
Novice Programmers’ Faults & Failures in GOAL Programs:
Empirical Observations and Lessons

Michael Winikoff
Department of Information Science

University of Otago
Dunedin, New Zealand

michael.winikoff@otago.ac.nz

ABSTRACT
What are the types of mistakes (“faults”) that novice GOAL pro-
grammers make, and how do they manifest as failures? This ques-
tion is important since it has significant implications to the ongoing
design of GOAL, and other agent-oriented programming languages;
to the ongoing development of tools that support GOAL program-
mers; and to how we teach agent-oriented programming. In this
paper we develop taxonomies for faults and for failures. We then
classify the faults and failures that occur in a collection of programs
by novice GOAL programmers. This provides empirical data which
we use to make recommendations regarding the GOAL language, its
support tools, and how it is taught.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.2.5 [Artificial Intelligence]: Programming
Languages and Software

General Terms
Measurement, Human Factors, Design

Keywords
Agent Oriented Programming, Faults, Failures, Taxonomy, GOAL

1. INTRODUCTION
What are the types of faults that novice programmers create when

using Agent-Oriented Programming Languages (AOPLs) and how
do they manifest as failures? This paper aims to answer this ques-
tion. In doing so, we also address the related question of how do
we classify faults and failures in agent programs? This work is sig-
nificant in that having an understanding of what sorts of faults are
created, and how they manifest as failures, has implications not just
to how we teach agent-oriented programming, but also to how we
design AOPLs and their associated development environments.

In this paper we focus on mistakes made by novice programmers
using the GOAL agent-oriented programming language. Given the
low number of software developers who are familiar with agent-
oriented programming, if agent programming is to gain mainstream
adoption, then we need to consider how to teach agent program-
ming to many programmers who may be experienced in other forms

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of programming, but are still novices in agent programming. In
other words, understanding how to make it easier for programmers
to learn agent-oriented programming could contribute to easing the
adoption of agent-oriented programming. This justifies the focus
on novice programmers. The focus on GOAL is motivated by data
availability. We return to this and consider how our work might
generalise to other AOPLs in the final section of the paper.

Before going further, we need to define some terminology. Fol-
lowing standard usage (e.g. IEEE 610.12-1990) we use the terms
fault and failure. A fault is a mistake in a program made by a pro-
grammer. A fault can result in a failure which is the runtime mani-
festation of the fault. In this paper we focus primarily on faults, but
also on the failures.

It is worth noting that the relationship between faults and failures
is not a simple one-to-one relationship. A single fault may manifest
as multiple failures. Consider a GOAL rule of the form “if C then
insert(φ) and adopt(ψ)”. If the condition C is too weak, then this
may result in incorrect updating of the agent’s beliefs (“insert”)
and the incorrect adoption of goal ψ. This complex relationship
between faults and failures means that we analyse them indepen-
dently.

There has been very little work that has investigated agent-orient-
ed software development empirically, and very little is known about
how AOPLs are used in practice. Indeed, only recently van Riems-
dijk et al. [11] called for more work in this area, arguing that in
addition to using so-called “formulative” approaches in develop-
ing agent languages, the time has come to also adopt an empirical
perspective.

This paper makes a number of contributions: it proposes a tax-
onomy for failures, a taxonomy for faults, provides empirical data
on occurrence of faults and failures in GOAL programs, and, based
on this data, considers implications for debugging tools, language
design, and teaching agent programming to novices.

The remainder of this paper is structured as follows. We briefly
review related work below, and then proceed (Section 2) to intro-
duce GOAL, and the Blocks World for Teams (BW4T) problem.
Our methodology is described in Section 3, and we then proceed
(Section 4) to develop taxonomies for classifying faults and fail-
ures. The results of our analysis are presented in Section 5. We
conclude the paper with a discussion of the implications of our find-
ings, limitations, and future work (Section 6).

There has been surprisingly little work on debugging multi-agent
systems, and even less on empirical investigation of bugs in agent
programs. Earlier work on debugging MAS (e.g. [6]) focussed
on tool support for debugging, rather than on understanding what
faults and failures occur in agent programs. There has been a range
of subsequent work that has looked at tool support for debugging
— see [3] for a discussion of recent work in this area.

301



Considering work that seeks to understand what faults and fail-
ures occur in agent programs, Poutakidis et al. [9] is an early ex-
ample of an empirical investigation of failures in agent programs.
Given that their tool provides debugging support by eavesdropping
on conversations and detecting deviations from the interaction pro-
tocol, their taxonomy, unsurprisingly, is focussed on failures that
are exhibited through incorrect message behaviour (e.g. sending
a message to the wrong recipient, or sending a message multiple
times). They provide brief discussion, for each failure, of the faults
that could give rise to that failure, but do not attempt to give a taxon-
omy of faults. Overall, the paper (which is short) does not provide
details on the methodology, the derivation of the taxonomy, or the
relative frequency with which different failure types occur.

More recent1 is the work of van Riemsdijk et al. [11]. They
considered a collection of GOAL programs written by program-
mers (some novice, some more experienced). However, although
they adopted an empirical approach, their aim and methodology
differ from ours. Whereas we are interested in understanding what
faults and failures occur (which involves testing and debugging pro-
grams), they primarily studied and analysed the (static) program,
looking at programming idioms, and (syntactic) use of different
language features. Their first case study, a dynamic blocks world
problem, involved three programs (two researchers and one pro-
grammer). Their second case study, Unreal Tournament 2004, in-
volved 12 programs, each written by a team of first year students.

