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ABSTRACT
Reinforcement learning aims at learning a policy from interactions
with the environment to maximize the long-term reward. In prac-
tice, we commonly expect that the policy can be a nonlinear map-
ping from the state features to the candidate actions, and thus has
the ability to fit complex decision situations. Functional represen-
tation, by which a function is represented as a combination of basis
functions, is a powerful tool for learning non-linear functions, and
has been used in policy learning (e.g., the non-parametric policy
gradient (NPPG) method). Despite the many unique advantages
of functional representation, it has a practical defect that a func-
tional represented policy involves a lot of basis functions, and con-
sequently the policy learning algorithm will be costed a lot of time
in calculating the many constituting basis functions. This defect
will badly hamper the functional representation from being prac-
tically applicable in reinforcement learning tasks, as the complex
policies are to be continually evaluated. In this work, we proposed
the napping mechanism to improve the efficiency of using the func-
tional representation, which periodically simplifies the generated
function by a simple approximation model along with the learn-
ing process. We integrated the napping mechanism into the NPPG
algorithm, and carried out empirical studies. Experiment results
showed that the NPPG with napping can not only drastically im-
prove the training and predicting speed from the original NPPG,
but also improve the performance significantly.
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General Terms
Algorithms
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1. INTRODUCTION
A reinforcement learning agent receives rewards after a sequence

of actions, and aims to learn the best immediate decisions to max-
imize the long-term rewards [28]. Various approaches have been
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developed for reinforcement learning problems, among which pol-
icy learning has shown to be a family of effective methods. A high-
lighted advantage of policy learning methods is the immunity to
the policy degradation problem of value function learning methods
[4], which estimate a value function for state-action pairs and de-
rive the policy by greedily following the action that is associated
with the largest value [6, 31]. Therefore, policy learning has at-
tracted increasing attention and have been successfully applied in
many domains [37, 30, 1], especially in robotics [22, 24, 19].

In policy learning, one of the foremost issues is to determine
the representation of the policy. The linear representation is the
simplest form, which maps the action as a linear combination of
the state features, but is incapable to represent nonlinear mappings,
while in almost all practical situations the nonlinearity is essen-
tial for a good policy. Approaches of learning nonlinear policies
have been investigated, including the methods that shift the feature
space using kernel mapping (e.g. [11]), the methods that employ
parameterized nonlinear models (e.g. [32]), etc. However, it is still
quite tricky to select the kernel function, or a proper parameterized
nonlinear model, and moreover, since the selections are commonly
done ahead of the learning process, it is hard to be improved along
with the learning.

Meanwhile, the functional representation, by which a function is
represented as a combination of basis functions, can represent non-
linear functions quite naturally. It has been applied in supervised
learning and led to the state-of-the-art learning algorithms, includ-
ing the famous AdaBoost [15] algorithm, the Gradient Boosting
[16] algorithm, and many variant boosting algorithms. It has also
been applied in reinforcement learning, e.g. the non-parametric
policy gradients (NPPG) [18] method. Using the functional rep-
resentation in reinforcement learning can have many unique ad-
vantages: functional representation can be quite powerful in repre-
senting nonlinear functions, thus avoids approximating a nonlinear
optimal policy by a linear representation [29]; with a flexible base
learner, functional gradient method adaptively generates a nonlin-
ear policy, thus alleviates the difficulty of feature engineering or pa-
rameterized model selection; moreover, well-established machine
learning approaches are readily useable to induce the basis func-
tions, thus a strong generalization performance can be expected.

These advantages, however, come with a practical defect that
learning a functional represented policy involves training and accu-
mulating a lot of basis functions, all of which have to be invoked
in every calculation of the policy output. Since the policy has to be
repeatedly evaluated during both training and prediction stages of
the reinforcement learning, learning functional representation pol-
icy suffers from a very large time cost for calculating every consti-
tuting basis functions, which hampers its applications in real-world
reinforcement learning tasks. Moreover, in ensemble learning liter-
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atures, it has been proven that using too many models degrades the
generalization ability [15, 20, 40]. We conjecture this is also true
for our situation.

In this work, we propose a napping mechanism to reduce the
time cost of using functional represented policy in reinforcement
learning. The idea is to replace the learned function by a simple ap-
proximation function periodically along with the learning process.
For a given policy formed by a set of models, an approximation
model is obtained by mimicking the input-output behavior of the
policy. To achieve this goal, two questions need to be addressed,
i.e., how to do the mimicking and what kind of behaviors should
the model mimic.

