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ABSTRACT
In this paper we propose a new methodology for evaluating
the relative power of agents in a strategic situation formally
represented by a boolean game. The methodology consists
in extracting a power ranking from the dependence relation
induced by a certain boolean game. Our approach is ax-
iomatic. We provide a number of desirable postulates that a
notion of dependence is expected to satisfy and we compare
competing notions of dependence, included a notion based
on the concept of veto player, with respect to them. Simi-
larly, we provide a set of postulates for power functions (i.e.,
the family of functions mapping dependence graphs to power
rankings) and evaluate some new methods as well as existing
ones (e.g., Pagerank) with respect to this set of postulates.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

Keywords
Boolean games, dependence, power

1. INTRODUCTION
A game-based power evaluation consists in assessing the

social power of the agents interacting in a given situation,
formally represented by a game. It can be represented math-
ematically as a function that takes a game as an input and
returns a ranking of the agents as output, reflecting the rel-
ative power of the agents in the game. Such an evaluation is
useful, because the agents typically need to choose the peers
to interact with. The agents can also represent potential
partners for external users, who then will find this evalua-
tion useful as well. Moreover, information about the relative
power of the agents in a society may be useful for policy mak-
ers in order to reduce inequalities and to promote fairness.
Examples of applications for game-based power evaluations
include web services, recommender systems and, more gen-
erally, the design and analysis of social procedures (e.g., for
resource allocation, task distribution, etc.).

The goal of the present paper is to construct and ana-
lyze game-based power evaluations whose notion of power is
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based on the concept of social dependence. The idea that so-
cial power and social dependence are tightly related concepts
is not new, as it has been widely explored in social sciences
and philosophy [6, 8] as well as in the area of multi-agent
systems [17, 4]. According to [6] for instance, the power of
an agent i over another agent j is based on the fact that j
depends on i for the achievement of her goals. For exam-
ple, Bill (who is the only mechanic in town), has power over
Mary because Mary depends on Bill for achieving the goal
of having her car repaired.

The input of the game-based power evaluations studied
in this paper are boolean games [10], in which each player
wants to achieve a certain goal represented by a proposi-
tional formula. The interesting aspect of boolean games is
that they correspond to the specific subclass of normal-form
games in which agents have binary preferences (i.e., payoffs
can be either 0 or 1). Since the task of assessing the rela-
tive power of the agents in a boolean game is rather com-
plex, the strategy we follow consists in decomposing it into
two sub-tasks: construct and analyze dependence functions
(that determine dependence relations in a boolean game)
first, and then power functions (that evaluate power from
dependencies).1

Our approach is axiomatic. We first establish postulates
(or axioms) that dependence and power functions may sat-
isfy. Such postulates can be seen as criteria useful to judge
and compare different methods. Then, we analyze existing
functions (e.g., Pagerank [12] and van den Brink & Gilles’s
power function [18]) on the basis of these criteria, and show
that they fail to satisfy interesting postulates. So, we build
new dependence and power functions and show that they
satisfy such postulates. Finally, we show that game-based
power evaluations can be obtained by combining dependence
and power functions. The crucial point is that such combi-
nations are synergic, in the sense that the combination of
our two “local” methods (dependence functions and power
functions) produces a “global” method (game-based power
evaluation) that satisfies interesting properties.

The paper is organized as follows. Section 2 focuses on the
problem of extracting a dependence relation from a boolean
game by means of a dependence function. Section 3 is de-
voted to the axiomatic analysis of power functions. First
some existing methods are critically investigated, then four
new ones are proposed. Section 4 bridges the gap between

1The issue of extracting a dependence relation from a game
has also been investigated by Bonzon et al. [5] for the class of
boolean games (see Section 2 for more on this) and by Grossi
& Turrini [9] for the entire class of normal-form games.
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the first part and the second part of the paper. By means of
the results obtained in Sections 2 and 3, we briefly show how
certain structural properties of the boolean game determine
specific properties of the power ranking of the agents.

2. DETERMINING DEPENDENCIES
We start by introducing the concept of boolean game as

well as some related notions such as the concept of capabil-
ity (Section 2.1). Then, we introduce the general concept of
dependence function and propose a list of intuitively reason-
able postulates that any dependence function is expected to
satisfy (Section 2.2). Section 2.3 provides a critical discus-
sion of an existing dependence function proposed by [5]: we
show that it violates all postulates given in Section 2.2. In
Section 2.4 a new dependence function based on the concept
of veto player is proposed. We show that this dependence
function satisfies all postulates of Section 2.2. Finally, in
Section 2.5 we explore the relationship between this notion
of dependence based on veto player and the concept of Nash
equilibrium.

2.1 Boolean games and related notions
First of all, we shall introduce the concept of boolean game

that has been proposed for the first time by [10] and further
developed by [7].

Definition 1. A boolean game is a quadruple B = 〈A, Φ,
{γa}a∈A, {Φa}a∈A〉, where:
• A is a non-empty finite set of agents (or players);
• Φ is a non-empty finite set of propositional atoms;
• γa is a formula of the language LΦ (i.e., the propositional
language constructed on Φ) denoting the goal of agent a;
• Φa ⊆ Φ is the set of all atoms controlled by agent a.

As standard [19], we assume that for all a, b ∈ A, Φa∩Φb = ∅
and that

⋃
a∈A Φa = Φ (i.e., the controlled atoms form a

partitition of the set Φ). Moreover, we assume that each γa
is a satisfiable formula of LΦ.

The following definition introduces the notion of strategy
in a boolean game.

Definition 2. Given a boolean game B and a coalition
C ⊆ A, a strategy of coalition C is a function

sC :
⋃
a∈C Φa −→ {>,⊥}

which consists in setting the truth value of each atom con-
trolled by some agent in C either to > (true) or ⊥ (false).
The set of all strategies of coalition C is denoted by SC .

