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ABSTRACT

In interactive drama, whether for entertainment or train-
ing purposes, there is a need to balance the enforcement
of authorial intent with player autonomy. A promising ap-
proach to this problem is the incorporation of an intelligent
Drama Manager (DM) into the simulated environment. The
DM can intervene in the story as it progresses in order to
(more or less gently) guide the player in an appropriate di-
rection. Framing drama management as the selection of an
optimal probabilistic policy in a Targeted Trajectory Dis-
tribution Markov Decision Process (TTD-MDP) describing
the simulation has been shown to be an effective technique
for drama management with a focus on replayability. One of
the challenges of drama management is providing a means
for the author to express desired story outcomes. In the
case of TTD-MDP-based drama management, this is gener-
ally understood to involve defining a distance measure over
trajectories through the story. While this is a central issue in
the practical deployment of TTD-MDP-based DMs, it has
not been systematically studied to date. In this paper, we
present the results of experiments with distance measures in
this context, as well as lessons learned. This paper’s main
contribution is presenting empirically-founded practical ad-
vice for those wishing to actually deploy drama management
based on TTD-MDPs on how best to construct a similarity
measure over story trajectories. We also validate the effec-
tiveness of the local probabilistic policy optimization tech-
nique used to solve TTD-MDPs in a regular but extremely
large synthetic domain.
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1. INTRODUCTION

In computer-based interactive drama, whether it be for
the purposes of training via simulation or for entertainment,
there is a difficult balance to be struck. On one hand, there
is a desire to give the player/trainee maximum autonomy
within the simulated environment — this is central to en-
gagement and a sense of agency, important in both training
and entertainment settings. However, there is also a need to
enforce some constraints based on authorial intent, so that
the experience is coherent and productive, in terms of pro-
viding a desired set of training experiences or inducing a
dramatic arc with good narrative properties. This tension
between enforcing constraints and allowing player autonomy
has been recognized in the literature [6, 8]. Drama Managers
(DMs) are particularly focused on balancing these compet-
ing desiderata in interactive drama. The idea is to provide
an agent, the DM, with a set of actions (sometimes called in-
terventions) that can be taken in the simulated environment
with the intent of “nudging” the player to take some desired
subsequent actions. These interventions typically take the
form of non-player character (NPC) actions or changes in
the environment itself (e.g. changes in the weather condi-
tions), and may range from extremely subtle (a gentle hint
from a friend) to quite heavy-handed (a rockslide blocks all
passages but one).

The goal is both to avoid obvious “choose your own ad-
venture” settings, where the narrative has a fixed progres-
sion except at predefined branch points, but also to avoid
allowing the story to collapse into meaninglessness — though
it is difficult or impossible to completely preclude the lat-
ter in the case of a player truly determined to derail the
experience. Further, we would like an element of replayabil-
ity, in the sense that, even if a player takes the same set of
actions in two separate sessions with the game/simulation,
the outcomes may be different due to some elements of non-
determinism. These are precisely the criteria addressed by
Targeted Trajectory Distribution Markov Decision Process
(TTD-MDP) -based DMs. TTD-MDPs are concerned with
tragectories through a story (game/simulation), which are
generally defined as sequences of major plot points encoun-
tered from the beginning to the end of one interactive story.
Thus, a story trajectory is an abstract way to describe one
instance of a story created by a player interacting with the
game or simulation. As shown by Bhat, et. al. [2], fram-
ing a drama management problem as a TTD-MDP allows
for the efficient, local computation of a probabilistic policy
over partial story trajectories and DM interventions that,
over time and to the extent possible, will cause the distri-



bution of trajectories through the story to match a desired
distribution over trajectories as specified by the author.