To the first question, we employ the point-wise approximation,
which have been shown doable in decision-rule extraction litera-
tures [13, 39, 34]. The behavior of the policy is exposed by ob-
serving its behavior on a collection of probing instances. A model
is then trained on the probing instances with the observed behav-
ior. As for the source of the probing instances, collecting fresh
instance by sampling the policy would bring a high sampling and
time cost, while keeping the historical instances would cost a large
storage problem. Thus we propose to apply the reservoir sampling
method [35] to keep only a small amount of historical instances. To
the second problem, we investigate two approaches, mimicking the
state-action value function and mimicking the final actions directly.

We implement the napping in the NPPG algorithm [18], which
is a policy gradient approach in functional policy space, and con-
duct empirical studies on three domains to verify the effectiveness
and efficiency of the napping mechanism. The experiment results
confirm that NPPG with napping has a much smaller training and
predicting time cost. Moreover, it is surprisingly observed that the
napping that mimics the actions but not the state-action value func-
tion leads to a superior performance to the original NPPG algo-
rithm.

The rest of this paper starts with an introduction of the back-
ground. Then the proposed approach is presented, which is fol-
lowed by the empirical studies. The paper ends with a section of
discussion and conclusion.

2. BACKGROUND
The reinforcement learning (RL) tasks are commonly studied

based on the formal Markov decision process (MDP). An MDP
is defined by the tuple (S,A, P,R), where S is the space of states,
A is the space of actions, P (sj |si, a) is the transition probability
denoting the probability of transitioning from state i to state j un-
der action a, and R(s, a) returns the immediate reward for the pair
(s, a). An agent acts in such environment from an initial state fol-
lowing cycles of observing the state, making its decision that leads
it to another state and receives an immediate reward. The core of
an agent is its decision-making strategy, i.e., the policy. A policy is
usually defined as π(s, a) : S × A → R, which outputs the prob-
ability of choosing the action a under the state s. The goal of the
agent is to learn a policy to maximize its total reward, through in-
teracting with the environment in which the agent can only observe
sampling outcomes of the transition probability P and the reward
function R without explicitly awareness of their formulation.

One traditional branch of RL are value function based approaches,
which aim to learn a value function of states or state-action pairs
that approximates the Bellman optimality [5]. With a learned value
function, the policy is simply formed by greedily choosing the ac-
tion which leads to the highest value among all available actions.
Such methods include Q-Learning [36] and SARSA [26] for finite
state problems, and function approximation methods for continu-
ous state problems [3, 27, 10, 14]. A limitation of the value func-

tion based approaches is that a better approximated value function
does not necessarily lead to a better policy, which is described as
the policy degradation problem [4].

2.1 Policy Gradient
A later developed branch are policy gradient approaches, which

directly optimize a parameterized control policy to maximize the
expected total reward of the policy in a fixed policy class via gra-
dient ascent method [23]. Policy gradient approaches share many
advantages, such as they avoid the policy degradation problem in
value function based approaches, allow domain knowledge guided
policy parameter customization, and can naturally handle large con-
tinuous state space and action space.

We take finite state and action spaces for example. In policy
gradient approaches, the Gibbs policy is usually employed [30, 2]

πθ(s, a) =
eΨ(s,a)∑

b∈A
eΨ(s,b)

, (1)

where Ψ(s, a) is the potential function that is often represented in
a linear form Ψ(s, a) = θTφ(s, a) with θ the parameters of πθ and
φ(s, a) the feature extraction function. In most cases, φ needs to
be designed carefully by domain experts and is one of the keys to
the success of policy gradient methods.

The goal of policy gradient methods is to maximize the per step
long-term total expected reward of a policy πθ , i.e., maximizing

ρ(πθ) = lim
T→∞

1

T
E{r1 + . . .+ rT |πθ}.

The gradient of ρ(πθ) with respect to the parameters θ can be de-
rived as [30]

∂ρ

∂θ
=

∑
s∈S

dπθ (s)
∑
a∈A

∂πθ(s, a)

∂θ
Qπθ (s, a), (2)

where Qπθ is the state-action value function and dπθ (s) is proba-
bility of s in the stationary distribution following policy πθ . The
environment is commonly assumed to be ergodic so that the sta-
tionary distribution exists and independent of the initial state.