Even more recent is the work of Padgham et al. [7]. They as-
sessed the effectiveness of a testing tool by applying it to 13 dif-
ferent student-written implementations of a CLIMA agent compe-
tition scenario (where agents roam a grid world looking for gold),
and to a single implementation of a weather alerting system (devel-
oped by a research assistant). They proposed a taxonomy of faults,
and explored how well their testing tool was able to find faults, and
how many of these turned out to be real faults (as opposed to false
positives). One difference is the aim of the work: they aimed to
assess a testing tool, rather than to shed light on what faults occur.
Another difference is that they consider the relationship between
design and code, and consequently their fault model relates to in-
consistencies between design and code (e.g. the event that triggers
a plan in the code being different from the event that triggers that
plan in the design).

Another area of related work is debugging (non-agent) parallel
programs. However, although MAS can be seen as a special case
of a parallel system, there are significant differences: e.g. parallel
programming usually does not need to deal with a dynamic en-
vironment where things can, and often do, go wrong. Pedersen
and Jones [8] examined what faults novices make when developing
parallel programs. One interesting finding that they made was that
most faults actually concerned sequential code. However, the mi-
nority of faults involving message passing were the ones that were
harder to debug.

2. BACKGROUND
This section briefly introduces the GOAL programming language

and the Blocks World for Teams (BW4T) problem.

2.1 GOAL
This section briefly introduces GOAL (Goal Oriented Agent Lan-

guage); for further details we refer the reader to the existing litera-
ture [1, 2]. A MAS in GOAL is specified with a configuration file
(“.mas2g”) that provides configuration options, and specifies both

1The 2012 journal paper brings together and extends their earlier
work, going back to a 2009 PRIMA paper.

the environment, and the GOAL agents to be started. Each GOAL
agent is written in a file (“.goal”) that may include the following
components. Domain knowledge: these are reasoning rules that
allow the agent to draw conclusions by reasoning from its beliefs.
In the current implementation, these are written in SWI-Prolog.
Initial beliefs and initial goals that are created when the agent
starts up. Action definitions: each action that the agent can per-
form in the environment is defined using pre and post conditions.
Rules: A goal program can include a number of modules contain-
ing rules. In this paper we assume programs have two modules: a
percept processing module (“event”) and a main module.

The behaviour of the agent is specified using rules which are of
the form2 “if condition then action(s)”. Each module (either per-
cept or main) consists of a sequence of these rules. The condition of
each rule is specified over the agent’s beliefs and its goals. For ex-
ample the (hypothetical) rule “if bel(in(Room), color(Block,Color))
, not(goal(deliver(ABlock))) then adopt(deliver(Block))” indicates
that if the agent believes it is in a Room, and that it also believes
that a Block has a certain Color, and doesn’t already have a goal
to deliver a block, then it should adopt a goal to deliver the Block.
Each rule can contain one or more actions. Actions in GOAL are ei-
ther user-defined, or are one of the five built-in actions that insert or
delete beliefs, adopt or drop goals, or send a message. Where a rule
has multiple actions, they are separated by “+” and are performed
in order [2, Section 4.5], and there can be at most one user-defined
action3.

We now turn to the language’s semantics. A rule is applicable
if its condition holds, and is enabled if, additionally, the actions’
preconditions are met. Applicable and enabled rules are options.
The execution cycle consists of the following steps: (1) Clear pre-
vious cycle’s percepts. (2) Update percepts by executing all options
(i.e. enabled rules) in the distinguished event module. (3) Focus
on the main module: compute the options, select one (by default
rules are evaluated in linear order and the first option is selected),
and perform its actions. (4) Update goals by dropping goals that
are believed to hold.

Compared with other cognitive agent programming languages
(e.g. Jason, JACK, Jadex, 2APL), GOAL’s features are fairly typical
(e.g. using beliefs and goals in rules to select a course of action).
However, GOAL does have a number of distinctive features, the
most relevant of which are: (a) The use of rules to process percepts;
(b) The limitation that an action rule can only result in a sequence
of actions, rather than a mixture of actions and subgoals, and that
only a single user-defined action can be included; and (c) The lack
of a trigger in rules. This makes GOAL action rules more general,
in that a rule doesn’t require a particular trigger. However, it also
means that a rule can be applied repeatedly: in, say, Jason a rule
of the form +!goal : context ← planBody can be applied (if the
context is true) to deal with the creation of a goal. However, the
rule will not be applied subsequently unless the goal is re-posted.
By contrast, in GOAL a rule of the form “if goal(goal) then actions”
can be applied repeatedly, as long as goal remains a goal of the
agent. This repeated application means that GOAL programs are
prone to infinite loops: if a rule is applicable, and its actions do not
change the state, then (unless percepts change the agent’s state), the
rule will also be applicable in the next cycle, and the next, etc.

2There is also a form “forall MSC do actions” used in the percept
processing module.
3“The + operator can be used to combine as many actions as needed
into a single, complex action, as long as it respects the require-
ment that at most one user-defined action is included in the list
of actions combined by +.” [2, Section 3.2, emphasis added]

302



2.2 Blocks World for Teams
The programs we examined each implement a solution to “Blocks

World for Teams” (BW4T): a single agent that moves around an
environment with a number of rooms, collecting blocks of var-
ious colours, and delivering them to the “dropzone” in a speci-
fied order (e.g. a red block, then a blue block). The environment
(which runs in a separate process) provides the agent with per-
cepts (e.g. in(Room), color(BlockID, Color), holding(BlockID)),
and four actions (goTo(Location), goToBlock(BlockID), pickUp,
and putDown).