The difficulty then becomes the specification of this dis-
tribution over story trajectories. In any reasonably complex
game, the number of conceivable trajectories is easily mas-
sive enough to preclude a complete enumeration. The idea
proposed in past work on TTD-MDPs [2, 8, 10] is to al-
low the author to specify exemplars of good (and possibly
bad) trajectories. Along with the specification of a param-
eterized distribution type (e.g. mixture of Gaussians) that
can incorporate the exemplars (e.g. as means) and some
way to quantify similarity between story trajectories, this is
sufficient to induce a distribution over the complete space
of trajectories. Past work has focused on making computa-
tion of the probabilistic policy efficient, local and optimal,
but has largely deferred the question of how to select “good”
similarity measures for story trajectories. A good measure
must satisfy at least two criteria: first, it should be seman-
tically correct in terms of capturing story similarity in a
way that makes sense within the specific domain, and sec-
ond, it should satisfy constraints that produce natural and
reasonable results when used in the context of TTD-MDP
probabilistic policy computation. In this work, we begin to
directly address the open question of the characteristics that
make a good similarity measure for use with TTD-MDPs.
We are at this point primarily focused on the second cri-
terion, using a straightforward game with simple rules and
interactions but high dimensionality (large state and action
spaces) to explore and gain insight about story trajectory
similarity measures. In this paper, we present the results of
some of these experiments, as well as lessons learned.

This paper’s main contribution is presenting empirically-
founded practical advice for those wishing to actually deploy
drama management based on TTD-MDPs on how best to
construct a similarity measure over story trajectories. We
also validate the effectiveness of the local probabilistic policy
optimization technique used by TTD-MDPs in a regular but
extremely large synthetic domain. Secondarily, the paper
highlights the need for further research into best practices
for the construction of these similarity measures, from both
a technical and story semantics perspective, necessary work
for TTD-MDPs to be practically deployed that has been
largely deferred until now.

2. TTD-MDPs

Here, we will describe the basic formulation of the TTD-
MDP problem, and direct the reader interested in the de-
tails of the optimal local solution of the probabilistic policy
to Bhat, et. al. [2]. TTD-MDPs are an extension of Markov
Decision Processes (MDPs). An MDP is defined by a tuple
< S, A, P,R >, where S is a set of states, A is a set of actions
that can be taken in those states, P: S x Ax S — [0,1] is
a transition function that describes the probability of tran-
sitioning from one state to another when a particular action
is taken, and R : S — R is a reward function mapping states
to reward values. The goal in an MDP, then, is to compute
an optimal policy, where a policy 7 : S — A indicates an ac-
tion to take in each state. An optimal policy, often denoted
7", guarantees that an agent that behaves as it dictates will
receive the maximum possible long-term expected reward.

The problem with MDPs in the context of interactive
drama is that they do not afford maximum replayability:
because the policies are deterministic, if the player takes

78

the same set of actions in multiple games, the outcomes
will be exactly the same (barring other sources of nondeter-
minism in the environment). As a way to address this con-
cern, TTD-MDPs allow for the specification of a distribution
over story trajectories. Rather than learning a determinis-
tic policy to maximize long term reward, the goal becomes
selecting a probabilistic policy that, over time, is expected
to match the specified distribution of trajectories as closely
as possible. Formally, a TTD-MDP is also defined, relative
to an underlying MDP, by a tuple < T, A, P, P(T) >. Here,
T is the set of all possible (complete and partial) trajecto-
ries of states in the underlying MDP given the dynamics of
the interactive drama. A complete trajectory means that
the game has finished, while a partial trajectory represents
a game in progress. The game is assumed to have finite,
bounded duration, and thus, T is finite, as are all of its el-
ements. A and P are respectively the set of actions and
the transition function from the underlying MDP. P(T) is
the desired, target distribution over complete trajectories.
The solution to a TTD-MDP is a non-deterministic policy
m: T — P(A), yielding a probability distribution P(A) over
actions for each trajectory in T. As is somewhat apparent
based on our definition of TTD-MDPs relative to an un-
derlying MDP, any finite-length discrete-time MDP can be
converted to a TTD-MDP. We will not detail it here, but
previously published work [2] gives a detailed algorithm for
the efficient, local and optimal solution of TTD-MDPs for a
probabilistic policy. Note that, based on the details of the
transition model P, it is not necessarily possible to select
a policy for an arbitrary TTD-MDP that will approach the
target distribution over time. For example, if the target dis-
tribution requires never entering some state s’ from s, but
the transition model has some non-zero probability of enter-
ing s’ for every action one can take in s, then it is impossible
to avoid s’. However, the algorithm of Bhat et. al. [2] does
guarantee a policy that minimizes the global KL-divergence
from the target distribution.

