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ABSTRACT
In this work, we propose a novel probabilistic modeling language
PML-MAS to capture the stochastic characteristics of multi-agent
systems (MASs). Moreover, we design a model checking frame-
work for MAS, which is highly extensible. It provides powerful
modeling editor, interactive simulator and automatic verifier for
MASs. In addition, it can support various MAS model languages
via extracting their semantic models and verification algorithms.
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1. MOTIVATION
Multi-agent systems (MASs) are designed for many application-

s where tasks are difficult or inefficient for an individual agent to
perform. However, the existence of multiple autonomous agents in
MASs makes it highly nontrivial to precisely analyze the system
behaviors. In addition, agents may have unreliable or even random
behaviors because of uncertain environments and the potential s-
tochastic dynamics in MASs. For instance, agents in negotiation
may behave randomly according to others’ execution. This kind of
randomization makes MASs analysis even more difficult.

Recently, model checking techniques are widely used in analyz-
ing MASs due to their completeness and automaton. Several mod-
el checker are proposed for modelling and verifying critical prop-
erties of MASs, e.g., MCMAS [4] and MCK [2]. Besides these
stand-alone tools, Hunter et al. [3] propose to use Brahms to model
MASs and apply existing model checkers to fulfill the verification.
These approaches, however, still have some limitations. Specifical-
ly, MCMAS and MCK mainly focus on concurrent systems without
stochastic behaviors, which limits their application in unreliable en-
vironments or agents with random behaviors. The framework in [3]
translates the intermediate representation of Brahms model to other
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model checkers’ input languages, which may be inefficient due to
the additional translation.

In this demonstration paper, we propose a novel probabilistic
modeling language for multi-agent systems (namely PML-MAS),
which aims at modeling MASs with stochastic dynamics. The se-
mantic model of PML-MAS is Probabilistic Automata (PA). PA
supports full nondeterminism combined with probabilistic choices,
therefore randomized behaviors of agents can be analyzed easily.
A variety of properties are supported, such as deadlock checking,
reachability checking and Linear Temporal Logic (LTL) check-
ing. Moreover, instead of just implementing a model checker for
PML-MAS, we design a model checking framework which sepa-
rates modeling, abstraction techniques, semantic representations of
a state space and verification algorithms into four loosely coupled
layers. Therefore the most advanced techniques can be integrated
into this framework with least effort. Semantic models support-
ed by our framework include Labeled Transition Systems (LTS),
Timed Transition Systems (TTS) and PA to cover a wide range of
MAS behaviors and their analysis.

2. PML-MAS
The design of PML-MAS is based on PCSP# language proposed

by Sun et al. [5] while aiming at MASs, therefore PML-MAS com-
bines the expressiveness of PCSP# with the specific characteristics
of MASs. PML-MAS models have two levels: agent level, which
describes the dynamics of the environment and the behaviors of
each agent, and system level, which regulates the composition re-
lation among the components in the agent level.

Each agent in PML-MAS is modeled by a finite set of finite-
domain local variables and its behavior process. The composi-
tional operators supported in the process can easily handle hier-
archical control flows in each agent, meanwhile, scenarios with
stochastic behaviors can be captured. On system level, we have
Sys = A0|| · · · ||An||Environment, which means that the par-
ticipating agents and the environment are executing concurrently.
At each round, every agent fromA0 toAn could pick one action in-
dependently according to their own protocols. When agents finish
their actions, Environment updates its information accordingly.

A simple PML-MAS model is shown in Fig. 1, which is in the
built-in editor of our model checking framework. Line 1-2 define
2 constants Head and Tail. Environment is defined in line 3-7,
which has a variable finish. Line 8-15 are the definition of an agent
A0, and coin is declared as a local variable in A0, which affects
the behaviors of Environment. Vice versa, A0’s behavior is also af-
fected by finish. At each round, as long as finish is not true, A0

executes TossCoin to toss a coin, otherwise it will terminate. The
outcome of tossing should follow the uniform distribution, which
is described by pcase. AfterA0’s execution,Environment could
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Figure 1: Editor of the Model Checker Framework

Figure 2: Simulator of the Model Checker Framework

choose its action accordingly. Lines 17-18 define one desired prop-
erty: what is the probability that the system can reach the goal?
Here goal represents that finish is true.

3. MODEL CHECKING FRAMEWORK
Besides the powerful editor shown in Fig. 1, an interactive sim-

ulator and a verifier are also integrated to our framework. In the
discrete-event simulator, users can interactively and visually simu-
late system behaviors step by step. The state space representing the
above example System can automatically generated by our simu-
lator, as shown in Fig. 2. The transitions are labeled by probabilities
and actions. If the labeling is an action, it indicates the probability
for this transition is 1. τ represents the invisible actions in the sys-
tem, i.e., the variable updates. The defined property can be verified
in the verifier to tell uses what the desired probability is. Detailed
demonstration can be found at [1].

Moreover, our framework has four layers to increase its extensi-
bility: modeling layer, abstraction layer, semantic model layer and
verification layer, as shown in Fig. 3.

Multiple languages are potentially supported in the modeling
layer, each of which is an independent module, therefore users can
choose their familiar languages. PML-MAS has been integrated in
our framework, and other popular languages such as ISPL (model-
ing language of MCMAS) and MCK are our ongoing work.

Various abstraction techniques aim at hiding unnecessary infor-
mation from the models and reducing the size of semantic models.
For instance, symmetry reduction is used to abstract the behaviors
of a system with identical sub-components. According to users’
requirements, different abstractions can be applied.

In the semantic model layer, according to different character-
istic of the system and the operational semantics of modeling lan-
guages, three semantic models are supported. We use explicit mod-
el checking approach so that the explicit state information is stored
in the memory during the verification. LTS are used to represent

Figure 3: Architecture of the Model Checker Framework

the concurrent systems, such as models in MCMAS. TTS repre-
sent systems under timing constraints. Although current modeling
languages do not support timing, further extension is feasible. In
addition, PA is implemented to capture the stochastic behaviors of
languages such as PML-MAS.

In the verification layer, different algorithms are implemented
according to the specific semantic model. For instance, we use
Büchi Automata approach to verify LTL properties in concurrent
systems and apply Rabin Automata approach to do the LTL verifi-
cation in stochastic systems.

Given this layered design, it is convenient for users to imple-
ment model checkers for their own languages. What they need is to
implement the parser from their languages’ syntax to correspond-
ing semantic models; afterwards, they can reuse the existing algo-
rithms to perform the verification. An existing language even can
be extended to support semantic models which it does not before.
Users can also add their own verification algorithms in verification
layer. We remark that MCMAS applies symbolic model checking
while our framework adopts explicit representation of states. In av-
erage, our current implementation processes 10K states per second
(or million states in one hour), indicating that the efficiency of our
framework is competitive. More details can also be found at [1].

4. CONTRIBUTIONS AND FUTURE WORK
The contributions of our work are summarized as follows: 1) We

propose a new modeling language called PML-MAS to describe
the stochastic behavior in MASs; 2) we design a model checking
framework aiming to support different modeling languages, which
is highly extensible. For the future work, we will extend the frame-
work to integrate more modules such as ISPL, MCK and Brahms.
In addition, other attractive properties of MASs will be supported,
such as alternating-time temporal logic and epistemic properties.
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