The challenge is to develop an agent that explores the environ-
ment, delivering blocks when it can, and that is also able to deal
with opportunities (e.g. finding itself beside a block that is of the
right colour), without getting “distracted” (e.g. finding itself beside
a block that is not the right colour).

3. METHODOLOGY
In order to shed light on the faults that are present in agent pro-

grams, and the associated failures, we need to consider a collec-
tion of such programs, identify the failures and faults, and classify
them using appropriate taxonomies. We obtained a collection of
55 GOAL programs for the BW4T problem that were written as an
assignment by first year undergraduate students at Delft university.

The students were provided with a skeletal program (which is in-
cluded with the GOAL distribution). The program includes a very
small amount of existing code: domain knowledge rules defining
the predicate room(X) (two lines), an initial belief state(un-
known) (1 line) and the definition of the action goTo(Location)
with pre-condition state(arrived) ; state(collided)
and a true post-condition (3 lines). The skeleton program also con-
tains two rules (2 lines) in the main module that adopt goals to ex-
plore, and go to places; and rules (total 6 lines) in the percept pro-
cessing module that deal with at(Place) and state(State)
percepts. Finally, the program also contains comments that prompt
the student to complete different parts of the program, for instance
the action specification part prompts the student to insert speci-
fications for goToBlock, pickUp and putDown; the domain
knowledge has a comment prompting the student to define a predi-
cate nextColorInSeq(Color), and the main module prompts
the student to “improve the two lines of code above such that the
agent checks the rooms in a more efficient way (not checking the
same room twice)” and to “insert code that lets the agent deliver a
block when it knows about a block that can be delivered. Make use
of the goals: delivered(Pos), in(Room) and atBlock(Block)”.

We then used the following process (see Figure 1).

1. Test: Each program was tested thoroughly to find bugs. Test
adequacy is a potential issue, and so when testing the pro-
grams we used a number of test suites (with over 7300 tests):
the two example scenarios that were used in the original as-
signment, a set of ten randomly generated test cases, and a
generated enumeration of all possible starting configurations
within a limited scope4, which generated 729 starting con-
figurations for scope N = 2 and 6561 for N = 3. We
considered a program to be correct if it managed to deliver
the desired blocks in all runs. However, we did not require
that programs did this efficiently: in some cases programs
also delivered additional, incorrect, blocks, but still delivered
all required blocks, and were therefore considered correct.

4We considered all possible arrangements of N + 1 blocks in the
environment (possible colours drawn from red, blue, green; possi-
ble locations RoomA1-RoomA3) where N blocks had to be deliv-
ered.

1. Test 

Program

2. Debug


Program

3. Re-test


Program

4. Sum.


Changes

5. Classify 


faults & failures

Exclude


Program

Bugs 

found?
More 

bugs?

Yes Yes

No

No

6. Aggregate 

counts

Figure 1: Methodology

If no bugs were found, the (correct) program was excluded
from consideration. Otherwise we continued to the next step.
Of the 55 programs, 4 could not be run at all and were ex-
cluded5, and 10 had no bugs and were also excluded, leaving
41 buggy programs. To give a rough sense of their size, the
51 programs (41 buggy plus 10 with no bugs) ranged from
172 lines (as counted by wc) to 378 lines, with a mean of
225.49 lines and a median of 220 lines.

2. Debug: We fixed the bugs (which was very time consum-
ing!), taking care to consider possible alternative fixes, and
to make as few changes as possible (see below).

3. Re-test: We then re-ran the tests to ensure that we had in fact
fixed the program. If bugs still existed, then we returned to
the previous step.

4. Summarise changes in the program. We compared the orig-
inal and corrected programs (using diff) to identify all dif-
ferences. Each difference between the original and corrected
program is a fault.

5. Classify faults & failures: Each fault in the program, and
associated failure, was classified using the taxonomies pre-
sented in Section 4. In assigning a taxonomy category to
failures we ignored the actual observed behaviour of the pro-
gram, and instead considered the fault in isolation and asked:
“what failure would be exhibited if this fault were the only
fault in the program?”. This was done because the relation-
ship between failures and faults is complex and the actual ob-
served behaviour of a program may be due to a combination
of faults. See Section 4.3 for an example of classification.

6. Aggregate counts: We counted how many programs exhib-
ited faults (resp. failures) in each category of the taxonomy.

In applying this methodology, there were a number of issues that
had to be considered and resolved. Firstly, when debugging pro-
grams (step 2), there are obviously a number of different ways of
fixing a given program. We carefully considered alternative fixes,
and, where there were different options, selected the simpler op-
tion. Where there were multiple possible fixes that were equally
simple we preferred to make changes to the detected source of the
fault, rather than elsewhere in the program (since this is arguably
the likely debugging behaviour), and we considered the place in
the program where an issue was first detected, rather than digging
deeper to find root causes. We were also careful to only make nec-
essary changes (and, if in doubt, only made those changes that were
clearly essential, and then ran additional tests to confirm whether
further changes were needed). For programs that were very close to
being correct (few changes) it turned out to be easy to debug them
5Since the programs weren’t runnable, they would not have been
tested or debugged. We considered these un-tested and un-
debugged programs to not be appropriate for inclusion, since they
were likely to be immature and to contain many bugs.

303



and to identify necessary changes (see Section 4.3 for an example).
On the other hand, for programs that were very buggy, there was
more freedom in how the program could be fixed, and so we ex-
cluded such programs. Specifically, five of the 41 buggy programs
required a large number of changes6 (> 10), and were excluded.
This left 36 programs that were used in our analysis. Most of
the programs considered (75%) required 6 or fewer changes.