3. DISTANCES IN STORY TRAJECTORY
SPACE

The story trajectories constituting 7" in a TTD-MDP will
form a trajectory tree, with a root that is the start state of
the underlying MDP, and leaves that represent final state(s)
terminating trajectories. For example, consider the 3x3 grid
world depicted in Figure 1. In this world, there are two
possible actions in most states — move up, or move right.
Once the agent, which starts in state (0,0), advances two
spaces either up or right, it can no longer take the action that
would result in it moving off the board. (2,2), in the upper
right-hand corner of the board, is the final state. Figure 1
also depicts T for the TTD-MDP that arises from this grid
world example. Each path from the root, (0,0) to a leaf
node labeled with (2,2) represents a distinct trajectory in
T. In this small example, it is not an onerous burden to
ask that the author simply manually assign probabilities to
each of the six possible trajectories. However, as problem
size grows (in terms of the state and action space of the
underlying MDP), this very quickly becomes intractable due
to exponential growth, as the number of trajectories will be
on the order of d“, where d is the average number of moves
needed to reach a terminal state from the start state, and a
is the average number of actions allowed in each state.
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Figure 1: A simple 3x3 grid world, and the trajectory tree
depicting T, the set of all possible trajectories through that
world, in the associated TTD-MDP.

Thus, for realistic interactive dramas, it will not be possi-
ble to ask the author to enumerate a probability distribution
over all trajectories in T'. Instead, we wish to allow the au-
thor to specify some set of exemplar trajectories which are
considered “good” stories. Then, we build a story trajectory
space based on some distance measure over story trajecto-
ries. Finally, we can induce a distribution over all possible
story trajectories within the space created by the distance
measure by using some probability distribution (often a mix-
ture of Gaussians, with one Gaussian centered on each ex-
emplar), to distribute mass over all complete trajectories.
This distribution of mass over exemplars in the trajectory
space is illustrated in Figure 2. Given this complete dis-
tribution over all trajectories in 1", we can apply the local,
optimal method of Bhat, et. al. to solve for a probabilistic
policy in an online fashion.

4. RELATED RESEARCH

The topic of interactive drama management, first pro-
posed by Laurel [4], has been widely recognized as impor-
tant over the past several years, and as such has been an
active area of research. Roberts & Isbell [9] give a de-
tailed overview of a broad range of different approaches to
drama management, identifying strengths and weaknesses of
each. Their analysis is based on a set of explicitly defined
desideriata that the authors identify for drama managers,
including: speed, coordination between non-player charac-
ters, replayability, authorial control, player autonomy, ease
of authoring, adaptability to a player’s unique traits, af-
fordance for theoretical analysis, subtlety of the DM’s in-
terventions, and measurability of the quality of experiences
produced. TTD-MDPs are particularly focused on replaya-
bility, and the method scores well on most of these criteria,
with the possible noted exceptions of adaptability to player
type and ease of authoring. A mechanism by which to ad-
dress the issue of authorial burden, suggested by the work
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Figure 2: An illustration of the complete distribution over T,
the set of all possible trajectories for an environment much
larger than that of Figure 1, as induced by exemplars within
a story trajectory space, relative to a distance measure and
based on a mixture of Gaussians model.