Starting from a random initialization of θ0, the parameter vector
θ is optimized following the canonical gradient ascent method. At
the t-th iteration, the current obtained policy πθt−1 is applied to
explore the environment and the episode’s data {(s, a)i}ni=1 are
collected to calculate the gradient

∇θt =
∑
s∈S′

∑
a∈A

∂πθt−1(s, a)

∂θ
Q
πθt−1 (s, a). (3)

Here S′ is the set of collected states from episode’s data, so the
probability term is taken away since the sum of states from S′ nat-
urally induces such distribution. Then the policy parameter vector
is updated as θt = θt−1 +ηt∇θt,where ηt is the step size. Usually
the Qπ is also unknown, and can be estimated by either the Monte
Carlo method as in REINFORCE [37] or the function approxima-
tion method as in [30].

2.2 NPPG
Contrasting to the policy gradient in a parametric policy space,

the NPPG algorithm proposed in [18] searches for an optimal pol-
icy in a functional policy space. In traditional machine learning
field, functional gradient approaches, i.e., boosting algorithms [15,
16, 12], which employ well-established learning techniques to train
base leaner and produce adaptively nonlinear model alleviating the
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difficult feature engineering problem, have been shown to be ex-
tremely powerful. Policy gradient in function space, as a combina-
tion of policy gradient and functional gradient, inherits both of their
advantages, i.e., powerful and less feature engineering dependent.

NPPG employs the same form of Eq.(1) but uses a non-parametric
potential function Ψ. Starting from a constant function Ψ0 that in
fact induces a random policy, Ψ is updated by functional gradient.
At the t-th iteration, the current policy is applied to perform the
task and collect episode’s data to estimate the functional gradient

∂ρ

∂Ψ
(·) =

∑
s∈S

dπ(s)
∑
a∈A

∂π(s, a)

∂Ψ
(·)Qπ(s, a)︸ ︷︷ ︸

ft(s,a)

, (4)

where ∂π(s,a)
∂Ψ

(·) = π(s, a)(1− π(s, a)) for the input (s, a). Note
that the functional gradient itself is also a function. A regression
model ht is then trained to approximate the functional gradient on
the collected data {(s, a, ft(s, a))i}ni=1 treating (s, a) as the input
and ft(s, a) as the target variable. The potential function is up-
dated as Ψt = Ψt−1 + ηtht. After T iterations, we obtain the final
potential function ΨT = Ψ0+

∑T
t=1 ηtht, and thus the final policy

as

πT (s, a) =
eΨ0(s,a)+

∑T
t=1 ηtht(s,a)∑

b

eΨ0(s,b)+
∑T
t=1 ηtht(s,b)

(5)

Despite many advantages of using the functional representation,
it is obvious that NPPG trains and combines T models into the
policy as can be observed in Eq.(5), which resultsO(T |A|) evalua-
tions every time a policy decision is calculated, therefore it is quite
time consuming. Moreover, in ensemble learning literatures, it has
been proven that using too many models degrades the generaliza-
tion ability [15, 20, 40], which may also be true in our situation.

3. NAPPING MECHANISM
Our idea of reducing the training and predicting time of an agent

with functional represented policy is to, instead of sleeplessly train-
ing and combining more models into the potential function as in
the original NPPG method, let the agent take a nap periodically.
During each nap, the agent trains a simple model to approximate
the complex potential function accumulated so far. After that, the
agent resumes the policy gradient procedure.

This idea is implemented in Algorithm 1. It is almost the same
as the original NPPG method except the lines from 7 to 11. The
ε-greedy strategy is applied here for exploration, i.e., with a proba-
bility of ε, a random action is chosen, and with the rest probability,
a deterministic action of πt−1 is chosen, as in line 3. Once the num-
ber of models exceeds a pre-defined number nap, the agent takes a
nap, which consists of three steps. Firstly we sample a collection of
probing instances in line 8 (step (a)). Then an approximation model
is built by mimicking the output of the potential function Ψt on the
probing instances (step (b)), where ` is some loss function defining
the quality of the mimicking. Finally, f is used to replace the orig-
inal potential function (step (c)), where a transformation of f may
be needed. By such napping strategy, we can keep the potential
function to involve a constant number of models, thus accelerate
the calculation of the policy.

