max{dlmine, 0}, let
us see the partial derivative of lmin with respect to each
payoff: ∂lmin/∂T > 0, ∂lmin/∂R < 0, ∂lmin/∂P > 0, and
∂lmin/∂S < 0. It means that T and P should be small while
R and S be large. That is, PD with T ' R � P ' S gives a
relatively large ncc, which means, in such PD games, state-
less Q-learning agents with ε-greedy action selection method
are more likely to cooperate with each other.

3. EXPERIMENT
Let us verify the cooperation-eliciting payoff relations T '

R � P ' S shown in Section 2.2. We used the payoffs
T = 100, P = 1, S = 0, and R was set to 10, 50, 90, and 99,
respectively. The learning rate α = 0.25, the discount factor
γ = 0, and the random action probabilities ε = 0.1. Q was
initialized by random real values between S (= 0) and R.

Table 1 shows the total numbers and probabilities of mu-
tual cooperations for each R. They are of 1000 runs each
of which contains 1000 games but first 100 games in each
run are excluded. When R = 99, it is very surprising that
the probability of mutual cooperation was over 0.7. This R
also satisfies the PD relations and the IPD rule T +S < 2R.
From this result, we should know that the probability of
mutual cooperation in IPD by stateless Q-learning agents
highly depends on the payoff values themselves.

4. CONCLUSION
This work extended the condition in our previous work [2]

to handle the “Temptation”payoff. In particular, we consid-
ered the case that Q(D) does not decrease enough with a
paucity of mutual defections. In the worst case analyses,
we derived ncc, the expected number of mutual cooperation
per iteration, and the payoff relations that will elicit mutual
cooperation while they satisfy PD relations.
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