For notational convenience, strategies of the grand coali-
tion A are denoted by s, s′, . . . instead of sA, s

′
A, . . . and

strategies for single-agent coalitions are denoted by sa, sb, . . .
instead of s{a}, s{b}, . . . Moreover, we write S instead of SA
and Sa instead S{a}.

In addition, we write s |= ϕ to mean that the valuation
defined by the strategy s satisfies formula ϕ ∈ LΦ. We write
|= ϕ to mean that the propositional formula ϕ is valid in
propositional logic, i.e., we have s |= ϕ for all valuations s.

Finally, given a strategy sC of the coalition C and a strat-
egy s′A\C of the coalition A\C, we let sC ◦ s′A\C denote the
strategy in S such that:
• (i) for all p ∈

⋃
a∈C Φa, sC ◦ s′A\C(p) = sC(p);

• (ii) for all p ∈
⋃
a∈A\C Φa, sC ◦ s′A\C(p) = s′A\C(p).

It is worth noting that, since each formula γa is satisfiable
in propositional logic, all agents together have the capability
of making an agent satisfied. That is, for every goal formula
γa, there exists s ∈ S such that s |= γa.

As a last concept for this section, we introduce the well-
known concept of capability that is studied in the context
of Coalition Logic (CL) [13] and Coalition Logic of Proposi-
tional Control (CL-PC) [19]. This is also called α-ability.

Definition 3. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game and let ϕ ∈ LΦ. We say that coalition C has
the capability of making formula ϕ true regardless of what
the agents outside C do (or, C is an effective coalition for ϕ
for short), denoted by CanB(C,ϕ), iff there exists sC ∈ SC
such that for all sA\C ∈ SA\C , sC ◦ sA\C |= ϕ.

The following definition introduces the notion of minimal
effective coalition for a given outcome ϕ that will be used in
next section for our axiomatic analysis of dependence func-
tions.

Definition 4. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game and let ϕ ∈ LΦ. We say that coalition C is a
minimal coalition having the capability of of making formula
ϕ true regardless of what the agents outside C do (or, C is
a minimal effective coalition for ϕ for short), denoted by
MinCanB(C,ϕ), iff CanB(C,ϕ) holds and there is no B ⊂ C
such that CanB(B,ϕ) holds.

2.2 Postulates for dependence functions
A dependence function is a function that takes a boolean

game as an input and transforms it into a dependence rela-
tion between the agents in the game. In particular:

Definition 5. A dependence function is a function ∆ trans-
forming every boolean game B = 〈A, Φ, {γa}a∈A, {Φa}a∈A〉
into a binary relation R on A, called a dependence relation.

Intuitively, aRb means that a depends on b, or equivalently
that b has power over a.

Here we adopt an axiomatic approach to the analysis of
dependence functions. Specifically, we propose four intu-
itively reasonable postulates for this family of functions. Our
first postulate says the following: if agent a can achieve her
goal γa regardless of what the other agents do then a does
not depend on anybody, except perhaps on herself. More
formally:

Postulate 1. A dependence function ∆ satisfies sensitiv-
ity to agent capability (Cap) iff for every boolean game B =
〈A,Φ, {γa}a∈A, {Φa}a∈A〉 and ∀a, b ∈ A, the following holds:
if CanB({a}, γa) and a 6= b then 〈a, b〉 6∈∆(B).

Our second postulate says the following: if b does not
belong to any minimal effective coalition that can make a’s
goal satisfied then a does not depend on b.

Postulate 2. A dependence function ∆ satisfies Absence
of power (AP) iff for every boolean game B = 〈A, Φ, {γa}a∈A,
{Φa}a∈A〉 and ∀a, b ∈ A, the following holds: if there is no
C ⊆ A such that MinCanB(C, γa) and b ∈ C then 〈a, b〉 6∈
∆(B).

In order to formally state our third postulate we need to
define first the following notion of agent dominance. The
idea is that agent a dominates agent b with respect to agent
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c if and only if, for every minimal effective coalition that can
make c’s goal satisfied, if b belongs to this coalition then a
belongs to it as well.

Definition 6. Let B = 〈A, Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game and let a, b, c ∈ A. We say that a dominates b
with respect to c in B, denoted by DomB(a, b, c), iff ∀C ⊆ A,
if MinCanB(C, γc) and b ∈ C then a ∈ C.

Our third postulate says that if agent a dominates agent
b with respect to agent c then b has power over c only if b
has power over c.

Postulate 3. A dependence function ∆ satisfies Agent Dom-
inance (Dom) iff for every boolean game B = 〈A, Φ, {γa}a∈A,
{Φa}a∈A〉 and ∀a, b, c ∈ A the following holds: if DomB(a, b, c)
and 〈c, b〉 ∈∆(B) then 〈c, a〉 ∈∆(B).

Finally, our last postulate for dependence function says
that if agent b’s goal implies agent a’s goal (i.e., b’s goal is
achieved only if a’s goal is also achieved), then all agents
who have power over a also have power over b.

Postulate 4. A dependence function ∆ satisfies Implica-
tion (Imp) iff for every boolean game B = 〈A, Φ, {γa}a∈A,
{Φa}a∈A〉 and ∀a, b, c ∈ A, the following holds: if |= γb → γa
and 〈a, c〉 ∈∆(B) then 〈b, c〉 ∈∆(B).

As a side note, we observe that transitivity does not seem
to be a reasonable postulate for a notion of dependence
based on boolean games. This is the reason why we do not
consider it here. A counterexample to transitivity for depen-
dence is the following. Suppose Mary depends on Bill, since
Bill is the only mechanic in town and Mary has the goal of
having her car repaired. Moreover, suppose Bill depends on
Alice, since Alice is the only baker in town and Bill wants
to buy bread. This does not imply that Mary depends on
Alice, as it might be the case that Mary does not want to
buy bread.