of Si, Marsella & Pynadath [11], is to allow for authoring by
the specification of examples of “good” stories. In the work
of Si, et al., agent policies are deterministic, and thus the
problem of inducing target distributions from the exemplars
does not arise. In the case of TTD-MDPs, authoring means
specifying a target distribution over story trajectories. As
such, we wish to allow the author to specify exemplars that
represent “good” complete stories, and then use these to in-
duce a target distribution. For this task, the difficulty then
becomes specifying a distance measure over story trajecto-
ries that allows a complete distribution to be inferred from
the exemplars, a nontrivial task in its own right. Work on
applying TTD-MDPs to the problem of designing museum
tours [8] does propose a two-valued distance measure that re-
lies on the Levenshtein (edit) distance between the sequences
of rooms visited in a compared pair of tours and the relative
number of congested rooms visited by the two tours. This
work is of interest in that it chooses a semantically founded
distance measure in a domain that is potentially of practical
interest. However, no study has yet performed a systematic
comparison of different distance measure alternatives in the
context of TTD-MDPs.

The lineage of TTD-MDPs themselves originates in the
formulation of drama management devised by Bates [1].
This formulation was later reconstrued as a search problem
by Weyhrauch [12], and then as a reinforcement learning
problem by Nelson, et. al. [7]. In order to provide for var-
ied experience, TTD-MDPs then shifted from deterministic
to probabilisitic policies. The use of probabilistic policies
has appeared in other research, including Isbell, et. al.’s
Cobot [3] and Littman’s work on Markov games [5].



S. EXPERIMENTS

5.1 Synthetic Domain

We have experimented with a TTD-MDP-based DM in
a synthetic environment called HyperWorld. This environ-
ment is high dimensional — states are described by 10 fea-
tures. An agent, called the “hero”, is controlled by a simu-
lated player, and is expected to move from the origin state
(0,0...0) to the goal state (9,9...9). The hero has 10 actions
available in most states. Specifically, each of the hero’s
actions will increment one of the state features. In states
where some of the features are already at ’'9’, the hero will
have fewer than 10 viable actions as some state dimensions
can no longer be incremented. The DM is able to inter-
vene by making suggestions to the player through an NPC
called the “sage”. These hint-based interventions are not
guaranteed to succeed. We use a synthetic player in these
experiments that, with 98% probability, will move in the
suggested dimension (if possible), and with 2% probability,
will move in the subsequent dimension (again, if possible).
In cases where either the suggested dimension or the sub-
sequent dimension cannot be incremented any further (i.e.
is already ’9’), the remaining dimension will be incremented
by the synthetic player with 100% probability. If both the
suggested dimension and the subsequent dimension are al-
ready at ’9’, the intervention is not viable and nothing will
occur. This domain allows us to obtain readily interpretable
results, while incorporating enough complexity to challenge
the TTD-MDP policy selection algorithm. In these exper-
iments, we provide the DM with an accurate model of the
synthetic player’s probabilistic decision making process, con-
tingent on the various hint-interventions that can be pro-
duced by the DM. In practice, if this model is inaccurate,
approximation of the target distribution will degrade.

5.2 Experimental Setup

The target trajectory distribution was varied in each of
the experimental setups described here, and in each case,
1000 simulations were run to get a sense of the empirically
resulting distribution over trajectories that the DM was able
to achieve. After the baseline experiment, which uses a uni-
form distribution over exemplars, placing zero probability
mass elsewhere (and which does not require the specifica-
tion of a distance function over pairs of trajectories), we test
using a mixture of Gaussians distribution, with three alter-
native distance measures. Here, the Gaussian distributions
are over distances from each exemplar. This means that we
would like the DM to find a policy such that the measured
distances of actual trajectories from our exemplars fall into
a mixture of Gaussians distribution with the specified pa-
rameters. In order to distribute the probability mass of the
Gaussians properly over trajectories with varying distances
from the exemplars, we use a sampled Gaussian kernel. This
approach requires that the distance measures range over in-
teger values. For two of the three measures described here,
this is quite natural. For the other, we specifically address
the issue below. Based on the dynamics of the domain, it
may or may not be possible to match the target distribution
closely. For example, if our hero ignored advice and be-
haved randomly, no amount of cajoling from the DM would
result in an approximation of the desired distribution. With
a more tractable player, we should be able to do better. In
these first three experiments, we fit a single Gaussian to our
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exemplar with a mean of zero (which will likely always be
the case), and a variance of 0.05, giving us a very peaked
distribution around the exemplar.