An issue that arises when classifying faults (step 5) is that we
cannot reliably ascertain the programmer’s intention. This means
that we cannot distinguish between fault types where the distinction
is based on the programmer’s intentions. We mitigated this issue by
having taxonomies that are fairly “coarse grained”, and avoiding
intention-based categories (see Section 4).

A final issue is how to count multiple instances of the same fault
type (step 6). For example, suppose a given program has two differ-
ent percept processing rules that have conditions that are too strong,
and as a result, fail to deal with (different) percepts. Should we
count this fault type twice, or just once? We resolved this issue by
reporting results in terms of the number of programs that exhib-
ited a particular fault type, or failure type, rather than counting the
number of fault (or failure) types. This means that it didn’t matter
whether a program exhibited the same failure (or fault) type mul-
tiple times: it still counted as one program that had that fault type.
Given that our aim is to assess how likely certain faults are, this ap-
proach makes sense: it tells us, across different students, how many
students create certain fault types.

4. TAXONOMIES
In developing taxonomies for failures and for faults the first ques-

tion to consider is whether we should develop our taxonomies based
solely on the observed failures and faults (“bottom-up”), or whether
we should develop taxonomies “top-down” based on some prin-
ciples, and then extend them based on the observed failures and
faults. We argue for using a top-down approach for two reasons.
Firstly, top-down analysis can suggest possible types of failures or
faults that might be expected to occur, and it is then possible to
detect a situation where a certain fault or failure type can occur in
principle, but in practice is not observed. This sort of finding is of
interest, but is impossible to make with a solely bottom-up taxon-
omy. Secondly, a bottom-up taxonomy has a tendency to be some-
what unstructured and to mix levels of abstraction. For example,
Pedersen and Jones’ [8] (bottom up) taxonomy has 10 categories of
faults including such things as memory-related faults (e.g. pointers,
arrays), faulty hardware, and redefining system keywords.

However, we do not use a pure top-down approach: the tax-
onomies are modified in light of the observed faults and failures.
For example, when classifying faults, we observed faults where “if
then” was used instead of “forall do” in the percept module. We
therefore extended our fault taxonomy with this new specific type
of fault, based on empirical observation. The list of fault types (Fig-
ure 2) includes an indication (“EO”) that flags the types that were
added based on empirical observation.

So, what principles can we use to develop taxonomies? One op-
tion for classifying faults is to consider where they were introduced
in the programming process. However, this does not apply to fail-
ures (which are only exhibited when an implementation is run), and
requires an observational study (such as [5]): given that we only
have the final submitted program, we cannot reliably distinguish
between requirements issues (programmer doesn’t understand re-
quirements), design issues, and implementation issues.

6Where we define a “change” as a single simple syntactic change,
specifically the application of one of the mutation rules of [10].

Another possible basis for developing taxonomies is language
features. Indeed, this appears to be a common approach (e.g. see
Table 1 in Ko & Myers [5]). However, there is considerable vari-
ance in the level of categories in the taxonomy. Some taxonomies
classify bugs based on quite specific language features (e.g. bugs
involving assignment statements vs. bugs involving arrays). Other
taxonomies focus more on higher-level concepts, sometimes quite
broad (e.g. “blunder or botch” [4], described as “. . . I knew what
I ought to do, but I wrote something else that was syntactically
correct—sort of a mental typo”).

We argue that for both taxonomies (faults and failures) it makes
sense to base the taxonomy on the language, but that the two tax-
onomies should be based on different aspects: the fault taxonomy
is based on the syntactic structure and features, whereas the failure
taxonomy is based on the language’s semantics. Recall that a fault
is a mistake that the programmer has made in the program, and a
failure is the runtime manifestation of this fault.

For developing a top-down taxonomy of faults we consider the
syntactical structure and features of the GOAL language. This is
because faults are in the program, and so the language’s structure
and features are, in essence, the possible places where faults can ex-
ist. However, as discussed in the previous section, we want a fairly
high-level taxonomy, in order to make it easy to assign categories
to faults. We therefore begin not with specific language features of
GOAL, but with the top-level structure of a GOAL program.

On the other hand, for developing a top-down taxonomy of fail-
ures, we consider the semantics of the language. Failures are exhib-
ited at runtime, and so it makes sense to classify failures in terms
of the execution of the language, i.e. its semantics.

Note that the location of faults and the resulting type of failure
are expected to correlate. For example, a failure involving percept
processing would usually be the result of a fault in the percept mod-
ule. However, there are situations where this will not be the case.
Real examples: an incorrect action may be selected due to a fault in
the knowledge-base which leads to a condition in a rule being in-
correctly evaluated to false; or an incorrect action may be selected
because the correct action is not applicable (enabled), due to a fault
in the action definition part of the agent.

4.1 Fault Taxonomy
We derive our fault taxonomy by considering first the overall

structure of a GOAL program, and secondly, the detailed syntacti-
cal features of GOAL. Recall (Section 2.1) that a GOAL program
consists of: action definitions (defining the interface between the
MAS and the environment), domain knowledge, initial beliefs and
goals, and percept processing and action selection rules. Note that
we did not consider the configuration file to be a likely source of
faults, since it is simple and fairly standard across projects, and
since any faults in the configuration would prevent the system from
running, and hence be easily detected and quickly fixed.

