
Platys: A Framework for Supporting
Context-Aware Personal Agents

(Demonstration)
Pradeep K. Murukannaiah, Ricard Fogues, and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{pmuruka,rlopezf,singh}@ncsu.edu

ABSTRACT
A context-aware personal agent (CPA) adapts to the chang-
ing contexts of its user. Platys is an agent-oriented soft-
ware engineering (AOSE) framework that supports the de-
velopment and execution of CPAs. Specifically, the frame-
work (1) facilitates modeling a CPA via cognitive constructs,
simplifying development, and (2) delegates the concerns of
context elicitation (from end users) and acquisition (from
sensors) to a middleware, enhancing reusability and user
experience as a user employs multiple CPAs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements and Specifi-
cations—Tools

Keywords
Middleware; Context; Personal agent

1. INTRODUCTION
A context-aware personal agent (CPA) relies upon know-

ing its user’s context, loosely referring to the user’s where-
abouts, actions, and interactions. CPAs arise in applica-
tion domains such as healthcare, entertainment, and smart
(physical or virtual) environments . Despite a growing body
of research on context-aware computing [1], there is little
practical support for systematically developing a CPA and
putting it to use.

We describe and demonstrate1 Platys, a framework that
supports both development and execution of CPAs. Platys
treats context as a cognitive construct in par with other cog-
nitive constructs such as agents, and their goals and plans.
Platys facilitates CPA development on the principled foun-
dation of agent-oriented software engineering (AOSE) [2, 3,
5]. Figure 1 shows the major components of the Platys
framework, which supports CPAs as follows.

1Video at http://youtu.be/InwLFfmnCBQ

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Personal Computer

Android Device

Platys Modeler
(Eclipse Plugin) Platys Middleware

(Android Service)
Platys Middleware
(Apache Daemon)

API (Android IDL)

CPA
(Android App)

Context Labels
Elicitor

Sensor Interface

Shared Information Store (Dropbox Sync API)

Context Reasoner
(Weka)

Sensor

Context
Labels

Sensor
Data

Context Model
(Semi-supervised)

Code Generator
(Eclipse GMF)

CPA Specification
(cognitive constructs)

CPA Code
(Android IDL Stubs)

End UserCPA Developer

Figure 1: Platys framework includes a modeling tool
and one or more middleware instances at run time.

Development: Platys modeler assists a developer in mod-
eling a CPA via cognitive constructs and derive a high-
level specification. In doing so, the developer can system-
atically follow an AOSE methodology. From the high-level
specification, the modeler generates context acquisition
code, which can be executed on a target platform.

Execution: Platys middleware provides runtime support
for CPAs. Specifically, it hides from a CPA the nuances
of reasoning about high-level context abstractions from
low-level sensor data. Also, the middleware elicits a sub-
jective context model from an end user and reuses it across
CPAs (governing privacy policies), potentially enhancing
the overall user experience (of employing CPAs).

2. PLATYS MODELER
Platys modeler is a tool for graphical modeling of a CPA.

In addition to primitives such as goals, plans, and dependen-
cies, Platys modeler supports contextual beliefs as a means
of supporting runtime adaption. Specifically, Platys modeler
supports the primitives described by the Xipho methodol-
ogy [3]. Figure 2 shows an example model of Ringer Man-
ager Agent (RMA), a CPA that automatically configures the
ringer mode of a user’s smart phone.
Model validation: Platys modeler validates CPA models.

Specifically, Platys verifies that conflicting goals, and de-

1689

Ringer
Manager

Agent

To be tele-
reachable

To work
uninterrupted

Activity

Notation

Belief

OR

Set as
silent

OR

Set as
vibrate

Proximity to
Phone

Near Far

 Busy Free

Set as
loud

Agent

Goal

Plan

Figure 2: A goal model of the RMA.

(a) Context labeling. (b) Configuring CPA.

Figure 3: Platys middleware screenshots (Android).

composed goals and plans have a basis (contextual beliefs
or resources) for runtime resolution.

Code generation: A valid CPA model can be specified as
a set of contextual capabilities (i.e., a rule of the form
Activity = busy ∧ Proximity = Near → Set as silent in
Figure 2). Platys modeler translates such capabilities into
code executable on a target platform (usually consisting
of callbacks from the middleware).

3. PLATYS MIDDLEWARE
The Platys execution environment consists of (1) CPAs,

relying upon knowing a user’s contextual beliefs (high-level
abstractions), (2) sensors, providing low-level contextual cues,
and (3) Platys middleware, mapping sensor data to contex-
tual beliefs. As shown in Figure 1, there can be multiple
instances for each of these components, distributed across
physical devices. However, there must be an instance of the
middleware on each physical device a user employs. Mobile
devices are ideal for sensing and hosting CPAs as they are
always with a user, whereas computationally intensive com-
ponents such as the context reasoner can be hosted on the
user’s personal computer.

Platys middleware performs the following tasks.
Provides an API for CPAs to query a user’s context at

the desired levels of abstraction (e.g., RMA needs to know
if a user is busy). Instead of periodically polling the mid-
dleware, a CPA registers a callback with middleware, pro-
viding a stub the middleware can execute to invoke the
CPA’s contextual capability (e.g., set as loud). Figure 3b
shows a screenshot from a middleware instance showing a
CPA’s capabilities and desired context abstractions.

Learns to recognize contexts from low-level sensor data.
Platys seeks to learn a user’s contexts in a user-centric
manner (contextual beliefs, e.g., busy and quiet, are in-
herently subjective). The middleware elicits context la-
bels from each end user as shown in Figure 3a. Further,
the middleware employs active learning [4] for eliciting
context labels, requiring a user to label only those con-
texts that the middleware is least confident of predicting
(from historical sensor data and labels) correctly.

4. TECHNOLOGY
Platys modeler is an Eclipse plugin built on the Eclipse

Graphical Modeling Framework (GMF). The plugin contains
a graphical editor and the model validator. A stand alone
Java module is used to auto-generate executable code (stubs
in Android Interface Definition Language).

Platys middleware is implemented for (1) Android devices,
where it runs as a service, and (2) personal computers, where
it runs as an Apache daemon (requires Java; platform in-
dependent). The middleware instances communicate asyn-
chronously via an application-private Dropbox folder (using
Dropbox API), transparent to the user. The middleware
employs GPS, Accelerometer, WiFi and Bluetooth sensors,
and data from user interactions (email, text, and call logs).
The reasoner employs Weka for machine learning. Impor-
tantly, the middleware is privacy preserving in that it does
not require the user to reveal sensor data or context labels
to a third party.

Acknowledgments
We thank the National Science Foundation for partial sup-
port under grant 0910868.

5. REFERENCES
[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,

D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques. Perv.
Mob. Comput., 6(2):161–180, Apr. 2010.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. JAAMAS,
8(3):203–236, May 2004.

[3] P. K. Murukannaiah and M. P. Singh. Xipho:
Extending Tropos to Engineer Context-Aware
Personal Agents. In Proc. AAMAS, 2014.

[4] B. Settles. Active Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan
& Claypool, 2012.

[5] M. Winikoff and L. Padgham. Developing Intelligent
Agent Systems: A Practical Guide. Wiley, Chichester,
UK, 2004.

1690

