
Agent Oriented Modelling of Tactical Decision Making

Rick Evertsz, John Thangarajah and
Nitin Yadav

School of Computer Science and IT, RMIT
University, Melbourne, Australia

{firstname.lastname}@rmit.edu.au

Thanh Chi Ly
DSTO, Perth, Australia

thanh.ly@dsto.defence.gov.au

ABSTRACT
A key requirement in military simulation is to have exe-
cutable models of tactical decision-making. Such models are
used to simulate the behaviour of human entities such as
submarine commanders, fighter pilots and infantry, with a
view to producing realistic predictions about tactical out-
comes. Tactics specify the means of achieving mission ob-
jectives, and should capture both reactive and deliberative
behaviour. The lack of a methodology and supporting tools
for designing computer-based models of tactics makes them
difficult to create, maintain and reuse, and this is now a sig-
nificant problem in military simulation domains. To address
this, we have developed TDF (Tactics Development Frame-
work), a tactics modelling methodology and tool based on
the BDI (Beliefs, Desires, Intentions) paradigm, that sup-
ports agent-oriented structural modelling of tactics and re-
lated artefacts including missions, storylines, goals and plans.
The methodology was initially assessed by analysts in the
undersea warfare domain, and was subsequently evaluated
using a simple scenario in the autonomous unmanned aerial
vehicles domain. The latter evaluation involved a compar-
ison with UML designs, indicating that our methodology
provides significant benefits to those building and maintain-
ing models of tactical decision-making.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

Keywords
AOSE methodology; multiagent system; agent design mod-
els; cognitive modelling

1. INTRODUCTION
Since the earliest days of the computer simulation of mil-

itary problems, there has been a need to model tactical
decision-making. Tactics are a means of achieving a mil-
itary objective in an adversarial context. Applications of
tactics modelling can be simulation-based, e.g. training [13],
or situated in the real world, e.g. UAVs (Unmanned Aerial
Vehicles). In such applications, the tactics models are used

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

to drive the behaviour of the entities, for example, in live
fire training scenarios [12].

Early on, procedural languages such as Fortran were used
to model tactics, for example, in the PACAUS air com-
bat simulation platform. However, frustration with this
approach led to a successful early application of the BDI
(Beliefs, Desires, Intentions) agent programming language,
dMARS, to improve the modelling of air combat tactics [28].
TacAir Soar [24] is another successful AI-based approach to
tactics modelling.

Despite the improvement in modelling effectiveness offered
by BDI languages and cognitive modelling approaches such
as Soar, major problems remain. Models of tactics typically
involve a mix of reactive and deliberative decision-making
with sudden context switches in response to environmental
change. This can make the implementation difficult to un-
derstand, debug and maintain, particularly when there is a
team maintaining the code base.

Over the last 20 years, our experience, working with groups
who model military tactics, has revealed a recurrent theme:
model reuse is problematic, particularly when a model is
shared across team members. It is not unusual for an ana-
lyst to implement a model from scratch rather than try to
understand and reuse another’s model.

Our current user community of military analysts has over
15 years of experience in agent-based simulation, working
closely with military SMEs (Subject Matter Experts). They
have been using paper-based workflow diagrams and UML
to design tactics models for Undersea Warfare (USW) before
implementing them in JACK [38], a Java-based agent pro-
gramming language. As their code base has grown in size,
this approach has not scaled well. The lack of an appropri-
ate design methodology (and tools) to capture the tactics
makes this task almost impossible for large systems.

The objective of our research is to develop and evaluate
a methodology and tool that supports the demands of mod-
elling tactical decision-making. We have focused on sup-
porting the design of tactics that must work effectively in
dynamic domains requiring the application of sophisticated,
decision-making, such as that exhibited by human tacti-
cians, e.g. submariners or fighter pilots. Effective perfor-
mance in such domains requires capabilities such as the bal-
ancing of reactivity with proactivity. The entity must be
goal directed, but must also be able to switch focus when
the environment changes in an important way, or when it
discovers that one of the assumptions underlying its cur-
rent tactical approach is invalid. It may also need to co-
ordinate its activities with peers who are working towards

1051



the same goal. It has been argued that these capabilities,
namely autonomy, reactivity, proactivity and social ability,
are characteristic of agent-based systems [39], and that they
are not well supported by most programming paradigms.
With this in mind, we have adopted an AOSE (Agent Ori-
ented Software Engineering) approach to the design of tac-
tical decision-making systems.

In developing our application, TDF (Tactics Development
Framework), we have extended the Prometheus BDI agent
design methodology [31] with explicit support for modelling
tactics. This was a natural choice among the more popular
BDI agent design methodologies [15] because the supporting
Prometheus Design Tool (PDT) [30] generates JACK code
directly, a requirement of our user community which has
been working with JACK for many years.

We present an innovative tool and methodology for agent-
based design, rather than an agent-based implementation per
se. TDF supports the design of agent-based tactical models
that ultimately result in a separate, agent-based application
that uses those models to generate behaviour.

This paper makes several contributions: (i) the state of
the art in AOSE methodologies is advanced by extending,
the proven Prometheus methodology with missions, a wider
range of goal control structures, plan diagrams and tac-
tics design patterns (Section 3); (ii) these new design arte-
facts are implemented in a new tool, that builds on the
Prometheus Design Tool; and (iii) it presents a preliminary
evaluation comprising a pilot study and a separate assess-
ment by USW analysts indicating that the methodology and
tool will provide significant benefits to tactics design and de-
velopment workflow (Section 4).

2. BACKGROUND
In this section we present some background to the method-

ology. We begin with a brief overview of BDI agents and
how tactics relate to them. We also describe the TACSIM
tactical simulator and the USW domain, which was the ini-
tial target of our methodology and tool. Finally, we present
some related work on modelling tactics.

2.1 BDI Agents and AOSE
The BDI agent paradigm [34] is a popular approach to

developing multi-agent systems in which agents are modelled
using mental constructs such as beliefs, goals and plans.