Considering a list of rules, each of the form “if condition then
action(s)”, what sorts of faults can occur? Obviously, it is possible
for a rule to be missing (case (a) in Figure 2), or for a completely
new (and incorrect) rule to be present (b). It is also possible for the
condition of the rule to be erroneous (c) or for the action(s) of the
rule to be wrong in some way (d). We also observed early on that
the order of rules is a rich source of faults: in the current version
of GOAL rules are considered (by default) in linear order, with the
first enabled rule being selected. This means that if more than one
rule is enabled, then putting the desired one later, may mean that
another earlier (enabled) rule is erroneously selected (f).

Considering the initial beliefs and goals, we define a fault class
for these (n). We do not refine this further. We could have defined

304



Fault Taxonomy Failure Taxonomy
a: missing rule P1: failure to deal with percept
b: additional (wrong) rule P2: other incorrect percept processing
c: condition on rule wrong - specific variants: G1: failure to add goal that should be added

cs: condition too strong (EO) G2: failure to drop goal that should be dropped
cw: condition too weak (EO) G3: adding a goal that shouldn’t be added

d: action(s) of rule wrong (but legal) G4: incorrectly adding a second goal of the same type
e: rule includes two user-defined actions (special case of G3, EO)
f: rule order wrong (EO) G5: dropping a goal that shouldn’t be dropped
g: action definition wrong A1: selecting wrong (user-defined) action
i: using “if then” instead of “forall do” (EO) A2: beliefs not updated correctly when action performed
j: missing action in a rule (special case of “d”, EO) A3: action selected when should be doing nothing
k: fault in domain knowledge (waiting for environment, EO)
n: fault in initial beliefs/goals A4: action interface mismatch (EO)
t: typo (e.g. atblock instead of atBlock) O: other failure not classified above
o: other fault not classified above

Figure 2: Fault Taxonomy (left) and Failure Taxonomy (right). “EO” denotes Empirical Observations.

separate categories for faults in initial goals, and faults in initial
beliefs. However, the programs did not actually use initial goals.

Considering the domain knowledge, we again chose to define a
single broad category for faults involving domain knowledge (k).
We note that the programs did not make extensive use of domain
knowledge rules.

Considering action definitions we also define a single broad fault
class for these (g). Finally, we also define two general types of
faults: typos (t), and an “other” (o) category to cover anything else.
Note that the choice of labels (e.g. “a”) is intended to be somewhat
mnemonic, e.g. using “i” for “using if-then . . . ”, and “n” for faults
with iNitial beliefs/goals.

We subsequently extended the fault taxonomy based on empir-
ical observation (denoted “EO” in Figure 2). Firstly, it turns out
to be useful to distinguish two specific sub-cases of a condition
in a rule being wrong: where a condition is too strong (cs), and
where it is too weak (cw). Another observation was that a num-
ber of programs had rules that were technically illegal, since they
had more than one user-defined action in their action part. How-
ever, the GOAL implementation appears to accept them, but they
do not behave as one might expect. We therefore defined a specific
category for “action part wrong because it has more than one user
defined action” (e), and added a “(but legal)” condition to (d). We
also observed that a specific case of the action(s) in a rule being
wrong is for there to be a missing action (j). Finally, we observed
that using “if then” instead of “forall do” is a possible fault in the
percept module (i).

4.2 Failure Taxonomy
We derive our failure taxonomy by considering the execution cy-

cle (i.e. semantics) of GOAL. Recall that the execution cycle of
GOAL distinguishes between percept processing and applying ac-
tions. This suggests that we distinguish between failures involving
percept processing, and failures involving actions. Furthermore,
GOAL has three types of actions: user-defined (which take place
in the environment), belief update, and goal update. This, together
with the existence of a step in the execution cycle that checks for
achieved goals and drops them, suggests that we should consider
distinguishing between failures that relate to user-defined actions,
those that relate to belief updates, and those that relate to goal
maintenance. We therefore consider three main types of failures:

Percepts, Goals, and Actions (covering both user-defined and be-
lief update actions).

For each of these three top-level aspects (P, G, A) we consider
what possibilities exist for incorrect behaviour. In general one can
fail to do what one should have done (e.g. not deal with a percept,
or fail to drop a goal when it should be dropped), or one can do
something that should not have been done (e.g. dropping a goal
that should have been kept).

Considering percepts, we define two failure types: failure to deal
with a percept (P1), and dealing with a percept incorrectly (P2).
The first (P1) can be seen as a special case of the second where a
percept arrives and does not result in any change.

Considering goals, we could fail to add a goal that should be
added (G1), fail to drop a goal that should be dropped (G2), add
a goal that should not be added (G3), and drop a goal that should
not be dropped (G5). In addition, we observed, when debugging
programs, that a common special case of G3 is adding multiple
instances of a given goal “type” (G4), e.g. having both a goal to be
atBlock(12) and atBlock(14), which results from adding
the second goal when there already is a goal of that type.

Considering action selection, one failure type is selecting the
wrong user-defined action (A1), which includes not having an ac-
tion that can be performed7. Another failure type is updating beliefs
incorrectly when an action is performed (A2), which can be due to
incorrect action definition (post conditions) or to missing/incorrect
belief update actions in the rule. Another failure type is select-
ing an action to perform when we should be doing nothing (A3).
This failure type is only applicable when the environment executes
asynchronously (as it does in BW4T), and therefore there may be
situations where the agent should be doing nothing while waiting
for actions to complete. Finally, another failure type relating to ac-
tions is attempting to perform non-existent actions (A4), e.g. doing
putDown(blockID) instead of putDown).

The fault and failure taxonomies are summarised in Figure 2. In
order to avoid confusion between failure types and fault types we
use lower case letters (“a”, “b”, “c”) to refer to fault types, and
upper case letters (and numbers) to refer to failure types (“P1”,
“P2”).