Our distance measures will only be defined for (partial)
trajectories with equal length. Thus, when working with a
partial trajectory, we will compare against prefixes of the
exemplars with the same length. Allowing distance com-
parisons between prefixes with unequal length is conceiv-
able, but introduces very large complications without ob-
vious benefit in this domain. A key value in computing
these distance measures is the absolute difference, summed
over dimensions (features), between any two corresponding
states in the trajectories. That is, we will compute this
difference between the first states in each of the compared
trajectories, again between the second states in each, and so
on until the last pair of states. If the trajectories contain
"N’ states, we will in this way generate 'N’ difference val-
ues. For the domain used here, each of these differences will
be in the range [0, num_dimensions * (dimension_mazx —
dimension_min)] = [0,90]. We then normalize these dis-
tance scores by dividing by two. This normalization of the
difference is reasonable because any time a “wrong” dimen-
sion is incremented in the actual trajectory, this causes a
cumulative difference of two — one for the wrong dimension
that got incremented, and one for the “right” dimension that
did not get incremented. Dividing out this “double count-
ing” of errors helps to keep a more directly accurate measure
of the difference between individual states. Our distance
measures, then, vary in the way that they combine these in-
dividual normalized differences between corresponding pairs
of states in the compared trajectories to produce a single
distance value.

o total-difference — This measure simply adds each of
the individual normalized differences. Notice that the
maximum value of this measure is dependent upon the
length of the (partial) trajectories compared.

e average-difference — This measure can be computed
by dividing the total-difference measure by the length
of the trajectories being compared. That is, it is the
average of the individual normalized differences. Here,
we may not naturally generate integral values. Because
we always want to prefer less error to more error to the
extent possible given the expressivity of the measure,
we round division up rather than down. This prevents
treating a small error late in a trajectory as equal to
no error, for instance.

e maz-difference — This measure is equal to the max-
imum individual normalized difference between any
corresponding pair of states in the two trajectories.

Note that there is a requirement on the domain that is
imposed by this type of distance measure — it must be pos-
sible to compute a meaningful distance value between all
possible pairs of story states. In many cases, for featurized
state representations, this will mean computing a difference
value for each feature in the state representation, and then
summing these values (possibly with some reweighting) to
compute an overall difference between story states. We be-
lieve that defining a distance over individual story states
will be possible in many domains of practical interest. If
it is not possible for a given domain, some other distance
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Figure 3: Actual story trajectory distribution achieved by
the DM for a single example trajectory, with a uniform tar-
get distribution.

between trajectories (such as counting unit error for each
non-matching state in a trajectory) must be used. However,
notice that such distance measures will be substantially less
informative in terms of the relative similarity of story states,
and thus the capability of the DM to keep the unfolding tra-
jectory “close” to an exemplar will also be more limited.

5.3 Single Exemplar Results

In the first set of experiments, we specify a single de-
sired path — specifically, a path where each ’even’ dimension
(0,2,4,...,8) is incremented, completely and in order, before
the odd dimensions, which are then incremented completely
and in order. We first establish a baseline by using a uni-
form distribution, and then test each of the three distance
measures described above in this setting.

As a baseline, we used a uniform distribution over exem-
plars, which in the case of a single exemplar means that all
probability mass is placed directly on the one specified tra-
jectory. In order to graph results, we need to pick a way
to measure distances between trajectories, even though no
such measure is needed to induce the distribution in this
case. Here, we have chosen the 'max-difference’ measure,
as it is the most compact. Results are shown in Figure 3.
Clearly, the interventions are successful in causing a large
number of actual trajectories followed through the simula-
tion to match the desired trajectory (those with a distance
of zero).