2.3 An existing dependence function
Bonzon et al. [5] have introduced a dependence function

based on the concept of relevance. Let us call it relevance-
based function and denote it by Rbf. This dependence func-
tion is also used by [15]. A propositional atom p is said to
be relevant for a boolean formula ϕ if and only if there is no
equivalent boolean formula ψ where p does not occur. Given
a boolean game B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉, let RV B(a)
be the set of all variables p ∈ Φ that are relevant for a’s goal
γa and let RAB(a) be the set of all agents b ∈ A such that
b controls at least one variable that is relevant for a (i.e.,
there is p ∈ Φb such that p ∈ RV B(a)).

According to Bonzon et al.:

Definition 7. Agent a has a relevance-based dependence
on agent b in the boolean game B, i.e., 〈a, b〉 ∈ Rbf(B), if
and only if b ∈ RAB(a).

As the following theorem highlights Rbf does not satisfy
any postulate given in the previous Section 2.2:

Theorem 1. Rbf violates (Cap), (AP), (Dom) and (Imp).

Proof (Sketch). We only prove that Rbf violates (Cap)
by means of the following counterexample. Consider any
boolean game B in which Φ1 = {p}, Φ2 = {q} and γ1 =
p ∨ q. Clearly, 2 ∈ RAB(1). Thus, 〈1, 2〉 ∈ Rbf(B). But,
CanB({1}, γ1).

In the next section we consider a new dependence func-
tion, called veto-based dependence function, which is stronger
than Bonzon et al.’s relevance-based dependence function
and which satisfies the four postulates given in Section 2.2.

2.4 A new dependence function
The veto-based dependence function, denoted by Vbf, is

based on the concept of veto player as defined by [20] and,
more generally, in the context of cooperative game theory
[11].

According to Vbf, agent a depends on agent b, if the inter-
vention of b is necessary to ensure that a will achieve her goal
γa. Specifically, a depends on b if and only if the coalition
A \ {b} is not capable of making a’s goal true, independent
of what agent b chooses. More formally:

Definition 8. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game. We say that agent a has a veto-based depen-
dence on agent b in B, or simply, agent a depends on agent
b in B, i.e., 〈a, b〉 ∈ Vbf(B), iff there is no sA\{b} ∈ SA\{b}
such that for all sb ∈ Sb, sA\{b} ◦ sb |= γa.

The following theorem highlights that the four postulates
of Section 2.2 are all sound with respect to Vbf.

Theorem 2. Vbf satisfies (Cap), (AP), (Dom), and (Imp).

Proof (Sketch). We only provide the sketch of proof
for (AP) and (Dom) as an example.

Suppose that 〈a, b〉 ∈ Vbf(B). By the definitions of Vbf

and of the notion of capability, we have that:

(A) 〈a, b〉 ∈ Vbf(B) iff, for all C ⊆ A, if CanB(C, γa) then
b ∈ C.

Furthermore, the following property holds for all a ∈ A:

(B) there exists C ⊆ A such that MinCanB(C, γa).

Thus, from the previous items (A) and (B), it follows that
there exists C ⊆ A such that MinCanB(C, γa) and b ∈ C.
This shows that Vbf satisfies (AP).

Let us prove that Vbf satisfies (Dom). Suppose that
DomB(a, b, c) and 〈c, b〉 ∈ Vbf(B). As shown above, we have
〈c, b〉 ∈ Vbf(B) iff for all C ⊆ A, if CanB(C, γc) then b ∈ C.
Thus, for all C ⊆ A, if CanB(C, γc) then b ∈ C. Thus,
since DomB(a, b, c) holds, we have that for all C ⊆ A, if
MinCanB(C, γc) then a ∈ C. The following property holds:

(C) if (for all C ⊆ A, if MinCanB(C, γc) then a ∈ C) then
(for all C ⊆ A, if CanB(C, γc) then a ∈ C).

Hence, we have that for all C ⊆ A, if CanB(C, γc) then
a ∈ C. By the previous item (A), this is equivalent to 〈c, a〉 ∈
Vbf(B). This shows that Vbf satisfies (Dom).

2.5 Dependencies and Nash equilibria
In this final section we explore the connection between

Vbf and Nash equilibria.
Clearly boolean games correspond to a specific subclass of

games in normal form, namely games in normal form with
binary utility functions ua : S −→ {0, 1} defined by: (i)
ua(s) = 0 if s |= ¬γa, and (ii) ua(s) = 1 if s |= γa. Pure-
strategy Nash equilibria and strict Nash equilibria are de-
fined exactly as in standard game theory.
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Definition 9. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game. Moreover, let sa ∈ Sa, sA\{a} ∈ SA\{a}
and s = sa ◦ sA\{a}. Strategy s ∈ S is a Nash equilibrium
iff, for all a ∈ A and for all s′a ∈ Sa, ua(sa ◦ sA\{a}) ≥
ua(s′a ◦ sA\{a}). Strategy s ∈ S is a strict Nash equilibrium
iff, for all a ∈ A and for all s′a ∈ Sa \{sa}, ua(sa ◦ sA\{a}) >
ua(s′a ◦ sA\{a}).

The following definition captures the concept of k-resilient
Nash equilibrium by Abraham et al. [1]:2 a strategy profile
s is said to be a k-resilient Nash equilibrium if no coalition
of size at most k, taking the actions of its complements as
given, can cooperatively deviate in a way that benefits some
of its members. We also introduce the new concept of strict
k-resilient Nash equilibrium.

Definition 10. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game. Strategy s ∈ S is a k-resilient Nash equilib-
rium iff for all C ⊆ A with |C| ≤ k and for all s′C ∈ SC ,
ua(sC ◦sA\C) ≥ ua(s′C ◦sA\C) for all a ∈ C. Strategy s ∈ S
is a strict k-resilient Nash equilibrium iff for all C ⊆ A
with |C| ≤ k and for all s′C ∈ SC \ {sC}, ua(sC ◦ sA\C) >
ua(s′C ◦ sA\C) for all a ∈ C.