Briefly, a BDI agent system has a library of programmer-
defined plans that are utilised to achieve the goals of the
agents. Often, there are multiple plans for achieving a par-
ticular goal, and the choice of plan depends on the agent’s
current situation. For example, a goal to Return to Base

could be achieved by one of two plans: Regular Route Plan

and Concealed Route Plan, depending on whether the en-
emy has been detected or not.

When there are multiple plans to achieve the goal, if one
plan fails then another is attempted, if applicable in the cur-
rent situation. This built-in failure recovery is an important
aspect of BDI agent systems.

A plan is composed of actions and (sub)goals, where ac-
tions are considered as atomic execution statements (e.g.
fire torpedo) and the (sub)goals in turn are handled by
other plans. This naturally gives rise to a goal/plan tree
that describes the possible means of achieving the top-level
goals. This can also be seen as a description of the pos-
sible behaviours of the agent system and indeed in AOSE

methodologies these goal/plan trees are a way of describing
behaviour models.

AOSE is concerned with how to specify, design, imple-
ment, validate and maintain agent-based systems. There are
a number of well established AOSE methodologies, includ-
ing ANEMONA [3], ASPECS [8], Gaia [40], INGENIAS [32]
O-MaSE [10], PASSI [7], Prometheus [31], ROADMAP [22]
and Tropos [4]. Although there are important differences
between these methodologies [9], their common agent-based
focus means that there is a large area of overlap, for exam-
ple, they all facilitate the decomposition of the system into
functionally distinct components. Nevertheless, during our
analysis of the requirements for modelling tactical decision
making, we have identified a number of areas for improve-
ment. These relate to high-level tasking (termed ‘missions’);
what the tactics achieve (‘goals’); and how they achieve their
goals (represented as ‘plan diagrams’).

2.2 Definition of Tactics
In the preceding discussion, we referred to tactics and tac-

tical decision making. The Oxford English Dictionary de-
fines tactics as: “The art or science of deploying military
or naval forces in order of battle, and of performing warlike
evolutions and manoeuvres”.

Thus, tactics are adversarial in nature. However, we have
adopted a less restrictive definition that focuses on their flex-
ibility:

A tactic is a specification of responsive, goal-directed be-
haviour.

From this perspective, tactical decision making seeks to achieve
an objective in a situation where the system may have to re-
spond to unexpected change. The notion of responsiveness
is what defines a tactic as something more specific, yet more
flexible, than a general behaviour specification. For exam-
ple, a behaviour specification of how to follow a flight plan
to a destination would not be regarded as a tactic. However,
a specification of how to navigate to a destination, in a way
that can avoid unexpected adverse weather, is indeed tac-
tical. An effective tactical decision-making system must do
more than simply blindly execute a procedure; it must be
able to respond in a timely manner to events that interfere
with the achievement of its goals.

2.3 TACSIM
Developed by DSTO (Defence Science and Technology Or-

ganisation), TACSIM supports the modelling of the USW
domain and generates quantitative predictions of how pro-
posed capability will impact submarine performance and op-
erational effectiveness. TACSIM generates its predictions
by combining JACK-based USW tactics with discrete event
simulation to enable Monte Carlo runs. Monte Carlo simu-
lation typically involves many thousands of runs.

2.4 The Undersea Warfare Domain
Although our methodology and tool can be applied to any

domain, we present a brief overview of the USW domain be-
cause this provides a better understanding of the motivation
for the methodology.

The USW domain is distinguished by the paucity of infor-
mation about the current situation. A submarine comman-
der’s knowledge of the tactical situation is time consuming

1052



to acquire, very limited and is sometimes highly uncertain.
This severely impedes the decision-making process - much of
a commander’s tactical repertoire is concerned with building
situation awareness whilst not being detected. This places
constraints on his use of sensors and the types of manoeuvre
available.

On a submarine, sonar is the most important class of sen-
sor. Due to the requirement to remain concealed until it
is time to attack, a submarine commander mostly relies on
passive rather than active sonar, because the latter could
reveal his presence. The undersea environment is noisy and
heterogeneous (sound may not travel in straight lines). This
makes the data difficult to interpret and the submarine crew
must employ sophisticated techniques to improve reliability,
for example, Target Motion Analysis [6].

Submarines have a wide range of actions available in sup-
port of their tactics, including course, speed and depth changes;
deploying countermeasures; firing torpedoes; and using ac-
tive sonar. However, it is difficult for the uninitiated to ap-
preciate how such seemingly simple actions can contribute
to a rich repertoire of USW tactics.

In contrast to other military domains, published studies
of human decision-making in USW are few and far between
because tactics are kept secret. Studies of decision-making
in submarine-related tasks have focused on the biases and
limitations of the human cognitive system. The only ac-
cessible study of submarine commander decision-making is
Project Nemo [19]. Analysis revealed a shallow, adaptive
goal structure characteristic of schema instantiation [37]. In
other words, the commanders had built up a repertoire of
situation descriptions coupled with tactics that worked well
in those situations, rather than performing a search through
a larger problem space. This approach to decision-making
is a trademark of expert problem solving [23] and is well
represented by the BDI paradigm which tends to focus on
pre-compiled recipes for problem solving, rather than deriv-
ing the solution from first principles.

2.5 Related Work
In general, software engineering is an error-prone process.

In an effort to reduce errors, software engineers have adopted
a wide range of approaches ranging from Domain Specific
Languages that offer an appropriate level of abstraction, to
software development methodologies that impose a process
that reduces the opportunity for error. Developing sound
AOSE practices is vital for tactics modelling that is applied
to dynamic and complex domains. Nevertheless, to date
there are almost no published studies of software engineer-
ing approaches to modelling military tactics ([36] is a notable
exception). Although there have been a number of studies
of human behaviour modelling for military simulation, they
have all focused on tools, techniques and research themes,
rather than the software engineering aspects, cf. [2]. UML
has been suggested as a method for modelling military be-
haviour [26], but our user community has applied UML to
USW tactics modelling for many years, and has found it
wanting.