It’s important to note that the napping mechanism does not ar-
bitrarily simplify the policy, but aims at reducing the unnecessary
complexity of the potential function. There are at least two reasons
why there can be an unnecessary complexity. First, it has been well
recognized by the multiple classifier systems community that too
many models will degrade the performance. Second, the NPPG

Algorithm 1 NPPG with Napping
Input:

T : Number of iterations
ε: Probability for ε-greedy
nap: Napping interval
{ηt}Tt=1: Step lengths

Output:
π: The learned policy

1: Ψ0(s, a) = 1, ∀(s, a) ∈ S ×A
2: for t = 1 to T do
3: Collect episodes Et by following πt−1 where

πt−1 = eΨt−1(s,a)/
∑
b e

Ψt−1(s,b)

with ε-greedy
4: Generate functional gradient examples Dt from Et

as {(s, a, ∂πt−1

∂Φ
(s, a)Qπt−1(s, a))i}ni=1

5: Train a regression model ht from Dt
6: Ψt = Ψt−1 + ηtht
7: if t mod nap = 0 then {take a nap}
8: (a) Let Dp be a collection of probing instances
9: (b) Train an approximation model f by

f = argming
∑

x∈Dp `(Ψt(x), g(x))

10: (c) Replace Ψt with a proper form of f
11: end if
12: end for
13: return π = eΨT (s,a)/

∑
b e

ΨT (s,b)

method improves the combined models progressively, thus the im-
portance of the beginning models fade out at later iterations, which
makes the combined model has some redundancy that can be re-
moved.

In the following three subsections, we will discuss on how to
implement these three steps in detail.

3.1 Collecting Probing Instances
Ideally, the probing instances are the state-action pairs sampled

from the stationary distribution of the current policy. However,
when the napping starts, we do not have any instance drawn from
that distribution. Sampling fresh instances by executing the current
policy is of a large extra cost. Therefore, we turn to use some his-
torically visited instances as a rough alternate. Nevertheless, it is
also costly to store every historical instance for drawing a sample.
We then employ the reservoir sampling [35] to perform an online-
sampling from all visited state-action pairs.

Reservoir sampling, summarized in Algorithm 2, is a random-
ized algorithm for sampling K examples from a streaming data
set with unknown size. For sampling K instances, it only needs a
buffer of size K. It accepts all instances as long as the buffer is not
full, and otherwise accepts the i-th instance with probability K/i
and the accepted instance then randomly replaces an instance in the
buffer.

Algorithm 2 runs as a daemon thread that watches the agent.
Once an instance of state-action pair is observed, it goes through its
procedure to determine if the instance should be stored. Whenever
it is asked to output a collection of sampled instances, it simply
returns its current buffer.

3.2 Training an Approximation Model
To build an approximation model of a potential function Ψ, our

first idea is to train a model by mimicking the value output of Ψ
over the state-action pairs in the probing instances. The mimicking
is done by minimizing the least square error in Eq.(6). One can
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Algorithm 2 Reservoir Sampling
Input:

K: Number of examples to sample
Output:

Dp: The buffer
1: Let Dp be an empty multi-set
2: i = 1
3: for every observed state-action pair x do
4: if |Dp| < K then
5: Put x into Dp
6: else if toss a coin with head-up probability K

i
, and gets a

head then
7: Choose q from {1, . . . ,K} randomly
8: Let Dp(q) be replaced by x
9: end if

10: i = i+ 1
11: end for

employ any state-of-the-art regression algorithm for this task. The
learned model is denoted as fv .

fv = argmin
f

∑
(s,a)∈Dp

(Ψt(s, a)− f(s, a))2 (6)

Similar idea of mimicking the state-action value function is widely
used in reinforcement learning for function approximation. It has
been disclosed that this could lead to the policy degradation prob-
lem, since the regression algorithm only focuses on reducing the
least square error but ignores the order among actions. A model
with a smaller least square error may however have a worse disor-
der among actions.

Therefore, our second idea is to directly mimic the action output
implied by Ψ. This idea can be formulated as a weighted classifi-
cation problem as in Eq.(7), where we only use the state s but not
the action in the probing instances. The learned model is denoted
as fa, which inputs a state and outputs an action.

fa = argmin
f

∑
s∈Dp

∑
a∈A

πt(s, a)I(f(s) 6= a), (7)

where π(s, a) is the probability value of the policy derived from Ψ,
and I is the indicator function that returns 1 if its inner expression
is true and 0 otherwise.