Note that strategy s is a 1-resilient Nash equilibrium if
and only if it is a Nash equilibrium, and it is a strict 1-
resilient Nash equilibrium if and only if it is a strict Nash
equilibrium. Furthermore, if |A| = k then strategy s ∈ S is
a strict k-resilient Nash equilibrium if and only if s is the
unique strategy profile that makes all agents happy (i.e.,
s |= γa for all a ∈ A and, s′ |= ¬γa for all s′ 6= s and for
all a ∈ A). This implies that, for every boolean game B
with k players, there is at most one strict k-resilient Nash
equilibrium.

Our first result concerning the link between Vbf and Nash
equilibria is that the dependence relation extracted by means
of Vbf from a k-player boolean game with one strict k-
resilient Nash equilibrium and in which each agent controls
at least one propositional atom is complete. More formally:

Theorem 3. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game with k players. If B has one strict k-resilient
Nash equilibrium and Φa 6= ∅ for all a ∈ A, then Vbf(B) =
A×A.

Proof (Sketch). As observed above, if |A| = k and s
is a strict k-resilient Nash equilibrium then, s is the only
strategy profile that makes all agents happy, while all other
strategy profiles s′ make all agents unhappy. Therefore, for
all a ∈ A, a can achieve his goal γa only if every agent b in
A chooses the component sb in s. Hence, for all a ∈ A, a
depends on all other agents. The condition Φa 6= ∅ for all
a ∈ A guarantees that every agent b in A has more than
one choice available. Therefore, b can indeed deviate from
the strategy profile s by playing something different from sb
and making all agents unhappy.

A more interesting result concerns the family of two-player
boolean games with more than one strict Nash equilibrium.
A typical example of games belonging to this family are
pure coordination games [16] in which the two players in the

2Abraham et al. uses the term ‘strongly k-resilient Nash
equilibrium’ but, in order simplify exposition, we simply call
it ‘k-resilient Nash equilibrium’.

s1
b s2

b s3
b s4

b

s1
a 1,1 ∗,0 0,0 ∗,0
s2
a 0,∗ ∗,∗ 0,∗ ∗,∗
s3
a 0,0 ∗,0 1,1 ∗,0
s4
a 0,∗ ∗,∗ 0,∗ ∗,∗

Figure 1: Boolean game with two strict Nash equi-
libria. Symbol ∗ means that the value is irrelevant.

game achieve their common goal only if they together play
one of the many strict Nash equilibria. We can prove that
every two-player boolean game with more than one strict
Nash equilibrium induces a complete dependence relation.
Intuitively, this means that in a two-player game with more
than one strict Nash equilibrium (e.g., a two-player pure
coordination game) the agents depend on each other.

Theorem 4. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a two-
player boolean game. If B has more than one strict Nash
equilibrium, then Vbf(B) = A×A.

Proof (Sketch). We give the general idea of the proof
with the aid of Figure 1. Let B be any boolean game such
that A = {a, b}. Moreover, let SN B be the set of strict
Nash equilibria in B with |SN B| > 1. The first thing to
observe is that two different strict Nash equilibria in SN B

necessarily differ in all their components: for all s, s′ ∈ SN B,
if s 6= s′ then sa 6= s′a for all a ∈ A. From this fact, one can
prove that every row in the boolean game matrix contains at
least one 0 for the row player (i.e., player a) and that every
column in the boolean game matrix contains at least one 0
for the column player (i.e., player b). This is clearly shown
by Figure 1 in which a boolean game with two strict Nash
equilibria s1

a ◦ s1
b and s3

a ◦ s3
b is represented. Hence, it follows

that Vbf(B) = {a, b}× {a, b}, since there is no sa ∈ Sa such
that for all sb ∈ Sb, sa ◦ sb |= γa, and there is no sb ∈ Sb
such that for all sa ∈ Sa, sb ◦ sa |= γb.

Note that Theorem 4 cannot be generalized to one-player
games. Indeed, as observed above, if a game has k players,
then it has at most one strict k-resilient Nash equilibrium.
Thus, a one-player game has at most one strict Nash equi-
librium.

The following theorem provides a generalization of the
preceding Theorem 4 to boolean games with k players that
exploits the concept of strict k-resilient Nash equilibrium.

Theorem 5. Let B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉 be a
boolean game with k players. If B has more than one strict
(k − 1)-resilient Nash equilibrium, then Vbf(B) = A×A.

3. EVALUATING POWER
We turn to the second part of the paper, that is, the con-

struction and analysis of power functions. The input of such
a function is a dependence graph.

Definition 11. A dependence graph is an ordered pair D =
〈A,R〉, where A is a finite set of agents and R a binary
relation on A, called a dependence relation.

The output of a power function is a ranking of the agents.

Definition 12. A ranking on a set of agents A is a total
and transitive binary relation � on A. Intuitively, a � b
means that a is at least as powerful as b. So, a ≺ b (i.e.,
b 6� a) means that a is strictly more powerful than b.
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Note that a ≺ b can equivalently be read as a takes prece-
dence over b with respect to power, or a is ranked above b
with respect to power. So, it is natural to put the more
powerful agent on the left-hand side of the ≺ symbol. Note
also that a � b may be written as 〈a, b〉 ∈ �, if it is more
convenient. Similarly, a ≺ b may be written as 〈b, a〉 6∈ �.

We are ready to define the main concept of Section 3.

Definition 13. A power function Π transforms any depen-
dence graph D = 〈A,R〉 into a ranking on A.

Note that such functions have been efficiently investigated
in particular in [3], where it is essentially shown that no
function can satisfy certain postulates all together.

3.1 Postulates for power functions
In the present section, we establish postulates (or axioms)

for power functions. The first group of axioms captures the
notion of transitivity studied in e.g. [3]. The principle of
transitivity consists of two ideas: more dependents means
more power; more powerful dependents means more power
as well.