A key feature of our methodology is the provision of de-
sign patterns for tactics. In the realm of software engineer-
ing, design patterns were first proposed for object-oriented
programming [16] to foster software reuse. Subsequently,
the notion of design pattern was successfully applied at the
agent architecture level, for example, in the early days of the

development of the Java mobile agent platform, Aglets [25].
This successful mapping is not surprising, because despite
differences such as autonomy, like objects, an agent encap-
sulates internal state and offers a set of interaction methods,
cf. [1].

However, the internal functioning of agents that embody
sophisticated military tactics, is very different to that of typ-
ical objects. It has been argued that tactics require flexible,
goal-oriented execution that can include concurrent tasks
[36], necessitating the development of a different class of
design pattern. Hence, in this work we directed our ef-
fort towards a methodology that supports the BDI model
of agents.

As we describe our framework ahead, we will outline fur-
ther related work relevant to the different aspects of our
framework.

3. OVERVIEW OF TDF
This section presents TDF in the context of a representa-

tive USW vignette developed in conjunction with our user
community. This vignette is based upon a fictional scenario
adapted from the computer game “Dangerous Waters”1, and
has been chosen because it does not embody classified tac-
tical information. The confines of this paper do not allow
a full exposition of the design, so we have focused on those
aspects that illustrate the novel contributions of TDF.

3.1 Outline of the Approach
Much of the difficulty in agent-oriented design lies in de-

termining how best to decompose the proposed application
into functionally distinct components, and consequently this
is where Prometheus and other AOSE methodologies have
been focused. However, in domains such as USW that in-
volve sophisticated tactical decision-making, a large part of
the modelling problem is concerned with individual agent
tactics, rather than how groups of agents interrelate to one
another and their environment. This necessitates a focus on
how an agent achieves its objectives, and largely pertains
to the decomposition of tactical goals and their mapping to
procedures. Our tool augments PDT with a high-level, dia-
grammatic procedural representation of tactics that is also a
help during knowledge acquisition; tactics are goal-oriented
and procedural in nature, and it is beneficial for SMEs to
be able to critique the diagrams at an early stage, in or-
der to verify that the analyst has correctly interpreted their
description of the tactics.

Typically, agent-oriented systems embody a fairly static
system architecture; the number of agent instances varies,
but the behaviour of those agents is largely defined by the
time the application is deployed. In contrast, tactics mod-
els are built for a particular training scenario or study, but
the models will be frequently augmented and/or changed
to handle new scenarios and studies. This requires a dy-
namic development cycle and an emphasis on the design and
maintenance of sets of tactics that can change from study
to study. TDF supports reuse through the introduction of
‘tactics design patterns’ that summarise the attributes of a
tactic, including its main objective, sub-goals and methods
(plan diagrams). Tactics design patterns offer an idiomatic,
BDI method of specifying behaviour at a level of abstraction
that makes the intent clear and facilitates communication

1http://en.wikipedia.org/wiki/Dangerous_Waters

1053



between analysts. Note that the tool does not support the
modelling of team structures, however, this is planned for
the future.

Although the development of TDF was motivated by the
need to support the design and maintenance of USW tac-
tics, we believe that the approach has wider application to
multi-agent systems where modification and reuse of be-
haviour specifications is important. Further, the enhance-
ments to the Prometheus methodology with respect to goal
control structures and plan diagrams could be applied to
other AOSE methodologies that follow a BDI agent model.

3.2 Main TDF Methodology Stages
In keeping with the Prometheus methodology, TDF par-

titions tactics modelling into 3 main stages:

• System Specification. Identification of system-level
artefacts, namely missions, goals, storylines, percepts,
actions, data, actors and roles.

• Architectural Design. Specification of the internals
of the system, including the different agent types (by
grouping roles), the interactions between the agents
(via protocols), and messages.

• Detailed Design. Definition of the internals of the
agents, i.e. plan diagrams, internal events, messages
sent and received, and data that is used by the agent.

Tactics design patterns combine artefacts that span the
three design stages, encapsulating them in a way that yields
a reusable template.

3.3 Missions
Military simulation studies are usually motivated by a vi-

gnette - a general description of a situation to be used for
the purposes of analysis. A mission is more specific than a
vignette and is intended to be executed. In TDF, each mis-
sion specifies an expected sequence of interactions between
the system and its environment, and is therefore a central
driver in the tactics design process. Tactics are the means
of achieving the mission objective.

A TDF mission comprises the following fields:

• Objective. The primary goal, e.g. “Destroy enemy
submarine”

• Secondary Objectives. Secondary goals to be achieved
if an opportunity presents itself, e.g. “Identify other
maritime vessels”

• Mission Statement. A description of the mission,
e.g. “BLUE STG (Surface Task Group) is tasked with
destroying the RED base. We expect RED to have
dispatched a submarine to intercept. RED’s best tactic
is to intercept STG in the Strait, a significant choke
point. If the RED submarine reaches the Strait, it will
be a threat to STG. Make haste to the Strait, locate
and destroy the RED submarine.”

• Operational Constraints. States of the world to
be maintained for the duration of the mission, e.g.
“Stealth is paramount. Do NOT take advantage of
any opportunities to engage surface vessels, regardless
of any hostile action on their part.”

• Risks. Known risks and dangers that can help prompt
the design of tactics to handle unexpected situations,
e.g. “The number of RED submarines is unknown. A

RED submarine has been detected, but there may be
other RED submarines en route or already lying in
wait.”

• Opportunities. Situations that could be exploited,
e.g. “The RED submarine(s) will have to move fast
and so will be more detectable than usual.”

• Storylines. Alternative ways that the mission might
play out, e.g. “Navigate to Area of Operation, Search
for Target, Classify Contact, Attack Target, Confirm
Target Destroyed.”