7We originally intended to distinguish between selecting the wrong
action and not having any action that could be performed. However,
it turned out to be difficult to clearly distinguish these two cases.

305



4.3 Example
We now briefly illustrate the process of debugging and classify-

ing faults and failures for one example program. Space precludes
presenting the full program. One of the programs that we consid-
ered exhibited the following behaviour: . . . goTo(RoomA1), goTo-
Block(44), pickUp, goTo(DropZone), putDown, goTo(RoomA1),
goToBlock(44), goToBlock(44), . . .

Debugging eventually traced the fault down to the following line
of code: “if bel(in(Room), nextColorInSeq(Color), color(Block,
Color), not(holding(_)), pos(Block, Room)) then adopt(atBlock(Bl-
ock))”. The aim of this rule is to adopt the goal to reach an appro-
priately coloured block. The conditions on this rule indicate that
the agent believes it is in a Room, that the next block to be deliv-
ered should be of a given Color, that it believes there exists a Block
with that Color, which is positioned (“pos”) in the current Room,
and that the agent is not holding anything.

However, what was happening was that the agent was adopt-
ing a goal to reach a block that had already been delivered to the
drop zone, and didn’t exist any more. This meant that the action
goToBlock could not succeed, and had no effect, leading to an
infinite loop. The agent program in question already kept track of
which blocks had been delivered using a gone(blockID) belief,
so the simplest fix was to add not(gone(Block)) to the con-
dition of this rule. An alternative fix would have been to modify
another part of the program to delete pos(Block,Room) when
a block is picked up, but this involves another part of the program,
and so is arguably not the natural fix that a (novice) programmer
would consider.

We classify the fault as being a too-weak condition (cw). The
failure is classified as being of type G3, adding a goal that should
not be added.

5. ANALYSIS AND RESULTS
Having presented the taxonomy, we now present the results of

analysing faults and failures in the GOAL student assignments. Re-
call that the overall question we are seeking to answer is “What
are the types of faults that novice GOAL programmers make?”, we
consider both the faults they make and how these manifest (fail-
ures). However, our focus will be primarily on the fault analysis,
since that is what we are most interested in: failures are secondary
(the manifestations of faults).

We followed the methodology discussed in Section 3. Note that
a single program can have multiple failures (or faults) in the same
category, e.g. one particular program might have two faults: a rule
that is in the wrong order (f), manifesting as an incorrect selection
failure (A1), and a rule that has a too-strong condition (cs), also
manifesting as incorrect action selection (A1). This program will
count once under category “f” and once under category “cs”, but,
in the failure aggregation, will only count once (under “A1”).

The remainder of this section presents an analysis of the occur-
rences of faults (5.1), and of failures (5.2). We highlight significant
observations along the way and discuss their implications.

5.1 Faults
The following table shows the number of programs that con-

tained one or more faults of a given type, for each type. For ex-
ample, the entry “a 5” indicates that 5 of the 36 programs had at
least one fault where a rule was missing. The left side of the table
is sorted by category, the right side by the count (highest to lowest).

Fault Count Fault Count
a 5 f 19
b 3 cw 15
c 5 e 9

cw 15 j 8
cs 7 cs 7
d 2 g 6
e 9 a 5
f 19 c 5
g 6 o 3
i 2 b 3
j 8 d 2
k 0(*) i 2
t 2 t 2
o 3 k 0(*)
n 0 n 0

(*) See discussion in text later in this section.

OBSERVATION: Almost all fault types occurred in at least
one program. However, of the 15 different fault types,
only 8 occurred in more than 10% of the 36 programs,
and only 4 types (f, cw, e, j) occurred in more than 20%
of the programs.

The most common fault type was incorrect ordering of
rules (f).

The finding highlights the importance of rule order to program-
ming and debugging GOAL. Implications to debugging tools: per-
haps tools could check for overlap between rule conditions, and
warn of situations where multiple rules are applicable. Implica-
tions to teaching and programming practice: we could recommend
that programs be written in a way that does not depend on rule or-
der (by including additional conditions). Students could also be
instructed to carefully consider the order of rules when program-
ming and debugging.

The next most common fault type had to do with conditions.
Note that if we consider “cw” and “cs” as being special cases of “c”,
then the number of programs that would have a “merged” “c” code
is 20 (7 programs have two of c, cw, cs), which would make “incor-
rect condition of some sort (including too-weak and too-strong)”
the most common fault type (ahead of rule order faults).

Faults with rule conditions were common. Faults where
conditions were too weak (cw) occurred in twice as many
programs as faults where rule conditions were too strong
(cs).

It is worth noting that issues with order are actually related to
issues with conditions: if conditions are written in such a way that
there is only ever a single applicable rule, then the order doesn’t
matter. We further observe that of the 36 programs, 31 had at least
one fault relating to conditions (i.e. in either category “f” or the
merged category “c”), and that 14 of the programs had only faults
that related to conditions. We thus conclude that:

Faults relating to conditions, directly or indirectly via rule
order, are much more common than other fault types.

The next two most common fault types both relate to actions.
The first, which is the third most common fault type, is using GOAL
in a way that is technically illegal, but is accepted by the interpreter.

306



Attempting to use more than one user-defined action in
a rule is not uncommon (“e”, 9 programs)

This is somewhat surprising: we did not expect illegal GOAL
goal programs to be a common type of fault. However, it does
highlight that there is a tendency by (novice) programmers to want
to perform a sequence of actions in response to certain situations.
This is a feature that is common in other AOPLs, but not avail-
able in GOAL. This suggests that GOAL either be extended to deal
with such rules appropriately (making it closer in semantics to other
AOPLs), or that this situation, which technically is not allowed in
GOAL, be detected and the user given an error message, or at least a
warning. The fourth most common fault type (j) is a missing action.