As a preliminary, we need a notation for the dependents
of an agent a.

Definition 14. Let D = 〈A,R〉 be a dependence graph
and a ∈ A. We denote by DepD(a) the set of all dependents
of a in D, i.e., DepD(a) = {b ∈ A | bRa}.

Throughout Section 3, when the context is clear, we may
omit certain subscripts, e.g., we may write Dep(a) for short.

Next, we need to construct 3 relations between groups of
agents from a relation � between agents. More precisely,
〈A,B〉 ∈ G1(�) iff the agents of A are at least as numerous
and powerful as those of B. The other relations G2 and
G3 correspond to the same idea plus an advantage for A in
cardinality or quality, respectively.

Definition 15. Let � be a ranking on a set A. We denote
by G1A(�), G2A(�), and G3A(�) the binary relations on the
power set of A such that ∀A,B ⊆ A:

• 〈A,B〉 ∈ G1(�) iff ∃ f : B
inj−→ A (i.e., there exists an

injective function f from B to A) s.t. ∀ b ∈ B, f(b) � b;
• 〈A,B〉 ∈ G2(�) iff |B| < |A| and ∃ f : B

inj−→ A s.t.
∀ b ∈ B, f(b) � b;
• 〈A,B〉 ∈ G3(�) iff ∃ f : B

inj−→ A s.t. ∀ b ∈ B, f(b) � b
and ∃ b ∈ B, f(b) ≺ b.

We are ready to define the axioms of transitivity.

Postulate 5. A power function Π satisfies the first, sec-
ond, or third form of transitivity, denoted by (T1), (T2),
or (T3), respectively, iff for every dependence graph D =
〈A,R〉, ∀ a, b ∈ A:

(T1) if 〈Dep(a), Dep(b)〉 ∈ G1[Π(D)], then 〈a, b〉 ∈ Π(D);
(T2) if 〈Dep(a), Dep(b)〉 ∈ G2[Π(D)], then 〈b, a〉 6∈ Π(D);
(T3) if 〈Dep(a), Dep(b)〉 ∈ G3[Π(D)], then 〈b, a〉 6∈ Π(D).

We turn to the second group of axioms, which captures
the notion of transitivity with dilution studied in e.g. [3]. By
dilution, we mean that the power a gives to certain agents
has to be evenly shared between them.

Again, we need preliminaries. First, we need a notation
for the agents having power over a:

Definition 16. Let D = 〈A,R〉 be a dependence graph
and a ∈ A. We denote by PowD(a) the set of all agents
having power over a in D, i.e., PowD(a) = {b ∈ A | aRb}.

Next, we need four relations between groups of agents.
Intuitively, 〈A,B〉 ∈ GD1(�) iff the agents of A are at least
as numerous and powerful as those of B and they do not
depend on more agents, i.e., there is no more power dilution.
The other relations GD2, GD3, and GD4 capture the same idea
plus an advantage for A in cardinality, quality, or dilution,
respectively.

Definition 17. Let D = 〈A,R〉 be a dependence graph
and � a ranking on A. We denote by GD1D(�), GD2D(�),
GD3D(�), and GD4D(�) the binary relations on the power
set of A such that ∀A,B ⊆ A:

• 〈A,B〉 ∈ GD1(�) iff ∃ f : B
inj−→ A s.t. ∀ b ∈ B, f(b) � b

and ∀ b ∈ B, |Pow[f(b)]| ≤ |Pow(b)|;
• 〈A,B〉 ∈ GD2(�) iff |B| < |A| and ∃ f : B

inj−→ A s.t.
∀ b ∈ B, f(b) � b and ∀ b ∈ B, |Pow[f(b)]| ≤ |Pow(b)|;
• 〈A,B〉 ∈ GD3(�) iff ∃ f : B

inj−→ A s.t. ∀ b ∈ B, f(b) � b,
∀ b ∈ B, |Pow[f(b)]| ≤ |Pow(b)|, and ∃ b ∈ B, f(b) ≺ b;
• 〈A,B〉 ∈ GD4(�) iff ∃ f : B

inj−→ A s.t. ∀ b ∈ B, f(b) � b,
∀b ∈ B, |Pow[f(b)]| ≤ |Pow(b)|, and ∃b ∈ B, |Pow[f(b)]| <
|Pow(b)|.

We can define the axioms of transitivity with dilution.

Postulate 6. A power function Π satisfies the first, sec-
ond, third, or fourth form of transitivity with dilution, de-
noted by (TD1), (TD2), (TD3), or (TD4), respectively, iff for
every dependence graph D = 〈A,R〉, ∀ a, b ∈ A:

(TD1) if 〈Dep(a), Dep(b)〉 ∈ GD1[Π(D)], then 〈a, b〉 ∈ Π(D);
(TD2) if 〈Dep(a), Dep(b)〉 ∈ GD2[Π(D)], then 〈b, a〉 6∈ Π(D);
(TD3) if 〈Dep(a), Dep(b)〉 ∈ GD3[Π(D)], then 〈b, a〉 6∈ Π(D);
(TD4) if 〈Dep(a), Dep(b)〉 ∈ GD4[Π(D)], then 〈b, a〉 6∈ Π(D).

Finally, we introduce a last group of axioms capturing
the notion of transitivity with redundancy. Intuitively, there
is redundancy in the power of an agent a iff a depends on
herself (possibly indirectly) or two direct dependents of a
overlap, i.e., at least one depends on the other (possibly
indirectly) or they have (possibly indirect) dependents in
common. As far as we know, this group of axioms is new.

First, we need to define the extended dependents of a, i.e.,
the agents depending, directly or indirectly, on a.