• Data. Mission-specific information, e.g. “mission route,
map, danger areas, enemy submarine class, undersea
contour map”

3.4 Storylines, Actors, Roles, Percepts and Ac-
tions

Scenarios, actors, roles, percepts and actions are a stan-
dard part of Prometheus, but the scenario concept has been
renamed ‘storyline’ in TDF because the term ‘scenario’ has
a number of alternate meanings in military vocabulary. Sto-
rylines map out key sub-sequences of tactics-related activity
that can occur as part of a mission. A storyline can comprise
a sequence of goals, actions, percepts and sub-storylines. As
each storyline is developed, the need for particular tactical
approaches will become apparent together with supporting
goals, actions and percepts. Storyline development is com-
plete when there are enough storylines to describe the dif-
ferent ways that each mission can play out.

To illustrate, the Incoming Torpedo storyline has the fol-
lowing steps: Torpedo Detected (percept), Estimate Bear-

ing And Distance (goal), Deploy Countermeasures (goal),
Evade Torpedo (goal).

As storylines are mapped out, it soon becomes apparent
that the goals initiate particular functions within the over-
all system. These functional relationships are expressed as
roles that encompass one or more goals. Percepts to be
handled and actions to be produced by the role are grouped
within that role. Example roles in this USW vignette include
Navigation, Sonar Interpretation and Countermeasures

Handling. Roles ultimately encapsulate agent functionality
and are used to guide the decomposition of the system into
agents in the Architectural Design stage of the methodology.

Actors are used to model entities that generate percepts
and/or are affected by system actions. From a modelling
perspective, actors are opaque entities. In contrast to agents,
actors are external to the system and their internal structure
is not modelled - they are effectively black boxes that pro-
duce behaviour and respond to system actions. In the USW
domain, actors are used to represent the functional compo-
nents of the submarine, for example the Countermeasures

and Sensor subsystems.

3.5 Goal Structures
Specifying missions and their storylines prompts the de-

signer to think about the goals that need to be achieved
during mission execution. Consideration of top-level goals
will lead to the derivation of sub-goals that have to be sat-
isfied on the way to achieving the overall mission objective.
These goal/sub-goal relationships are expressed as a hierar-
chical ‘goal structure’. Because tactics are inherently goal
oriented, the goal structures form the scaffolding around
which the tactics are ultimately built, and offer a high-level
description of a tactic’s functional decomposition.

1054



During our analysis of the USW domain, it became ap-
parent that previous AOSE methodologies do not provide
a sufficiently rich representation of goal control structures.
Tropos[4] provides a wider range of goal types that are well
suited to goal-oriented requirements analysis, such as soft
goals, but these do not address the goal-oriented control
structures required to express tactics at a high level of ab-
straction. Ideally, a goal-based representation of tactical de-
cision making should encode reactive/deliberative goal con-
siderations, such as the conditions under which a goal should
be suspended or resumed. These goal conditions and inter-
goal relationships are important to tactical decision making.
Goal-related attributes are usually implicit, hidden deep in
the system’s implementation. The objective in TDF is to
make these hidden dependencies explicit at the design level,
so that the designs are a more accurate reflection of the
desired system behaviour, thereby promoting user compre-
hension and the potential for design reuse and sharing. TDF
extends the and/or connectives of PDT with the following
control structures:

• Goal Ordering. Goals are implicitly ordered from
left to right; this reflects the fact that tactics typically
involve a sequence of goals that have to be achieved one
after another. This default ordering can be overridden
to express cases where serial goal order is unimportant.

• Conditional. These have a guard that has to be true
for the goal to be tried. If the guard is not true, the
goal is skipped. Figure 1 shows a conditional goal
Evade Torpedo with the guard: no countermeasures

remaining. The Handle Incoming Torpedo goal is an-
notated with a suspend/resume condition that handles
the situation where the torpedo veers off course but
may reacquire the target.

• Concurrent. Sibling sub-goals that are to be adopted
concurrently and independently. The parent goal will
only succeed once the concurrent goals have been suc-
cessfully achieved. See Deploy Countermeasures in
Figure 1.

• Anonymous node. Used to partition the goal struc-
ture into sub-trees that have a different logical rela-
tionship to one another. See Figure 1 where Deploy

Countermeasures and Evade Torpedo have an and re-
lationship within the overall or level of the graph.

• Asynchronous. Operationally, the parent goal does
not wait for any asynchronous child goals to succeed.
Useful in cases where a sequence of tasks needs to be
initiated without waiting for them to complete success-
fully.

• Maintenance. Expressed as a guard on a goal that
spans all child goals. If the guard becomes untrue,
the system will attempt to make it true again. This
behaviour is an important component of tactics that
must deal with a world that changes unexpectedly.
Note that this construct reflects the reactive behaviour
of maintenance goals but not the proactive behaviour,
as described in [11].

• Preserve. Expressed with a guard labelled ‘while’,
the sub-goal is pursued as long as the guard is true. If
the guard becomes false, the goal is dropped.

Figure 1 illustrates the goal structure for Handle Incom-

ing Torpedo, which derives from the Incoming Torpedo sto-
ryline outlined in Section 3.4.

Handle Incoming
Torpedo

Evade
Torpedo

[no countermeasures
remaining]

Evade
Torpedo

Deploy
Countermeasures

or

Launch Pair
of Jammers Launch Decoy

concurrent

[suspend if torpedo off course
 resume if torpedo on course]

Figure 1: Handle Incoming Torpedo Goal Structure

The first sub-goal to be evaluated is Evade Torpedo pro-
vided that the guard no countermeasures remaining is true
(a ‘conditional’ goal). If the guard is false, then the ‘anony-
mous’ node (empty circle) is tried because of the or rela-
tionship.

The anonymous node has two sub-goals (with an implicit
and relationship). To Deploy Countermeasures the subma-
rine concurrently tries Launch Pair of Jammers and Launch

Decoy, denoted by the ‘concurrent’ label. Once both sub-
goals have been achieved, it tries to achieve Evade Torpedo.

Note that to fully utilise the various control structures
mentioned above, in practice the agent implementation lan-
guage should provide the necessary infrastructure to support
them. Our target agent system is JACK [38] and we have
specified code generation for mapping to JACK language el-
ements, such as the use of the @parallel and @maintain, to
support the concurrent and preserve control structures,
respectively. The details of this mapping are beyond the
scope of this paper.