Notice also that once a trajectory deviates from the de-
sired path (due to synthetic player nondeterminism), the
partial trajectory is in a zero probability mass region of the
trajectory space. This means that the DM does not have
any preference over ensuing steps in the deviating trajec-
tory — they are all equally bad in some sense. Thus, there is
no principled guidance from the DM after any point of ran-
dom deviation. Notice that, as expected due to the central
limit theorem, the distances of these deviating trajectories
take a roughly Gaussian distribution. While this behavior
does illustrate some benefits of using the DM to influence
player behavior, it is also somewhat unsatisfying. We would
like the DM to realize that things can always get worse —
even when deviation from a desired trajectory occurs, we
would still like to keep the ensuing trajectory as close as
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Figure 5: Actual distribution achieved for a single example
trajectory, with a Gaussian target distribution, using the
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possible to a nearby target trajectory. In the following three
experiments, we kept the same, single target trajectory, but
instead used a mixture of Gaussians model (here, a single
Gaussian for a single trajectory) along with each of the three
distance measures described above. The intent of using a
mixture of Gaussians is to provide indication to the DM of
preference for trajectories close to the exemplars in the space
induced by the distance measure. In each case, we graph the
distance from the evens-before-odds exemplar according to
the distance measure used to induce the distribution. This
means that the absolute values of the distances graphed are
not directly comparable. However, we are less concerned
with the exact distance values achieved (except, perhaps,
for counting exact matches with the exemplar, which are
comparable across the distance measures), and instead are
mostly concerned with the distribution of trajectories.

Results for these three experiments are shown in Figures
4-6. In Figure 4, we omit 411 trajectories that fell at a
distance of zero from the exemplar, because including them
forces scaling that makes the graph unreadable.
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5.3.1 Analysis

First, a preliminary observation about the reasonableness
of the results. When the hero has freedom to do so, it will
choose to deviate from the sage’s instructions with 2% prob-
ability. If the perfect trajectory is to be followed, the hero
will need to choose to follow the sage’s advice until dimen-
sions 0, 2, 4, 6 and 8 are fully incremented, in order. At
this point, the remainder of the simulation runs in lockstep,
because the hero no longer has an option to deviate from
the sage’s advice. For instance, once dimension 8 is fully
incremented and the sage advises the hero to advance along
dimension 1, there is no opportunity for the hero to instead
choose to increment dimension 2, as it is already fully in-
cremented. So, assuming that the sage advises the hero to
move according to the exemplar 100% of the time (which
in practice it will not, in order to try and match the spec-
ified distribution), we would expect the hero to follow the
evens-before-odds exemplar trajectory 0.98%*% ~ 0.403, or
about 40.3% of the time. All of the distance measures do
yield results in line with this expectation (Figures 4 & 6).
However, they vary substantially in the distribution of tra-
jectories that deviate from the exemplar.

Overall, a quick examination of the figures provides clear
evidence that max-difference is the superior distance mea-
sure for use with a mixture of Gaussians model, based on the
resulting distribution over story trajectories. When max-
difference is used, we see that as desired, deviating trajec-
tories are kept closer to the specified trajectory, as the DM
can now continue to select good interventions even after a
deviation occurs. This distance measure yields a reasonable
number of zero-distance trajectories, as described above, and
also produces a distribution over distances that appears to
be an approximately Gaussian distribution, as our target
distribution specifies. It does appear to be a substantially
less-peaked distribution than our target distribution, which
is also reasonable given the non-determinism of the hero
(simulated player) in this domain.

So, given that we see desired behavior only when max-
difference is used, how can we explain the undesirable behav-
ior that we get from total-difference and average-difference?
In the case of total-difference, the problem is that a small
error is compounded at each step — and in this domain, there
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is no way to directly reverse the error. This means that if
a random misstep is made, and an odd dimension is incre-
mented early, this error will be carried forward to each new
state added to the trajectory (and thus the cumulative er-
ror count of total-difference will continue to grow) until the
mistakenly incremented odd dimension would have been in-
cremented on the desired evens-first trajectory. This means
that, in this domain, under total-difference, any small error
quickly and necessarily becomes compounded, pushing the
distance from the desired trajectory into the low-probability
“tail” of the Gaussian. Once this happens, the preference be-
tween trajectories essentially becomes uniform, and the DM
begins to provide random advice. Thus, we see a substantial
spike of trajectories at zero distance (matching the desired
trajectory), and then a random smattering of trajectories at
a fairly large distance, since a minor deviation will quickly
result in essentially a random walk to the goal. In domains
with reversible actions, the total-difference measure might
be a viable, even preferable option, since it would put pres-
sure on the DM to cause undesirable actions to be reversed,
in a way that max-difference would not.