Definition 18. Let D = 〈A,R〉 be a dependence graph.
We denote by ExatD the function on {1, 2, . . .} × A such
that ∀ i ∈ {1, 2, . . .}, ∀ a ∈ A, ExatD(i, a) is the set of all
extended dependents of a in D at distance i, i.e.,

Exat(i, a) =

{
Dep(a) if i = 1;⋃
b∈Exat(i−1,a) Dep(b) if 1 < i.

We define that ExtD(a) =
⋃
i∈{1,2,...} ExatD(i, a).

Next, we need to formalize the notion of overlapping agents:

Definition 19. Let D = 〈A,R〉 be a dependence graph
and A ⊆ A. We denote by OvrD(A) the fact that two agents
of A overlap in D, i.e., ∃ a, b ∈ A, a 6= b and (a ∈ Ext(b) or
b ∈ Ext(a) or Ext(a) ∩ Ext(b) 6= ∅).
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As a last preliminary, we need four relations between groups
of agents to represent equivalence or advantage in cardinal-
ity, quality, and redundancy.

Definition 20. Let D = 〈A,R〉 be a dependence graph
and � a ranking on A. We denote by GR1D(�), GR2D(�),
GR3D(�), and GR4D(�) the binary relations on the power
set of A such that ∀A,B ⊆ A:

• 〈A,B〉 ∈ GR1(�) iff ¬Ovr(A) and ∃ f : B
inj−→ A s.t.

∀ b ∈ B, f(b) � b;
• 〈A,B〉 ∈ GR2(�) iff |B| < |A|, ¬Ovr(A), and ∃ f : B

inj−→
A s.t. ∀ b ∈ B, f(b) � b;
• 〈A,B〉 ∈ GR3(�) iff ¬Ovr(A) and ∃ f : B

inj−→ A s.t.
∀ b ∈ B, f(b) � b and ∃ b ∈ B, f(b) ≺ b;
• 〈A,B〉 ∈ GR4(�) iff ¬Ovr(A), Ovr(B), and ∃f : B

inj−→ A
s.t. ∀ b ∈ B, f(b) � b.

We can define the axioms of transitivity with redundancy.

Postulate 7. A power function Π satisfies the first, sec-
ond, third, fourth, or fifth form of transitivity with redun-
dancy, denoted by (TR1), (TR2), (TR3), (TR4), or (TR5), re-
spectively, iff for every dependence graph D = 〈A,R〉, ∀a, b ∈
A:

(TR1) if 〈Dep(a), Dep(b)〉 ∈ GR1[Π(D)] and a 6∈ Ext(a),
then 〈a, b〉 ∈ Π(D);

(TR2) if 〈Dep(a), Dep(b)〉 ∈ GR2[Π(D)] and a 6∈ Ext(a),
then 〈b, a〉 6∈ Π(D);

(TR3) if 〈Dep(a), Dep(b)〉 ∈ GR3[Π(D)] and a 6∈ Ext(a),
then 〈b, a〉 6∈ Π(D);

(TR4) if 〈Dep(a), Dep(b)〉 ∈ GR4[Π(D)] and a 6∈ Ext(a),
then 〈b, a〉 6∈ Π(D);

(TR5) if 〈Dep(a), Dep(b)〉 ∈ GR1[Π(D)], a 6∈ Ext(a), and
b ∈ Ext(b), then 〈b, a〉 6∈ Π(D).

We conclude this section with dependencies and incom-
patibilities between the twelve postulates we have defined.

Theorem 6. The following dependencies hold:
• (T1) implies (TD1) and (TR1);
• (T2) implies (TD2) and (TR2);
• (T3) implies (TD3) and (TR3).

Proof (Sketch). The axiom (T1) implies the axiom (TD1),
because the antecedent 〈Dep(a), Dep(b)〉 ∈ GD1[Π(D)] im-
plies the antecedent 〈Dep(a), Dep(b)〉 ∈ G1[Π(D)]. A similar
reasoning holds for the other implications.

Theorem 7. The six following combinations of postulates
are unsatisfiable: (T1) + (TD4); (T1) + (TR4); (T1) + (TR5);
(TD1) + (TR4); (TD1) + (TR5); and (TR1) + (TD4).

Proof (Sketch). Suppose Π satisfies both (T1) and (TD4).
Let R = {ca, ca′, db}. Then, by (T1), 〈a, b〉 ∈ Π(D). But,
by (TD4), 〈a, b〉 6∈ Π(D), impossible. Similar examples can
be found for the other incompatibilities.

3.2 Three existing power functions
This section examines three existing power functions stud-

ied in the literature. The first power function we consider is
the score-based function axiomatized by Rubinstein in [14].

Definition 21. The power function Sbf transforms any de-
pendence graph D = 〈A,R〉 into the ranking on A such that
∀ a, b ∈ A, 〈a, b〉 ∈ Sbf(D) iff |Dep(b)| ≤ |Dep(a)|.

We analyze Sbf through the postulates of Section 3.1.

Theorem 8. Sbf satisfies (T1), (T2), (TD1), (TD2), (TR1),
(TR2), but violates (T3), (TD3), (TD4), (TR3)-(TR5).

Proof (Sketch). The axiom (T1) holds, because the an-
tecedent 〈Dep(a), Dep(b)〉 ∈ G1[Sbf(D)] entails |Dep(b)| ≤
|Dep(a)|. The case of (T2) is similar. The axioms (TD4),
(TR4), and (TR5) are violated, because, with e.g. R =
{a′a, a′′a′, b′b}, they all imply 〈b, a〉 6∈ Sbf(D). Theorems
6 and 7 deal with the other axioms.

Another power function studied in the literature is the
van den Brink-Gilles function [18], which consists in adding
power dilution in Sbf.

Definition 22. The power function BGf transforms any de-
pendence graph D = 〈A,R〉 into the ranking on A such
that ∀ a, b ∈ A, 〈a, b〉 ∈ BGf(D) iff

∑
c∈Dep(b) 1/|Pow(c)| ≤∑

c∈Dep(a) 1/|Pow(c)|.