We observed earlier that faults relating to conditions were com-
mon. If we consider faults relating to rules, which encompass both
condition-related faults, and certain action-related faults, then this
covers the vast majority of fault types found.

Faults that were not related to rules were very rare.

There are three types of faults that do not relate to rules (g, n,
k). The most common type involved action definitions (g, 6 pro-
grams). It is worth noting that this may be somewhat high due to
the BW4T environment running as a separate parallel process. This
means that when an action is performed, the correct post-condition
is “true”: the expected effects of the action actually occur later, as a
result of percepts being received from the environment. There were
no programs with initialisation-related faults (n), and only one pro-
gram had a bug in the knowledge-base (k) which led to a problem
in applying rules (specifically goal adoption). However, in fact the
fault was likely a typo: “>” was used instead of “>=”, and so was
classified as a typo (t) rather than a domain knowledge issue (indi-
cated by “0(*)” in the table). The other typo fault was a program
that in one place had atblock instead of atBlock.

Typos very rare: only two cases, and one of these may
have been a conceptual fault (> vs. ≥)

This is an interesting observation: although GOAL is not stati-
cally typed, typos appear to be rare in student debugged programs,
even when those programs still contained bugs.

Finally, there were only three programs that had faults that did
not fit into the taxonomy (i.e. were classified as “other”). One in-
volved using “forall” instead of “if” (i.e. the opposite of class “i”).
Another had issues with variable binding and scope due to nested
rules. The third program had a percept rule that used “at(Block)”
instead of “atBlock(Block)”.

5.2 Failures
We begin by considering the most abstract categories: goals, per-

cepts, and actions. In what aspect of execution were failures man-
ifested? Of the 36 programs, 17 have a fault that manifested in
relation to percept processing (“P”, 47%), 17 have a goal-related
failure (“G”, 47%), and 31 have a failure manifesting in relation to
action selection (“A”, 86%). All of the failures were classifiable us-
ing our taxonomy (i.e. there were no failures classified as “Other”).

More than half of the programs had no failure that man-
ifested in relation to percept processing. More than half
of the programs had no failures relating to goal handling.
The vast majority of programs had failures with selecting
the appropriate action.

Although action-related failures were the most common, it is
worth highlighting that percept-related failures were not uncom-
mon. Therefore, the percept module should not be ignored as a
potential source of failures, which has implications to making sure
that debugging tools support debugging percept processing (we pro-
vide specific suggestions in the next section).

Failure Count Failure Count
P1 12 A1 29
P2 10 P1 12
A1 29 P2 10
A2 10 A2 10
A3 2 G3 7
A4 1 G4 7
G1 5 G1 5
G2 4 G2 4
G4 7 A3 2
G3 7 A4 1
G5 1 G5 1
O 0 O 0

We now briefly consider more specifically the type of failure
(e.g. “A1” vs. “A2”, etc.). There are only two types of percept-
related failures, and they are roughly equally common. Considering
actions, wrong action selection (A1) is the most common form of
failure, but incorrect updating of beliefs (A2) is not uncommon. On
the other hand, interface mismatch (A4) and failing to do nothing
(A3) were rare. Interface mismatch faults (A4) may be somewhat
low because students were provided with an example definition of
the goTo action, and prompted to define the other three actions.
Both cases of failing to wait for the environment (A3) were caused
by the action precondition not including a test for the agent having
finished travelling. Regarding goals, one interesting observations
is that the three most common goal-related failures had to do with
adopting goals (G1, G3, G4), whereas failures relating to dropping
goals were less common (G2, G5). This may be a reflection of
the fact that all goals have to be explicitly adopted, but in some
programs dropping goals is done automatically when the goal is
believed to be achieved.

6. DISCUSSION
We have developed taxonomies for classifying faults and fail-

ures in GOAL programs, and empirically explored the occurrence
of faults and failures in a collection of programs written by novice
GOAL programmers. Our observations have a number of implica-
tions for the ongoing design and development of the GOAL lan-
guage, its support tools, and for how GOAL, and more generally
agent-oriented programming, are taught.

Implications for language design: Firstly, given our observa-
tion that the percept processing module is a significant source of
faults, it may be worth considering providing the programmer with
simpler ways of specifying percept processing. For example, when
a percept is received, the user often needs to have two rules: one
to deal with the case where a belief already exists and needs to be
updated, and another to deal with the situation where there is no ex-
isting belief. One possible extension to the GOAL language might
be an abbreviation that defines that a percept maps to a belief of
the same name, and then an appropriate collection of rules could
be generated to ensure that the beliefs are correctly updated when a
percept is received. Two specific cases are where there should only
be at most one belief at a time (e.g. location of agent), and where
multiple beliefs are possible (e.g. known locations of blocks). For
other AOPLs, a recommendation is to consider (if relevant) how
percept processing is specified.

307



A second implication to language design, which is specific to
GOAL, concerns rules that have more than one user-defined action.
This is technically illegal in GOAL, but the interpreter accepts such
rules. In other AOPLs a rule with actions A1 + A2 is interpreted
as “do A1, and when it has completed, do A2”. However, GOAL
attempts to perform both actions in the same cycle, which typically
does not give the behaviour that the programmer expects. One op-
tion is to extend GOAL with multiple-action rules that would bring
it closer to other AOPLs. Another option is to reject a rule with
more than one user-defined action (or at least give a warning).