Looking at the results for average-difference, they appear
similar to those obtained for the uniform distribution base-
line. Though the absolute values of the parameters of the
resulting distributions (e.g. the means of the non-zero dis-
tance trajectories’ distribution) cannot be compared directly
because they are computed according to different measures,
in both cases we see a large impulse of the expected mag-
nitude at zero, and roughly Gaussian-looking distributions
centered at some distance removed from the impulse contain-
ing the deviating trajectories. This is because of information
loss when discretizing the raw average values. For example,
the difference between a cumulative difference of one (a sin-
gle error) vs. three (a single error on one step followed by
another on the next) becomes impossible to capture with
average-difference once the trajectory length grows to four
— both will be mapped to a distance of one. While the pol-
icy of rounding up preserves differences between zero error
and non-zero error at any trajectory length (maintaining
the magnitude of the impulse at zero), differences in non-
zero error quickly become insubstantial. Thus, the discrete
average-difference measure behaves very much like the base-
line, offering little to no useful guidance once deviation oc-
curs. This distance measure could somewhat be more useful
if not discretized, though with a Gaussian distribution there
will in any case be little discrimination between values with
differences of small magnitude once the vicinity of the mean
is departed. Further, the allocation of probability mass over
trajectories becomes much more difficult and involved with
a real-valued distance measure, and doing so is left as future
work.

5.4 Multiple Exemplar Results

Finally, we wish to see how the system will behave when
we specify more than one target trajectory. In this second
set of experiments, we provide two desired trajectories —
evens first, as described above, and odds first, which is very
similar but asks that the player first move the hero along
each odd dimension and then along each even dimension.
We once again use the mixture of Gaussians distribution and
the distance measure described above. Results are depicted
in Figures 7-9.

The careful reader will notice some asymmetries in the
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Figure 7: Actual distribution achieved for two example tra-
jectories, using a Gaussian target distribution. Distance
shown is from the first of the two target trajectories.
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Figure 9: Actual distribution achieved for two example tra-
jectories, using a Gaussian target distribution. Distance
shown is from the closest specified trajectory.
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distributions around each of the two specified trajectories.
Apart from the effects of nondeterminism, this is due to dif-
ferent boundary conditions affecting the two paths — for in-
stance, there is no subsequent dimension to be incremented
when DM guidance indicates that the final dimension (9)
should be selected. These effects create some asymmetries
in the evens first vs. odds first trajectories. Overall, we
can see that the DM is quite successful both in targeting
the desired trajectories, and in approximating the specified
mixture of Gaussians distribution around the two specified
trajectories, even in this large, high dimensional and nonde-
terministic domain.

As an additional experiment to further examine the effects
of adding more exemplars, we also tried adding two more
trajectories to those of the runs depicted in Figures 7-9.
The first of the two new trajectories first increments every
even dimension, in order, by one, and then repeats until each
even dimension has been fully incremented (in this case, each
even dimension is first incremented to one, then to two, etc).
Then the process is repeated for the odd dimensions. The
second of the two new trajectories is the same, except with
odd dimensions first, followed by even dimensions. Results
of this run are depicted in Figure 10.

Once again, we see that the DM is successful in achieving
a good distribution of trajectory lengths around the exem-
plars. In fact, adding more desirable trajectories allows the
DM to do slightly better — since early deviations by the
hero can sometimes be compensated for by “switching” the
intended trajectory to one for which the error is an appro-
priate move.