Note that, in Theorem 4.2 of [18], it is shown that BGf

is equivalent to the well-known Shapley power function, if
the “worth” of a coalition is naturally defined as the number
of dependents of that coalition. A study of the Shapley
function can be found in e.g. [2].

We turn to the postulate-based analysis of BGf.

Theorem 9. BGf satisfies (TD1), (TD2), (TD4), but vio-
lates (T1)-(T3), (TD3), (TR1)-(TR5).

Proof (Sketch). The satisfaction part is trivial. With
R = {ca, ca′, da, da′, eb}, both (T2) and (TR2) imply 〈b, a〉 6∈
BGf(D), which contradicts BGf. With R = {a′a, a′′a′, b′b},
(T3), (TD3), and (TR3) all imply 〈b, a〉 6∈ BGf(D), impossible.
Theorem 7 deals with the remaining postulates.

We turn to Pagerank [12], which is an important and more
recent power function, as well as one of the main constituents
of the Google search engine. In Pagerank, every agent a
transfers credit to every agent b. The main idea is the fol-
lowing: if a depends on b, then more credit is transferred.
Such an increase is determined by a fixed damping factor δ.

Definition 23. Let D = 〈A,R〉 be a dependence graph,
a, b ∈ A, and δ ∈ (0, 1). We denote by PerDδ(a, b) the per-
centage of credit transferred from a to b in D with damping
δ, i.e.:

Per(a, b) =

 1/|A| if Pow(a) = ∅;
(1− δ)/|A| if b 6∈ Pow(a) 6= ∅;
δ/|Pow(a)|+ (1− δ)/|A| if b ∈ Pow(a).

Definition 24. Let D = 〈A,R〉 be a dependence graph
and let δ ∈ (0, 1). We denote by CreDδ the function on
{0, 1, . . .}×A such that ∀ i ∈ {0, 1, . . .}, ∀a ∈ A, CreDδ(i, a)
is the quantity of credit a possesses in D in step i with damp-
ing δ, i.e.:

Cre(i, a) =

{
1/|A| if i = 0;∑
b∈A Per(b, a)Cre(i− 1, b) otherwise.

Definition 25. Let D = 〈A,R〉 be a dependence graph,
a ∈ A, and δ ∈ (0, 1). We denote by PrDδ(a) the final
quantity of credit a possesses in D with damping δ, i.e.:

Pr(a) = lim
i→∞

Cre(i, a).
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Note that a characterisation of the final quantities of credit
in Pagerank can be found in e.g. [12].

Theorem 10. Let D = 〈A,R〉 be a dependence graph and
δ ∈ (0, 1). The function a 7→ Pr(a) is the unique function w
from A to [0, 1] satisfying the two following points:

(Sum) ∀ a ∈ A, w(a) =
∑
b∈A Per(b, a)w(b);

(Norm)
∑
a∈A w(a) = 1.

We are ready to define the Pagerank power function.

Definition 26. Let δ ∈ (0, 1). The power function Prfδ
transforms any dependence graph D = 〈A,R〉 into the rank-
ing s.t. ∀ a, b ∈ A, 〈a, b〉 ∈ Prfδ(D) iff PrDδ(b) ≤ PrDδ(a).

We axiomatically analyze the Pagerank power function:

Theorem 11. Let δ ∈ (0, 1). The power function Prfδ
satisfies (TD1)-(TD4), but violates (T1)-(T3), (TR1)-(TR5).

Proof (Sketch). The satisfaction part follows from (Sum)
and (Norm). The violation part holds, either because of The-
orem 7 or because a disadvantage in dilution can overcome
any advantage in cardinality or quality.

To summarize, there are three families of axioms cap-
turing the notions of transitivity, transitivity-with-dilution,
and transitivity-with-redundancy, respectively. The func-
tion Sbf satisfies an even part of each family, BGf is more
oriented to transitivity-with-dilution, and Prf fully satisfies
it.

3.3 Three new power functions
In the present section, we construct three new power func-

tions fully satisfying transitivity, transitivity-with-dilution,
and transitivity-with-redundancy, respectively. Those three
families of axioms have been defined in Section 3.1.

Our first power function is based on the three following
ideas: the agents have accounts on which points can be
added or removed; the more the dependents of a are nu-
merous and have points on their accounts, the more a has
points as well; the more rapidly an agent gets a great number
of points, the higher she is ranked.

Definition 27. Let D = 〈A,R〉 be a dependence graph.
We denote by AcD the function on {0, 1, . . .} × A such that
∀ i ∈ {0, 1, . . .}, ∀ a ∈ A, AcD(i, a) is the account of a in D
in the step i, i.e.:

Ac(i, a) =

{
1 if i = 0;
1 + Σb∈Dep(a)Ac(i− 1, b) otherwise.

Definition 28. The power function Abf transforms any de-
pendence graph D = 〈A,R〉 into the ranking s.t. ∀a, b ∈ A,
〈a, b〉 ∈ Abf(D) iff one of the two following cases holds:
• ∀ i ≥ 0, Ac(i, a) = Ac(i, b);
• ∃i ≥ 0, Ac(i, b) < Ac(i, a) and ∀j < i, Ac(j, a) = Ac(j, b).

We are ready to axiomatically analyze Abf.

Theorem 12. Abf satisfies (T1)-(T3), (TD1)-(TD3), (TR1)-
(TR3), but violates (TD4), (TR4), (TR5).

Proof (Sketch). We begin with (T1). Case A: the de-
pendents of b have the same accounts as the corresponding
dependents of a, in any step. Then, the account of a is at
least as big as that of b, in any step. Case B: on the contrary,

there is a difference, in some step. Let i be the smallest step
where there is a difference. Then, the account of a is greater
than that of b in step i+ 1 (and at least as big below i+ 1).
The axiom (T3) holds, because of the same proof, except
that Case A is impossible. Concerning (T2), it follows from
the top priority of Step 0. The other axioms are satisfied or
violated because of Theorems 6 and 7.