The term ‘maintenance goal’ has a long history of ap-
plication in BDI systems. Unfortunately, the term can be
misleading. In JACK, a maintenance statement defines a
sub-goal to be pursued as long as some condition is true,
e.g. “search for target as long as you have sufficient fuel to
return to base”. However, there is no sense in which anything
is maintained, except in the very loose sense of maintaining
the pursuit of a goal while some condition holds. A JACK
maintenance statement is really a form of guarded action,
as expressed by PRS’s ‘preserve goal’ statement [21]. PRS
also has a maintain goal that attempts to achieve a state
that should have been maintained but was violated. TDF
supports the expression of a preserve goal and a maintain
goal through the use of the while and maintain statements,
respectively. A goal will be pursued as long as its while

condition is true; this corresponds to JACK’s @maintain

statement.

3.6 Plan Diagrams
The goal structures prompt the specification of the vari-

ous ways that the goals can be achieved, expressed as plan
diagrams. A plan diagram is a high-level procedural repre-
sentation that shows the sequence of steps executed by some
part of the tactic. Taken together, the collection of plan dia-
grams procedurally specifies how the whole tactic does what
it does.

TDF plans are a level of abstraction above the implemen-
tation, and should be viewed as diagrammatic pseudo-code

1055



InitialAction

Activity

Data

Decision/Merge

Failure

Fork/Join

Goal

Asynchronous Goal

Note

Percept

Success

Wait

Message

label

label

label

label

label

label

label

label

label

Figure 2: Plan Diagram Node Icons

rather than an executable implementation. A TDF plan
specifies the general steps of a procedure without getting
bogged down in implementation detail. A plan diagram is
an extended implementation of the Prometheus methodol-
ogy’s unimplemented notion of ‘process diagram’ [31].

There is a long tradition of using diagrams to represent
procedures, whether as flow charts [18], Petri Nets [33], re-
cursive transition networks (e.g. PRS [17]), UML activ-
ity diagrams [20], Business Process Modeling and Notation
(BPMN) [29] or countless variations. Because UML is widely
used for diagrammatic software specification, we adopted
it as the basis for the representation of plan diagrams in
TDF, modifying where necessary to reflect BDI semantics
and PDT notational convention. The overriding goal is to
foster tactics designs that are easy to understand and mod-
ify. The plan diagram representation encourages this by re-
ducing some of the complexity that can be expressed in UML
activity diagrams, excluding elements that are not relevant
to BDI models, e.g. parameter passing via input/output
pins (which is handled in BDI models via event parameters,
or via the beliefs database), and exception handler nodes.

Despite the similarities in notation between plan diagrams
and UML activity diagrams, the underlying semantics have
very little in common due to the fundamental differences
between the BDI and objected oriented paradigms. For ex-
ample, in BDI, each node either succeeds or fails. If it fails,
the invocation of the plan fails and the execution engine will
try an alternative way of achieving the goal if one is avail-
able. Another important difference is that a plan may be
suspended if a higher priority task has to be performed; a
plan may also be abandoned if certain conditions no longer
hold true.

Figure 2 shows the TDF plan diagram node icons. The
node types are:

• Initial. Plan diagrams have a unique start node, pre-
ceded by either a goal, percept or message, as well as
an optional guard.

• Action. Performed on the agent’s environment.

• Activity. Denotes a sequence of computational steps.

• Data. Data access and update.

• Decision/Merge. A decision node represents a con-
ditional choice between options. A merge node transi-
tions to its outgoing arc as soon as one of its incoming
arcs completes.

• Failure. Terminates the plan with failure.

• Fork/Join. A fork node denotes concurrent threads.
A join node synchronises its incoming threads.

Follow Route

move to
waypoint

at next waypoint

[at destination]
[get waypoint]

[else][at destination]

[get waypoint]

Figure 3: Waypoint Following Plan Diagram

• Goal. A goal to be achieved.

• Asynchronous Goal. A goal to achieve without
waiting for it to succeed.

• Message. A message sent to another agent.

• Note. For documentation.

• Percept. Precedes initial node. Denotes a reactive
plan.

• Success. Terminates the plan successfully.

• Wait. Waits for a condition to become true. Used to
express temporal information, such as waiting until a
particular time, for an elapsed amount of time, or for
a more general condition to become true.

Iteration can be expressed as shown in Figure 3. The
plan performs a move to waypoint action and waits until
the next waypoint has been reached. It loops until the desti-
nation has been reached. The label [get waypoint] denotes
a data lookup.

3.7 Tactics Design Patterns
A key objective for TDF is to offer a high-level representa-

tion that supports reuse and sharing by providing the devel-
oper with an extensible library of tactics design patterns.
Tactics design patterns, termed ‘tactics’ in TDF, encode
general-purpose tactical solutions that can be customised
for more specialised applications. A number of approaches
to the provision of re-usable design templates have been in-
vestigated, particularly in the field of Knowledge-Based Sys-
tems. Generic Tasks [5] are a means of representing high-
level problem solving in a way that captures the strategy
using a vocabulary that is relevant to the task. In a similar
vein, Problem-Solving Methods (PSMs) [27] have been pro-
posed as a way of expressing domain-independent, reusable
strategies for solving certain classes of problem. A PSM
comprises a definition of what it achieves, how to achieve it
and what it needs to perform its function. These are termed
respectively its ‘competence’, ‘operational specification’ and
‘requirements/assumptions’. In our approach, the what is
expressed as the ‘objective’ and ‘outcomes’, the how as the
‘goal structure’ and ‘plans’, and the needs as the ‘informa-
tion required’.

The properties of tactics design patterns are listed below.
An effort was made to use property names that are intuitive

1056



to analysts and SMEs; for example ‘objective’ rather than
‘top-level goal’, and ‘goal structure’ rather than ‘goal tree’.

• Name. Every tactic has a unique identifier.