In order to train a classifier according to Eq.7, one needs to fur-
ther construct a training data set from the probing instances by
replicating the one state |A| times each associated with a label as
the action and weight as the probability derived from Ψ. We thus
choose a more efficient formulation as in Eq.8, where only the op-
timal action needs to be considered.

fa = argmin
f

∑
s∈Dp

I(f(s) 6= argmax
a

Ψt(s, a)). (8)

By the new formulation, we only need a training data set that is of
the same size as the probing instances.

3.3 Replacing the Potential Function
After obtaining the approximation model, it will be used to re-

place the potential function. Then the future policy gradient ascent
step will continue on the base of the approximation model. It is
possible that the approximation model output a value that is not in
the same scale as the original potential function. This is particu-
lar true for the mimicking target is the policy action instead of the
state-action value function.

(a) Mountain Car (b) Acrobot

Figure 1: Illustrations of the Mountain Car and Acrobot do-
mains

Noticing that even for the classification model fa, there are easy
ways to output its internal preference of choosing an arbitrary ac-
tion. We thus denote p(a | s, f) as the probability or normalized
preference of choosing action a by the model f , and we then re-
place the potential function by the value of the probability/preference
multiplied by a constant C, i.e.,

Ψt(s, a) = C · p(a | s, f), (9)

where the constant is used to keep the new potential function out-
puts in a similar scale with the original potential function.

When the napping ends with the potential function replaced by
either fv or fa, the number of models is reduced from O(t) to
O(1). The following training and predicting invoke less calcula-
tions of models, thus can be much faster than the original method.

4. EXPERIMENTS
We empirically verify the napping mechanism by investigating

three questions sequentially:

1. On efficiency: does the napping mechanism effectively re-
duce the time cost of the original NPPG?

2. On efficacy: does the napping mechanism affect the conver-
gence performance of the original NPPG?

3. How do the parameters, i.e., the napping interval nap as well
as the sampling size K, effect the performance?

4.1 Domains
The experiments are conducted on three well known continuous

domains, Corridor World [18], Mountain Car and Acrobot [28]. For
all the three domains, the agent starts from an random initial state
and receives a reward 0 after reaching the goal and -1 otherwise.

4.1.1 Corridor World
For this domain we consider to navigate an agent from any ran-

dom position x0 ∈ [4, 6] in a one dimensional corridor [0, 10] to
one of the exists at both ends (0 and 10). At each time, the agent can
go either left (a = −1) or right (a=1), added by an gaussian noise
with 0 mean and variance of σ, i.e., xt = xt−1 +a ·L+N (0, σ2).
In our setting, L and σ are both set to 0.2

4.1.2 Mountain Car
In Mountain Car task, an under-powered car must drive up a

steep hill as show in Figure 1 (a). The states of the agent are two
continuous variables, the horizontal position x and the velocity ẋ,
which are restricted to the ranges [−1.2, 0.6] and [−0.07, 0.07] re-
spectively. At each time, the agent needs to select one of three
actions: driving left (a = −1), driving right (a = 1) and not to
use the engine at all (a = 0). The velocity is updated by ẋt =
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Figure 2: Comparisons of total training time.

ẋt−1 + 0.001a− 0.0025 cos(3xt−1), where the last term is due to
the effect of gravity. The position is then added by ẋt. The goal of
the agent is to reach the right mountain top, i.e., x > 0.5.

4.1.3 Acrobot
Acrobot is a two-link, underactuated robot roughly analogous to

a gymnast swinging on a high bar (Figure 1 (b)). The first joint
cannot exert torque, but the second joint can. The system has four
continuous state variables: two joint positions θ1, θ2 and two joint
velocities θ̇1, θ̇2 and three actions correspond to torque to the joint
between the first and second link of −1, 0, 1 respectively. The de-
tail of the dynamics can be found in [28]. The goal of the agent is
to let the tip above the goal line.