Our second power function consists in introducing the no-
tion of power dilution in Abf.

Definition 29. Let D = 〈A,R〉 be a dependence graph.
We denote by DacD the function on {0, 1, . . .}×A such that
∀ i ∈ {0, 1, . . .}, ∀ a ∈ A, DacD(i, a) is the dilution-based
account of a in D in the step i, i.e.:

Dac(i, a) =

{
1 if i = 0;
1 + Σb∈Dep(a)(Dac(i− 1, b)/|Pow(b)|) if i > 0.

Definition 30. The power function Daf transforms any de-
pendence graph D = 〈A,R〉 into the ranking s.t. ∀a, b ∈ A,
〈a, b〉 ∈ Daf(D) iff one of the two following cases holds:
• ∀ i ≥ 0, Dac(i, a) = Dac(i, b);
• ∃ i ≥ 0, Dac(i, b) < Dac(i, a) and ∀ j < i, Dac(j, a) =
Dac(j, b).

We axiomatically analyze Daf.

Theorem 13. Daf satisfies (TD1)-(TD4), but violates (T1)-
(T3), (TR1)-(TR5).

Proof (Sketch). The axiom (TD4) follows from the top
priority of Step 0. Concerning the other satisfied postulates,
the reasoning is similar to the one for Abf. The remaining
postulates are violated, either because of Theorem 7 or be-
cause a disadvantage in dilution can overcome any advantage
in cardinality or quality.

Finally, we define a third power function by counting the
extended supporters of the agents.

Definition 31. The power function Cbf transforms any de-
pendence graph D = 〈A,R〉 into the ranking such that
∀a, b ∈ A, 〈a, b〉 ∈ Cbf(D) iff |{b}∪Ext(b)| ≤ |{a}∪Ext(a)|.

We analyze Cbf with the axioms of Section 3.2.

Theorem 14. Cbf satisfies (TR1)-(TR5), but violates (T1)-
(T3), (TD1)-(TD4).

Proof (Sketch). The satisfaction part essentially fol-
lows from the following fact: if there is no redundancy in
the power of an agent a, then |{a}∪Ext(a)| = 1+ |Ext(a)| =
1 +

∑
b∈Dep(a) |{b}∪ Ext(b)|. The violation part holds, either

because of Theorem 7 or because, in certain examples, a dis-
advantage w.r.t. redundancy can overcome any advantage
w.r.t. cardinality or quality.

4. COMBINING FUNCTIONS
As emphasized in the introduction, dependence functions

and power functions can be combined to produce game-
based power evaluations that satisfy interesting properties.

Definition 32. A game-based power evaluation is a func-
tion Γ transforming any boolean game B = 〈A,Φ, {γa}a∈A,
{Φa}a∈A〉 into a ranking on A.
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A first postulate for game-based power evaluation is the
following: if a dominates b with respect to every agent in
the game, then a should be at least as powerful as b. More
formally:

Postulate 8. A game-based power evaluation Γ satisfies
Universal Dominance (UDom) iff, for every boolean game
B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉, ∀ a, b ∈ A, if ∀ c ∈ A,
DomB(a, b, c), then 〈a, b〉 ∈ Γ(B).

The second postulate says the following: if an agent a does
not appear in any minimal effective coalition for the goal of
a player in the game, then each agent in the game is at least
as powerful as a. More formally:

Postulate 9. A game-based power evaluation Γ satisfies
Universal Absence of Power (UAP) iff, for every boolean
game B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉, ∀ a ∈ A, if there is
no C ⊆ A and b ∈ A such that MinCanB(C, γb) and a ∈ C,
then ∀ c ∈ A, 〈c, a〉 ∈ Γ(B).

Now, the idea is to combine dependence and power func-
tions, in order to construct game-based power evaluations
satisfying our postulates.

Definition 33. Let ∆ be a dependence function and Π a
power function. We denote by Π ◦ ∆ the combination of
Π and ∆, i.e. the game-based power evaluation such that,
for any boolean game B = 〈A,Φ, {γa}a∈A, {Φa}a∈A〉, Π ◦
∆(B) = Π〈A,∆(B)〉.

Theorem 15. Let ∆ be a dependence function and Π a
power function. If ∆ satisfies (Dom) and Π satisfies (T1) or
(TD1), then Π ◦∆ satisfies (UDom).

Theorem 16. Let ∆ be a dependence function and Π a
power function. If ∆ satisfies (AP) and Π satisfies (T1) or
(TD1), then Π ◦∆ satisfies (UAP).

5. CONCLUSION
Let’s take stock. The main contributions of the paper are

the following:

• a postulate-based analysis of the new dependence func-
tion Vbf and of the existing dependence function Rbf,
with special emphasis on the advantages of the former
compared to the latter;

• a descriptive analysis of the relationship between Vbf

and the concepts of Nash equilibrium and k-resilient
Nash equilibrium;

• a postulate-based analysis of three existing power func-
tions Sbf, BGf, and Prf and four new power functions
Abf, Daf, Cbf, and Dbf, with special emphasis on the
fact that most of our new functions satisfy postulates
that are violated by the existing ones.

As future work, we plan to characterize our dependence
and power functions, that is, to find enough postulates so
that only one method satisfies them all together. We also
plan to provide an axiomatic analysis of a weaker notion
of dependence, which consists in generalizing the concept
of veto to coalitions. The idea is that an agent a depends
on another agent b if and only if, there exists a coalition of
which b is a member such that its intervention is necessary
to ensure that a will achieve her goal.

6. REFERENCES
[1] I. Abraham, D. Dolev, and J. Y. Halpern. Lower

bounds on implementing robust and resilient
mediators. In Proc. of the 5th conference on Theory of
cryptography (TCC 2008), pages 302–319. 2008.
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