• Objective. This is the top-level goal the tactic achieves
and captures the proactive nature of tactics, e.g. “Es-
cape Torpedo”

• Trigger. A percept that triggers the use of the tactic.
This is used to model the reactive nature of a tactic,
i.e. one that is triggered by an environmental event
rather than by adopting a goal to be achieved. Typ-
ically with tactics, the trigger will lead to goal-based
decision-making, but this field allows for reactive be-
haviour without goal deliberation, e.g. “Incoming tor-
pedo detected”

• Problem Description. A description of the types
of problem the tactic applies to, e.g. “An incoming
torpedo has been detected on passive sonar, but our
countermeasures are depleted”

• Solution Description. A description of how the tac-
tic achieves its objective, e.g. “Having no countermea-
sures, the only way to evade is to flee. The tactic can
also involve firing a torpedo along the bearing of the
initial detection before fleeing. This tactic can flee in
open water, but can also take advantage of undersea
terrain, using it for concealment.”

• Context. A tactic is only applicable if its context is
true, where a context is a boolean test of the state of
the world, e.g. “No countermeasures remaining”

• Outcomes. A description of how the world will change
after the tactic has been successfully executed.

• Restriction. Properties of the world that must be
maintained for the duration of the tactic’s execution.

• Information Required. Information that the tactic
requires to perform its function, e.g. “undersea contour
map, torpedo bearing, torpedo origin, ownship state
(speed, position etc.)”

• Information Updated. Updates to the agent’s be-
liefs.

• Goal Structure. A hierarchical representation of the
goals underlying the tactic.

• Plans. A collection of references to plan diagrams, e.g.
“Track Torpedo, Evade Torpedo, Hide Behind Terrain”

• Source. References to source material used to create
the tactic, e.g. “Drafted from Doctrine Manual USW-
2-10.”

In TDF, plans are grouped in terms of the tactics they
contribute to, and are represented at an abstract level inde-
pendent of the particular implementation language. This en-
courages the analyst to think in terms of high-level ‘tactics’,
and promotes procedural abstraction. Thinking in terms
of tactics, rather than more low-level plans, also facilitates
merging, reuse and maintenance of tactics sets. The tactics
design pattern makes the important attributes of the tactic
explicit. For example, if a tactic requires that the submarine
remain submerged at all times, this is defined as an explicit
restriction. When considering merging this tactic with
one that involves coming to the surface (an outcome of the
latter tactic), it is obvious that there is a conflict that needs
to be resolved. In our experience, this type of conflict is
usually not apparent at the plan level; the surfacing action

might be embedded deep down in the goal/plan tree and is
likely to be missed when looking at the top-level plans.

3.8 The TDF Tool
The TDF tool has been demonstrated previously [14], and

is implemented as an Eclipse plug-in that extends PDT. The
tool has desirable features such as type safety, automatic
propagation, and code generation. These features play a
significant role in ensuring that design artefacts created by
the TDF tool are sound, and that the design maps to exe-
cutable code.

• Type safety. To add an entity to a diagram, a user
may either select an existing entity from a list or create
a new one. This approach not only provides filtered
entity-specific lists but also avoids typing errors.

• Automatic propagation. Entities that span across
multiple editors are automatically propagated. For
example, when a new goal is added to the Analysis
Overview, it is automatically propagated to the Goal
Overview editor.

• Code generation. The plugin comes with an exten-
sion capable of generating skeleton code for JACK [38]
and GORITE [35]. The code generation feature pro-
vides a predefined structuring, in the form of JAVA
packages, to the system. This facilitates and enforces
good software engineering practices. In addition, the
code generation is built to allow an iterative design
and coding approach. The generated files are marked
with areas that are affected by automatic code gen-
eration. Any changes outside of these marked areas
are preserved when generating code after updating an
existing TDF design.

Overall, providing the TDF tool as an Eclipse plugin inte-
grates the design and development of tactics within a unified
environment. One of the future directions for the tool is to
extend the code generation abilities to cover agent-oriented
programming languages other than JACK and GORITE.
This will encourage different communities to adopt the TDF
methodology for designing tactical decision-making systems.
In parallel, we are also working on developing an automatic
report generator that will combine the export image func-
tionality with additional information that can be processed
from properties defined for various entities.

4. EVALUATION
We have begun an initial evaluation of TDF, comprising

informal feedback from our user community and a separate
pilot study comparing user comprehension of a TDF design
with an equivalent UML one.

4.1 User Community Feedback
As a first step towards evaluating our approach, our user

community of USW analysts, applied the proposed method-
ology to some of their USW tactical simulations which they
conduct using TACSIM. Whilst we were not able to observe
the resulting models, due to the sensitive nature of the sim-
ulations, we were provided with written feedback.

The initial feedback from USW analysts is that TDF is
likely to be very useful in the context of Monte Carlo con-
structive tactical simulations because its high-level, design
view of tactics facilitates reasoning about how the agents

1057



will behave at runtime. This is essential in Monte Carlo
simulations because they generate a very large number of
outcomes, making validation by visual inspection of the im-
plementation impractical. The analyst must clearly under-
stand the scope of the tactics models in order to draw the
correct conclusions from the aggregated result of thousands
of simulation runs.

Our users commented that TDF’s use of tactics design
patterns to maintain the link between missions, goals and
implementation will facilitate reuse, and that this is vital to
their workflow. The tactics design patterns should also help
solve search and retrieval problems found in large tactics
repositories. As TACSIM is a long-term endeavour, the col-
lection of TDF tactics design patterns is expected to grow
over time. Without this software engineering support, re-
trieval of relevant content will become increasingly difficult.

4.2 Pilot Study
The objective of the pilot study was to investigate whether

TDF designs are easier to understand than equivalent UML
versions. To this end, a UAV photo reconnaissance scenario
was presented to the participants, because the USW domain
is complex and generally unfamiliar. In this vignette, the ob-
jective of the UAV is to locate a convoy and photograph it.
The design presents various search patterns, avoids no-fly
zones, and includes the ability to handle unexpected situa-
tions such as low cloud, insufficient fuel, and an incoming
missile.