4.2 Experiment Configurations
There are only two parameters in the NPPG method, the step

size ηt and the ε-greedy probability. For all the experiments, ε
is 0.1 and ηt = α/

√
t. α are 0.1, 0.1, 0.008 for the three do-

mains respectively. We find that the performance of our napping
method is not very sensitive to C and a simple setting (C=1) is good
enough for almost all cases except that a smaller value (C = 0.05)
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Figure 3: Comparisons of prediction time.

is more proper for the napping method with action mimicking ap-
proximation on the Corridor World domain. We utilize the later
parts of every trajectory as an approximation of the stationary dis-
tribution. The regression learner employed in the NPPG method as
well as in our napping method with state-action value mimicking
approximation is a bagging [7] with 10 regression decision trees
[9]. The classifier used in our napping method with action mim-
icking approximation is a random forest [8] with 10 random trees.
We use the implementation of above models in WEKA [38] in our
experiments. The codes of our implementation can be found from
http://cs.nju.edu.cn/yuy.

We denote the policy learned by original NPPG method, the
napping version with approximation by mimicking the state-action
value, and the napping version with approximation by mimicking
the action as π, πv and πa respectively. We apply the three method
on the above three domains for 100 iterations. For the Corridor
World, 10 episodes are collected each iteration, while for the rest
two the number is 20. We test the policies obtained at each it-
erations on 500 trials, and the test is independent of the training
process.
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Figure 4: Averaged reward of the π, πv and πa at each iteration

4.3 Results
To answer the first question, we compare the total training time

as well as the prediction time of π, πv and πa in Figure 2 and
Figure 3, respectively. The napping policies are all with a nap-
ping interval 10 and sufficient sampling examples (K = 5000)
for approximation. Figure 2 shows the accumulated training time
for each iteration of the three policies on the three domains. It is
clear that, even with an extra time for model approximation every
10 iterations, the napping policies use much less time for training
than the original policy. Figure 3 (b) shows prediction time of the
policies obtained at each iteration on 500 trials of task. It can be
observed that, the prediction time of napping policies are limited
to some constant even with more iterations as expected, since the
complexity of the policy drops after every napping, while that of
the original one grows with a near-linear trend.

To answer the second question, we show the averaged reward of
the π, πv and πa at each iteration in Figure 4. It is can be shown
that, after every nap, the performance of πv degrades significantly,
and then grows at a faster rate than that of π at the same point. For
the Corridor World, πv gets comparable performance with π; while

for the other two domains, its performance become unstable, i.e.,
the performance degradation caused by approximation cannot get
enough compensations brought by faster growing rate later, so the
overall performance of πv is below π. At the same time, the poli-
cies napped by action-mimicking based approximation keep com-
petitive performances for all the domains, and with the increasing
number of iterations, πa even outperforms the original policy π.
An interesting result is that, different from πv , πa never degrades
the performance when the nap happens. Moreover, it even always
gets a small improvement after every nap for Acrobot problem. It’s
worth noting that, for πa at the 100th iteration which is represented
by a single random forest with 10 trees (it takes a nap at every 10 it-
eration), outperforms the original π with 100 Baggings of 10 trees.
We also test the performance in a stochastic version of the Moun-
tain Car domain, as suggested by a reviewer, where the velocity is
updated by ẋt = ẋt−1 + 0.001(a+ ε)− 0.0025 cos(3xt−1) with
ε being the noise signal uniformly sampled from [−0.05, 0.05]. In
the stochastic environment, the absolute performance of all policies
are higher than in the deterministic environment, while the relative
performance among the policies keeps just similar: the curve of πa
is above that of π, the curve of πa is below that of π, while the
performance of πa drops after every nap.

These results show that, napping with action-mimicking based
approximation is better and more robust than that of mimicking
state-action value. To further understand this phenomenon, we test
the two approximated models for their disagreement with the orig-
inal policy. For the comparison, we use two state-of-the-art regres-
sion methods, i.e., bagging with regression tree (BRT) and Gradi-
ent Boosting, and three stat-of-the-art classification methods, i.e.,
C4.5, random forest (RF) and AdaBoost to guarantee that the result
will not be biased by the power of different learning models. The
disagreement is defined as the averaged difference of actions se-
lected by approximated models and the original policy on another
set of independent instance, which in fact is equivalent to the clas-
sification error of the approximated models on a test data labeled
by original policy. The Mean Disagreement Error (MDE) of all
the models are shown in Table 1. The Relative Mean Square Er-
ror (RMSE) for regression models are also listed in the table. It
can be seen that, even though the regression models do well for the
regression job, i.e., the relative mean square errors are very small,
but the decisions made by the regression model are quite different
from the original policy; on the other hand, the approximation of
mimicking action perform well in keeping consistent with the orig-
inal policy. Moreover, we compare the policies before and after the
napping with the optimal policy for their disagreement on action
selection, for the two approximation approaches. The results are
listed in Table 2. It shows that, compared with the approximation
of mimicking actions, the policy after napping by mimicking val-
ues get higher disagreement not only with the original policy, but
also with the optimal policy.