Additionally, notice that this domain is quite large: the
complete game tree has a depth of 90 moves, and a branching
factor of 10, with a size on the order of 10%. Yet the local
optimization procedure is able to produce decisions accord-
ing to an optimal probabilistic policy using time and space
that is quite reasonable for a modest personal computer.
For example, the 1000 trials in the case of four desired tra-
jectories ran in a wall time of very close to 15 minutes, or
900/1000 = .9 minutes/trial. Given that each trial consists
of 90 moves, this means that the DM is taking less than
half a second to compute the appropriate intervention at
each step (accounting for the overhead of other needed com-



putations at each game step). This is quite reasonable for
practical deployment on machines with limited power.

6. LESSONS LEARNED

Based on these experiments, it is clear that there is a sub-
stantial interaction between (1) the selected distance mea-
sure over story trajectories, (2) the distribution type se-
lected, (3) how the mass of the selected distribution is allo-
cated across discrete trajectories, and (4) the mechanics of
the domain.

Part of the contribution of this work is identifying these
interacting dimensions of variation that would be interesting
to explore systematically in future work (only (1) is empir-
ically addressed here), and which should be explicitly con-
sidered when designing a new trajectory distance measure.
By analyzing these interactions within the context of our
preliminary experiments in the HyperWorld domain, we can
begin to provide some guidance about the characteristics
needed for distance measures to provide desired behavior in
various kinds of domains.

First, we can say that, for story domains with transitions
that cannot be directly reversed by player actions — which
is likely to be a common class of domains — it is very impor-
tant that the distance measure selected does not compound
earlier errors (e.g. by summing carried forward error over
states in a trajectory) as the trajectory length grows. Dis-
tance measures that do compound errors with trajectory
length will exhibit poor behavior when used with any distri-
bution that places mass on trajectories that asymptotically
approaches zero as distance from an exemplar increases. Be-
cause this characteristic will hold for any reasonable proba-
bility distribution chosen, the use of an error-compounding
trajectory distance measure is unlikely to be a good choice
for any story domain with non-reversible state transitions.
However, though it is not empirically studied here, it does
appear reasonable that such distance measures may have
value in story domains where state transitions can be re-
versed, essentially “undoing” deviations. There may be ad-
ditional complications in handling such domains, such as
defining distance measures that allow trajectories with un-
equal lengths to be compared, and we leave the matter for
future research, but do wish to note it here.

Next, we can conclude that averaging errors across trajec-
tory length is unlikely to be a viable option in most situa-
tions. The difficulties that arise when averaging, due to the
decreasing significance of small variations in error values as
trajectory lengths grow, may be ameliorated if alternatives
for dimension (3) can be developed. However, at this time it
is not clear that any substantial benefit would be achieved
by doing so, and given that viable alternatives exist, taking
on the additional complexity does not immediately appear
worthwhile.

Finally, we can determine that, for domains like Hyper-
World, the max-difference distance measure is both a clear
winner relative to the other measures tested, and in fact ap-
pears to yield very good behavior from an objective stand-
point. More generally, it appears that, at least for do-
mains with non-reversible transitions, and without introduc-
ing substantial complications to allow for the comparison
of trajectories with unequal lengths, distance measures like
max-difference that do not compound errors as trajectories
grow are the best choice.
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7. CONCLUSIONS

In this paper, we have described the first set of experi-
ments exploring the use of different kinds of distance mea-
sures over story trajectories for Drama Management using
TTD-MDPs. Further, we have demonstrated empirically
the effectiveness of the local optimization technique of Bhat
et. al. [2] in a substantially larger domain than used in any
previously reported experiment. Based on these initial ex-
periments with distance measures, we have presented a set
of recommendations for the selection of distance measures
based on domain characteristics and other design choices.
Further, we identify these domain characteristics and design
choices as dimensions of variation for future experiments.
At present, we have identified only one domain character-
istic that appears particularly significant to the choice of
trajectory distance measure: the reversibility of story state
transitions. Another useful direction for future work is to
identify more classes of domain mechanics that have a sub-
stantial impact on the choice of trajectory distance measure.
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