Experimental Conditions. Two groups: TDF vs. UML.
Subjects. 10 postgraduate and senior computer science

students, all very familiar with UML, were randomly as-
signed to the two groups, in equal numbers.

Method. In order to minimise the need to learn the me-
chanics of the TDF and UML tools, the designs were pre-
sented as a collection of static diagrams. All sessions were
run by the same experimenter. Because the TDF group
were unfamiliar with TDF, they were given a 15 minute
overview of the notation. Both groups were encouraged to
ask questions about any notation they were unsure off. All
subjects were allowed unlimited time to peruse the design
and could ask questions related to syntax but not the be-
havioural implications of the design. A 15-item multiple
choice questionnaire was completed immediately after ex-
amining the design. The questionnaire tested the subjects’
understanding of the UAV’s behaviour in specific situations
addressed by the design. The subjects could consult the de-
sign at any time while completing the questionnaire. Time
taken to complete the questionnaire was recorded.

Results. Mean questions answered correctly: TDFµ1 =
82.4%, UMLµ2 = 66.4%. H0: µ1 = µ2. H1: µ1 > µ2

(null hypothesis rejected, p <0.025; one-tailed, independent
t-test). There was no significant difference in the time taken
to complete the questionnaire between the two groups: µ1

= 13.4, µ2 = 13.6 (minutes).
Analysis. This pilot study indicates that TDF’s ap-

proach to tactics representation is more readily understood
than the equivalent UML version. The effect is surprisingly
large, given that the designs were deliberately simplified so
as not to disadvantage UML. The BDI paradigm allows for a
simpler representation of behaviour that can be interrupted,
because an executing plan can be interrupted at any time
by another, higher priority one. In contrast, potential in-
terruptions must be explicitly represented in UML activity

diagrams. If there are more than a few such interruptions,
the activity diagram can quickly become very complex. This
TDF/BDI advantage was ameliorated by keeping the poten-
tial interruptions to just two, and this only occurred in one
activity diagram. We suspect that the experimental effect
would have been even larger if the design had included a
more sophisticated reactive/deliberative mix of behaviour,
such as that represented in TDF by maintenance goals.

5. DISCUSSION
This paper introduced TDF, a novel methodology and tool

for modelling military tactics, which extends a state of the
art agent design methodology with artefacts required for tac-
tics modelling. There is a real need for software engineering
support during the development of military tactics models.
Current approaches, such as UML or direct implementation,
are effective for small sets of tactics, but do not scale well.
Of particular concern is the need to reuse and change the
mix of tactics from study to study. This leads to a require-
ment for designs that, at the level of tactics at least, can be
easily modified. Current AOSE methodologies have focused
on modelling the decomposition of a system into agents and
how those agents interact with one another and their en-
vironment. Though this approach is effective for building
agent-based systems, it falls short when it comes to tactics
modelling.

TDF provides support for tactics representation in the
form of design patterns that include links to high-level plan
diagrams. The provision of conditional goals is key to the
design and maintenance of tactics because tactics typically
mix deliberative and reactive modes of reasoning. Annotat-
ing goals with the conditions under which they are adopted,
maintained, dropped or resumed is a key feature of TDF
that makes the tactics easier to understand, reuse and mod-
ify. This advantage was highlighted by the comparison of
TDF designs with UML versions.

The pilot study indicates a significant tactics modelling
advantage for TDF vs. UML. It will be worth performing a
more extensive evaluation once our user community has used
TDF to build larger USW tactics libraries. We also plan
to evaluate TDF in other military as well as non-military
domains to assess the general applicability of this approach
to tactics design.

TDF’s high-level diagrammatic view provides an opportu-
nity for SMEs to critique the tactics models; an important
part of validation. We are currently extending TDF to fo-
cus on knowledge elicitation and have found that the early
generation of storylines combined with TDF’s conditional
goal structures helps with eliciting the more subtle aspects
of when goals should be adopted/dropped and how a tactic
should respond to changes in the situation.

TDF could also move further in the direction of formali-
sation of its various design artefacts. However, our experi-
ence with PDT users suggests that this can hinder usability.
This could be overcome by allowing the expression of a user-
preferred mix of formal and informal property values.

ACKNOWLEDGEMENTS
We are grateful to the Defence Science and Technology Or-
ganisation (Australia), and the Defence Science Institute
(Melbourne, Australia) for the invaluable support given to
this project.

1058



REFERENCES
[1] Yariv Aridor and Danny B. Lange. Agent design

patterns: elements of agent application design. In
Proceedings of the second international conference on
autonomous agents, pages 108–115. ACM, 1998.

[2] J. Blascovich and C. R. Hartel. Human behavior in
military contexts. National Academies Press,
Washington DC, 2008.

[3] Vicente Botti and Adriana Giret. ANEMONA: A
multi-agent methodology for holonic manufacturing
systems. Springer Publishing Company, 1st edition,
2008.

[4] P. Bresciani, A. Perini, p. Giorgini, F. Giunchiglia,
and Mylopoulos.J. Tropos: An agent oriented software
development methodology. AAMAS, 8(3):203–236,
2004.

[5] Balakrishnan Chandrasekaran. Generic tasks in
knowledge-based reasoning: High-level building blocks
for expert system design. IEEE expert, 1(3):23–30,
1986.

[6] Pedro F. Coll. Target motion analysis from a diesel
submarine’s perspective. Technical report, DTIC
Document, 1994.

[7] Massimo Cossentino. From requirements to code with
the passi methodology. Agent-oriented methodologies,
3690:79–106, 2005.

[8] Massimo Cossentino, Nicolas Gaud, Vincent Hilaire,
Stéphane Galland, and Abderrafiâa Koukam.
ASPECS: an agent-oriented software process for
engineering complex systems. Autonomous Agents and
Multi-Agent Systems, 20(2):260–304, 2010.

[9] S.A. DeLoach, L. Padgham, A. Perini, and A. Susi.
Using three AOSE toolkits to develop a sample design.
IJAOSE, 3(4):416–476, 2009.

