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ABSTRACT
In real-world applications, the effective integration of learn-
ing and reasoning in a cognitive agent model is a difficult
task. However, such integration may lead to a better under-
standing, use and construction of more realistic multiagent
models. Existing models are either oversimplified or require
too much processing time, which is unsuitable for online
learning and reasoning. In particular, higher-order concepts
and cognitive abilities have many unknown temporal rela-
tions with the data, making it impossible to represent such
relationships by hand. In this paper, we develop and apply a
Neural-Symbolic Cognitive Agent (NSCA) model for online
learning and reasoning that seeks to effectively represent,
learn and reason in complex real-world applications.
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1. ARCHITECTURE
The effective integration of online learning and robust rea-

soning in cognitive agents is a difficult task [8]. High-level
human cognitive behaviour is difficult to model, elicit and
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represent in an automated system. There are many tempo-
ral relations between lower and higher-order aspects of hu-
man cognition, which are often non-deterministic and sub-
jective (i.e. biased by personal experience and other factors
like stress or fatigue). What is known about these rela-
tions is often limited to explicit behaviour (i.e. explain-
able behaviour), and frequently described too vaguely by
domain experts. And in real-world applications, reasoning
and learning with data observed in real-time, containing er-
rors, missing values and inconsistencies, the task is made
ever harder.

In this abstract, we present the architecture and theory of
a Neural-Symbolic Cognitive Agent (NSCA) that is capable
of meta-level learning and reasoning, and can be used for
the modelling of complex and supportive cognitive agents
that interact with humans in dynamic and non-stationary
environments [2, 4]. This is achieved by taking advantage of
neural-symbolic integration [1] to capture the many tempo-
ral relations related to human behaviour by learning from
observation, using a Recurrent Temporal Restricted Boltz-
mann Machine (RTRBM) [7]. This approach enables the
NSCA to encode prior knowledge, reason with this knowl-
edge probabilistically (deduction), infer beliefs about dy-
namic observations (abduction), learn new knowledge from
observations (induction) and extract this knowledge in sym-
bolic rules in the form of temporal logic rules. For ex-
ample, the NSCA can encode a temporal logic rule like
H1 ↔ B1 ∧ •H2 (where • means ’at time t− 1’; everything
else happens at time t) in a RTRBM by mapping the hy-
potheses H to the hidden units, and beliefs B to the visible
units. The temporal relations •H are mapped as recurrent
connections between the hidden units.

When the NSCA observes B1 (i.e. activating the related
visible unit with some probability or real value), it can cal-
culate the probability of H1 by forward propagation of the
probability of B1 and •H2 to the hidden unit representing
H1 in the RTRBM. We refer to this as deduction in the
NSCA. Deduction is similar to Bayesian inference, where for
all hypotheses H the conditional probability P (H|B, •H) is
calculated using the weights in the RTRBM.
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From the posterior probability distribution, the NSCA can
then assume that hypothesis H1 is true, and infer the prob-
abilities of all beliefs and temporal relations (i.e. •H). We
refer to this process as abduction in the NSCA. Via abduc-
tion the NSCA can infer the most likely beliefs B based on
hypothesis H from the conditional probability b = P (B|H).
The differences between the observed and inferred beliefs are
then used by the NSCA to determine the intentions and ac-
tions of the agent.

Finally, the NSCA can learn new relations from observed
beliefs B and •H. We refer to this as induction in NSCA.
Induction can be achieved by using the differences between
observed and inferred beliefs to strengthen or weaken the
correlation between activated hypotheses H and the ob-
served beliefs B. NSCA does so by updating the weights
in the RTRBM using contrastive divergence and backprop-
agation through time as done in [7].

2. THEORY
Based on the theory of penalty logic [6] the NSCA can

extract temporal knowledge from a trained RTRBM in the
form of symbolic rules R obtained directly from the net-
work’s weights W . Where each rule r is related to a hidden
unit for which we infer the probabilities of the associated
beliefs B and •H from the RTRBM, i.e. br = P (B|Hr) and
ht−1
r = P (•H|Hr). If we do this each hidden unit, we can

construct a temporal logic program Ψ using the following
equations (where k is the number of beliefs, m the number
of hypotheses and wir is the weight of the symmetric connec-
tion between the related visible unit vi and hidden unit hr,
and w′lr is the weight of the recurrent connection between
the previous hidden unit activation ht−1

l and hidden unit hr

in the RTRBM).

Ψ = {〈cr : Hr ↔
k∧

i=1

θ(i)r

m∧
l=1

ρ(l)r 〉,∀r ∈ R} (1)

θ(i)r =

 Bi if wir > 0 ∧ br(i) > 0.5
¬Bi if wir < 0 ∧ br(i) > 0.5
∅ otherwise

(2)

ρ(l)r =

 •Hl if w′lr > 0 ∧ ht−1
r (l) > 0.5

•¬Hl if w′lr < 0 ∧ ht−1
r (l) > 0.5

∅ otherwise
(3)

cr = P (Hr|B = br, •H = ht−1
r ) (4)

The literals in θ
(i)
r depend on the weight wir, where a neg-

ative weight wir increases the probability of Hr when the
probability of Bi decreases and thus the probability of ¬Bi

increases. The inverse applies to a positive weight. When
wir is 0 or b(i) < 0.5, belief Bi has no significant influence
on the hypothesis and can be left out. A similar approach

is used to extract the literals in ρ
(l)
r for •Hr. Finally, Eq. 4

shows how we calculate the confidence value cr of rule r, de-
noting the strength or ’penalty’ of the equivalence relation,
as done in [6]. This confidence value is based on the notion
of Bayesian credibility described in [5] and is calculated in
a similar way.

Based on this approach the NSCA can also encode prior
knowledge in the RTRBM. This is effectively done by op-
timizing the joint probability distribution P (Hr = cr, B =
v, •H = ht−1) using the contrastive divergence algorithm
with a high learning rate (assuming non-conflicting clauses).

3. APPLICATIONS
The NSCA has already been applied in various real-world

environments. For example, in automated driver assessment
by learning from observation of driving instructors and real-
time dynamic simulation data (e.g. position and orientation
of vehicles, gear, steering wheel angle, etc.) [2]. And the
recognition and description of human behaviour in video
(e.g. chase, exchange, jump, etc.), where the NSCA also
provided meaningful temporal logic-based descriptions to
explain these behaviours in terms of low-level features of
detected objects [3].

4. CONCLUSIONS AND FUTURE WORK
The neural-symbolic cognitive agent model and architec-

ture presented in this abstract offer a unified model capa-
ble of online learning, reasoning, and dynamic adaptation
in complex real-world applications. The approach allows
agents to learn rules about observed data in complex, data-
intensive real-world scenarios and extract this knowledge for
validation, reporting, maintenance, evolution and feedback.
The approach also allows prior knowledge to be encoded in
the model and deals with uncertainty in real-world data.

In summary, the NSCA provides an integrated model for
learning, knowledge representation and reasoning capable of
producing a realistic computational cognitive agent model.
The NSCA seeks to address the challenge put forward in
[8, 9], and contributes to the development of algorithms and
tools for multiagent learning and adaptation in dynamic and
non-stationary environments.
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