Implications for teaching: There are a number of faults that can
be avoided relatively easily by adopting certain good programming
practices such as: (1) Don’t drop goals explicitly using the drop
action, instead, define goals that match beliefs and allow GOAL
to drop them automatically (this avoids issues with dropping goals
incorrectly); (2) Aim to define conditions so that in each given sit-
uation only a single rule is applicable. These recommendations are
also applicable to other AOPLs, since many of them provide an ex-
plicit “drop goal” operation, and use multiple rules with conditions
to select between them.

Implications for tool design: The finding that fault types are
dominated by condition-related faults, including rule order, is ac-
tually a positive one, since it is possible to check rules for over-
lap between their conditions, and provide warnings about situations
where multiple rules apply, prompting the programmer to consider
whether the rule order that they have specified is correct. This ad-
vice is also relevant to other AOPLs that use multiple rules with
conditions. A second implication is that the debugging tool should
provide support for debugging percept processing issues. It would
be desirable to have a way of comparing percepts with belief up-
dates, and perhaps even automatically raise a warning if percepts
don’t result in any belief changes, or, more precisely, if each indi-
vidual percept does not result in some change to the agent’s beliefs
or goals.

Our work does have a number of issues relating to validity, both
internal and external. Regarding internal validity, we only consid-
ered one problem (BW4T) that involves a single, relatively sim-
ple, agent, although we did consider quite a few programs. It is
possible that the patterns of faults and failures are specific to the
BW4T problem. We noted one place (action definitions) where this
is likely the case. We also only looked at bugs in final submissions,
which may mean that easier-to-fix bugs are not present. However,
even if that is the case, this is arguably a good thing, since we are
interested in those bugs that are harder to find and fix.

Regarding external validity, we only considered GOAL programs,
and given that GOAL does differ in some significant ways from
other AOPLs, it is not clear to what extent our findings generalise
to other AOPLs. Clearly some findings (e.g. using more than one
user-defined action) are specific to GOAL. However, other find-
ings, such as the significant number of condition-related faults, or
the importance of rule order, may also apply for other AOPLs.

Considering the taxonomies that we have defined, we expect the
fault and failure taxonomies to require some changes to be appli-
cable with other AOPLs. However, we expect these changes to be
relatively minor, and this expectation is supported by a comparison
of our fault taxonomy with the (independently developed) corre-
sponding taxonomy of Padgham et al. [7].

Our work is complementary to van Riemsdijk et al’s [11] analy-
sis of how GOAL was used. They did not study faults and failures,
but rather, considered programming style, and usage of features
of the language. We note that they had a number of observations
that relate to our findings, and support them. Firstly, they noted
that single instance goals were used (which relates to our failure

type G4). Our finding that failures relating to multiple instances of
a goal type are not uncommon (7 programs) supports the sugges-
tion to provide specific language support for single instance goals.
They also observed the use of “durative” actions, which we have
also highlighted as a source of faults (g).

There is a range of future work that would be worth pursuing,
including looking at more problems, including systems with mul-
tiple agents, looking at other AOPLs, and developing a more fine-
grained taxonomy for condition-related faults. There is also future
work in using these results to improve AOPLs and their support
tools.

7. ACKNOWLEDGMENTS
I would like to thank Koen Hindriks and Maaike Harbers from

Delft University of Technology for providing the programs, and
for answering questions about the BW4T environment implementa-
tion, and about GOAL. I would like to thank Sharmila Savarimuthu
for her analysis of bugs in the context of mutation testing [10],
which provided data that was the basis for this paper’s analysis.

8. REFERENCES
[1] K. V. Hindriks. Programming rational agents in GOAL. In

Multi-Agent Programming: Languages, Tools and
Applications, chapter 4, pages 119–157. Springer, 2009.

[2] K. V. Hindriks. Programming rational agents in GOAL.
Available from http://mmi.tudelft.nl/trac/goal, May 2011.

[3] K. V. Hindriks. Debugging is explaining. In PRIMA 2012:
Principles and Practice of Multi-Agent Systems, pages
31–45. Springer, LNCS 7455, 2012.

[4] D. Knuth. The Errors of TEX. Software—Practice and
Experience, 19(7):607–685, July 1989.

[5] A. J. Ko and B. A. Myers. Development and evaluation of a
model of programming errors. Human-Computer Interaction
Institute Paper 184, http://repository.cmu.edu/hcii/184,
Carnegie Mellon University, 2003.

[6] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis.
Visualising and debugging distributed multi-agent systems.
In Proceedings of the third annual conference on
Autonomous Agents, pages 326–333. ACM, 1999.

[7] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. IEEE Transactions on Software
Engineering, 39(9):1230–1244, 2013.

[8] J. B. Pedersen and M. Jones. Error classifications for parallel
message passing programs: A case study. In International
Conference on Parallel and Distributed Processing
Techniques and Applications, pages 387–394, 2012.

[9] D. Poutakidis, L. Padgham, and M. Winikoff. An exploration
of bugs and debugging in multi-agent systems. In
Proceedings of the 14th International Symposium on
Methodologies for Intelligent Systems (ISMIS), pages
628–632. Springer, LNCS 2871, 2003.

[10] S. Savarimuthu and M. Winikoff. Mutation operators for the
GOAL agent language. In Engineering Multi-Agent Systems
(EMAS) post-proceedings, LNCS, 8245, pages 255–273.
Springer, 2013.

[11] M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. An
empirical study of cognitive agent programs. Multiagent and
Grid Systems, 8(2):187–222, 2012.

308