[10] Scott A. DeLoach and Juan Carlos Garcia-Ojeda.
O-MaSE: a customisable approach to designing and
building complex, adaptive multi-agent systems.
International Journal of Agent-Oriented Software
Engineering, 4(3):244–280, 2010.

[11] Simon Duff, John Thangarajah, and James Harland.
Maintenance goals in intelligent agents. Computational
Intelligence, 2012.

[12] R. Evertsz, A. Lucas, C. Smith, M. Pedrotti, F.E.
Ritter, R. Baker, and P. Burns. Enhanced behavioral
realism for live fire targets. In R. S. St. Amant,
D. Reitter, and E. W. Stacy, editors, Proceedings of
the 23rd Annual Conference on Behavior
Representation in Modeling and Simulation,
Washington DC, 2014. BRIMS Society.

[13] R. Evertsz, M. Pedrotti, and W. Glover. Realistic
virtual actors for training in counterterrorism. In
Proceedings of SimTecT, 2010.

[14] R. Evertsz, J. Thangarajah, N. Yadav, and T. Ly.
Tactics development framework (demonstration). In
Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems, pages
1639–1640. International Foundation for AAMAS,
2014.

[15] Marie-Pierre Gleizes Federico Bergenti and Franco
Zambonelli, editors. Methodologies and Software

Engineering for Agent Systems : The Agent-Oriented
Software Engineering Handbook. Springer, 2004.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: Elements of reusable
object-oriented design. Addison-Wesley Reading, 1995.

[17] M. P. Georgeff and A. L. Lansky. Development of an
expert system for representing procedural knowledge.
final report, for nasa ames research center, moffet
field, california, usa. Artificial Intelligence Center, SRI
International, Menlo Park, California, USA, 1985.

[18] Frank Bunker Gilbreth and Lillian Moller Gilbreth.
Process charts - first steps in finding the one best way
to do work, 1921.

[19] Wayne D. Gray, Susan S. Kirschenbaum, and Brian D.
Ehret. The précis of project nemo, phase 1:
Subgoaling and subschemas for submariners. In
Nineteenth Annual Conference of the Cognitive
Science Society, pages 283–288, 1997.

[20] Linda Heaton. Unified modeling language (UML):
Superstructure specification, v2.0. Object Management
Group, Tech. Rep, 2005.

[21] François Félix Ingrand, Raja Chatila, Rachid Alami,
and Frédérick Robert. PRS: A high level supervision
and control language for autonomous mobile robots.
In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 1, pages
43–49. IEEE, 1996.

[22] Thomas Juan, Adrian Pearce, and Leon Sterling.
Roadmap: extending the gaia methodology for
complex open systems. In Proceedings of the first
international joint conference on Autonomous agents
and multiagent systems: part 1, pages 3–10. ACM,
2002.

[23] Gary A. Klein. Sources of power: How people make
decisions. MIT press, 1999.

[24] J. E. Laird, R. M. Jones, O. M. Jones, and P. E.
Nielsen. Coordinated behavior of computer generated
forces in tacair-soar. In In Proceedings of the fourth
conference on computer generated forces and
behavioral representation. Citeseer, 1994.

[25] Danny B. Lange and Oshima Mitsuru. Programming
and Deploying Java Mobile Agents Aglets.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[26] Nilesh Maltare, Aditya Parasrampuria, and Sachin
Patel. Exploiting UML to model military organisation
and military behaviour. In 3rd IEEE International
Conference on Computer Science and Information
Technology (ICCSIT), volume 9, pages 461–465.
IEEE, 2010.

[27] John McDermott. Preliminary steps toward a
taxonomy of problem-solving methods. In Automating
knowledge acquisition for expert systems, pages
225–256. Springer, 1988.

[28] G. Murray, D. Steuart, D. Appla, D. McIlroy,
C. Heinze, M. Cross, A. Chandran, R. Raszka,
G. Tidhar, A. Rao, A. Pegler, D. Morley, and
P. Busetta. The challenge of whole air mission
modelling. In Proceedings of the Australian Joint
Conference on Artificial Intelligence, Melbourne,
Australia, 1995.

1059



[29] OMG, Business Process Modeling Notation. Version
1.0. OMG Final Adopted Specification, Object
Management Group, 2006.

[30] L. Padgham, J. Thangarajah, and M. Winikoff.
Prometheus design tool. In Proceedings of the 23rd
AAAI Conference on AI, pages 1882–1883, Chicago,
USA, 2008. AAAI Press.

[31] L. Padgham and M. Winikoff. Developing intelligent
agent systems: a practical guide, volume 1. Wiley,
2004.

[32] Juan Pavón and Jorge Gómez-Sanz. Agent oriented
software engineering with INGENIAS. In Multi-Agent
Systems and Applications III, pages 394–403. Springer,
2003.

[33] Carl A. Petri. Communication with automata:
Volume 1 supplement 1. Technical report, DTIC
Document, 1966.

[34] A.S. Rao and M.P. Georgeff. BDI agents: From theory
to practice. In Proceedings of the first ICMAS (95),
pages 312–319. San Francisco, 1995.

[35] Ralph Rönnquist. The goal oriented teams (GORITE)
framework. In Programming Multi-Agent Systems,
pages 27–41. Springer, 2008.

[36] Glenn Taylor and Robert E. Wray. Behavior design
patterns: Engineering human behavior models. In
Proceedings of the Behavior Representation in
Modeling and Simulation Conference, 2004.

[37] Kurt VanLehn. Problem solving and cognitive skill
acquisition. In M. Posner, editor, Foundations of
cognitive science, pages 526–79. MIT Press, MA, 1989.

[38] M. Winikoff. JACK intelligent agents: An industrial
strength platform. Multi-Agent Programming, pages
175–193, 2005.

[39] Michael Wooldridge. An introduction to multiagent
systems. Wiley. com, 2008.

[40] Michael Wooldridge, Nicholas R. Jennings, and David
Kinny. The Gaia methodology for agent-oriented
analysis and design. Autonomous Agents and
Multi-Agent Systems, 3(3):285–312, 2000.

1060