Finally, we study how the performance changes with different
napping settings, i.e., the napping interval nap as well as the sam-
pling size K. Average reward of policies obtained at 50th/100th
iteration of π, πv and πa with different parameters on Acrobot are
illustrated in Figure 5, similar results are obtain on other domains
and they are omitted due to page limitation. πv always perform
worse than π under any situations, while πa only gets worse per-
formance than π when the sampling size is too small. Besides, πa is
not very sensitive to the napping interval as in Figure 5 (a). Figure
5 (b) shows that, with more examples for approximation, the per-
formance of πa always gets better, but one do not need too many
examples since the policies with 500 examples for approximation
seem to be almost as good as the original policy in this case.
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Table 1: Comparison the approximation quality to the original policy (on Mountain Car)

time

mimic state-action value mimic action

BRT GB C4.5 RF AdaBoost

RMSE MDE RMSE MDE MDE MDE MDE

1st nap 7.0e-11±1.1e-11 0.52±0.02 1.1e-10±3.0e-11 0.60±0.10 0.35±0.02 0.29±0.02 0.30±0.02

3rd nap 3.5e-11±7.3e-12 0.48±0.04 6.9e-11±1.7e-11 0.53±0.05 0.30±0.02 0.23±0.02 0.23±0.02

5th nap 4.1e-11±9.9e-12 0.23±0.02 8.4e-11±1.7e-11 0.33±0.20 0.19±0.02 0.15±0.02 0.15±0.01

7th nap 2.9e-11±6.9e-12 0.43±0.03 5.9e-11±1.5e-11 0.41±0.05 0.15±0.02 0.12±0.02 0.12±0.02

9th nap 3.1e-11±4.7e-12 0.39±0.02 5.6e-11±1.4e-11 0.43±0.10 0.14±0.01 0.11±0.01 0.11±0.01

Table 2: Disagreement with the (near) optimal policy (on Mountain Car).

time

mimic state-action value mimic action

before nap
after nap

before nap
after nap

BRT GB C4.5 RF AdaBoost

1st nap 0.549±0.002 0.579±0.014 0.615±0.017 0.422±0.002 0.381±0.009 0.421±0.003 0.410±0.007

3rd nap 0.681±0.002 0.679±0.020 0.685±0.023 0.273±0.002 0.263±0.003 0.273±0.002 0.273±0.002

5th nap 0.534±0.004 0.726±0.009 0.720±0.023 0.188±0.001 0.184±0.006 0.188±0.001 0.188±0.001

7th nap 0.534±0.003 0.692±0.016 0.658±0.065 0.150±0.001 0.147±0.002 0.149±0.001 0.150±0.001

9th nap 0.635±0.001 0.563±0.024 0.531±0.014 0.100±0.001 0.098±0.002 0.099±0.001 0.100±0.001
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Figure 5: Performance of napping policies with different pa-
rameters on Acrobot

5. CONCLUSION
In this paper, to make the functional representation more prac-

tically usable in reinforcement learning, we proposed the napping
mechanism to reduce its complexity of both time and space. By
this mechanism, a simple function is trained to approximate the
learned function periodically along with the learning process. We

implemented the napping in the NPPG method, which is a policy
gradient approach. We incorporated reservoir sampling in the im-
plementation and studied two ways for the approximation for nap-
ping: mimicking the state-action values and mimicking the policy
actions. Experiments on three well-studied domains verified the
efficiency as well as the efficacy of the napping mechanism. More-
over, we found that the approximation mimicking actions are more
suitable in our cases. The work verified the possibility that we
can keep the policies learned by functional policy gradient meth-
ods with a constant number of complexity, and at the same time
improving the convergence performance. We also noticed that, in
partially observable Markov decision process (POMDP) literatures,
searching an optimal policy in a bounded space can lead to a better
performance [21, 25, 17]. In the future it is interesting to apply
the NPPG with napping approach in POMDP domains. Besides
the least square regression and the classification loss, we will study
more losses for approximation, such as the ranking loss [33] that
could focus on correctly rank the actions for a state.
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