
Effective Influence Abstractions for Organizational Design

Jason Sleight and Edmund H. Durfee
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109

{jsleight,durfee}@umich.edu

ABSTRACT
Organizational structures often employ abstraction to specify
broadly-applicable behavioral roles and guidelines to agents,
where abstraction streamlines the design process and leaves
agents room for tailoring actions to the evolving situation.
Too much abstraction, however, can provide too little guid-
ance towards fruitful joint activities or burden agents with
solving complex coordination problems. In this paper, we
examine how abstraction choices for organizational influences
affect both the process of designing organizations and the per-
formance of a multiagent system using designed organizations.
To do so, we identify dimensions of abstraction pertinent to
organization design processes and outcomes. Mapping these
dimensions to an example domain, we empirically evaluate
organizations at different points in the abstraction space to
inform an analytical framework for understanding the impact
of abstraction in organizational design. Finally, we use our
new framework to converge on task-delineated abstractions
as a general-purpose organizing heuristic, and confirm this
heuristic’s effectiveness empirically.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence & Co-ordination, Multiagent Systems

General Terms
design, measurement, performance, experimentation, theory

Keywords
organizational design; abstraction; multiagent coordination;
multiagent decision making; metareasoning

1. INTRODUCTION
Organizational structures for multiagent systems are often

composed of influences on agent behavior, such as incentives
to reward cooperation, or restrictions on action choices to
prevent conflicting behaviors. Abstraction plays a central role
in specifying such influences. For example, broad, encompass-
ing influences can be advantageous if an organization wants
to instill overarching organizational guidance for the agents’
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operational decisions. Alternatively, sets of narrow, detailed
influences can be advantageous if an organization wants to
ensure specific coordination patterns tailored for particular
environmental conditions. This range of desirable abstraction
mechanisms emphasizes the importance of carefully selecting
an abstraction for organizational influences.

Recent work in organizational modeling languages and
automated organizational design processes (ODPs) has rec-
ognized the significance of abstraction choice for creating
effective organizational designs [4, 5, 6, 11, 12, 13], and typi-
cally includes mechanisms for an organizational designer to
formulate abstract influences. However, the field still lacks
a systematic understanding of how abstraction choices im-
pact organizational design processes and outcomes. As the
first main contribution of this paper, we enumerate perti-
nent dimensions of abstract organizational influences, and
empirically evaluate families of organizations that we hand-
crafted to represent several points along these dimensions.
We then use our empirical findings to develop an analytical
framework for understanding how abstraction dimensions
impact an ODP as well as the operational characteristics of
multiagent systems using the organizations the ODP designs.

For our second main contribution, we use our analytical
framework to derive a general-purpose heuristic for selecting
abstract organizational influences based on task-delineated
phases of the agents’ decision problems. Our empirical results
demonstrate that this approach has comparable operational
performance to our best hand-crafted abstraction, but is
more robust to inaccurate statistical estimates in the ODP.

We begin in Section 2 by discussing prior approaches from
the literature and their relation to abstraction in organiza-
tional designs. Then, in Section 3 we present an example
problem domain that we use for illustration and evaluation
throughout the paper, and describe the specific ODP ap-
proach that we extend to accommodate abstract influences.
Building on this foundation, we precisely define what ab-
stract organizational influences mean in this context, and
enumerate the pertinent dimensions for abstraction in organi-
zations (Section 4). In Section 5, we use these dimensions to
construct a space of abstraction approaches, and empirically
evaluate their effectiveness. These results form the foundation
for our analytical framework for understanding the impact
of abstraction dimensions on organizational design processes
and outcomes. Using our framework in Section 6, we derive
task-delineated abstractions as a general-purpose organizing
heuristic, and empirically demonstrate their effectiveness.
Finally, we conclude in Section 7 with a summary of our
findings and some directions for further investigation.
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Figure 1: Example initial state in our firefighting grid world.
Ai is the position of agent i, and Fx indicates a fire with
intensity x. Darker shading indicates higher delay.

2. RELATED WORK
In automated ODPs such as [5, 11, 12, 13], the ODP’s

organizational design space imposes the degree to which or-
ganizational influences will be abstracted, where for example
a design space with detailed specifications implies a narrow
abstraction and vice versa. While each of these prior ODPs
has inherently used an abstraction, little explicit discussion
has been devoted to the question of how to choose an ap-
propriate abstraction. For example, in prior work [13], we
noted that abstraction choice can have substantial impact
on the effectiveness of an ODP; however, we did not perform
an in-depth investigation of how abstraction choice affects
the ODP algorithm or the performance of the organizations
it designs. This paper serves to fill that gap, and provides
insights for selecting an appropriate abstraction to use in
conjunction with automated ODPs.

In order to provide expressive flexibility for a spectrum
of system requirements, recent organizational modeling lan-
guages often explicitly distinguish between various abstrac-
tions that an organization can utilize. For example, OMNI [4]
specifies organizations at abstract (e.g., main organizational
objectives), concrete (e.g., social and interaction structures),
and implementation (e.g., norm interpretation) levels, and
MOISE+ [6] specifications include functional (e.g., schemes
for goal achievement), structural (e.g., roles and their rela-
tionships), and deontic (e.g., duties associated with roles)
dimensions. However, beyond high-level intuitions such as
the modeling semantics associated with each aspect of the
language, there has been insufficient research on when it is
appropriate to utilize a particular construct of a language,
or on how different organizational encoding approaches will
affect the organizational design process and the resulting
organization’s performance. By providing a deeper investi-
gation of how abstraction choices impact organizations, our
work here provides complementary knowledge for guiding
usage of these languages.

In multiagent sequential decision making research, sev-
eral approaches exist for incorporating abstractions into the
agents’ representations and reasoning processes, although
the approaches view abstraction from the operational de-
cision making perspective as opposed to an organizational
design perspective. For example, research into finite state
controllers [3, 8] investigates abstracting histories to create
policies of bounded, finite size. Influence decoupling frame-
works [16] examine how multiagent coordination can be effi-
ciently facilitated through influence abstractions that focus
how the agents’ can affect each others’ policies. Coordination
locale frameworks [15] study how multiagent coordination
can be greatly simplified if the coordination possibilities can
be predetermined and localized. Options research [1, 14]
shows how agents’ behaviors can be abstracted and viewed

as macro-actions that can speed up policy creation. Each of
these approaches (among others not mentioned here) explores
various tradeoffs between the computational efficiency gained
from abstract reasoning or representations versus the (poten-
tial) loss of resulting solution quality, and we leverage these
ideas to guide and inform our investigation of abstractions
as related to organizational influence specifications.

3. BACKGROUND

3.1 Example Domain
For the remainder of this paper, we adopt our previously

developed organizational design problem [13]. We assume
the system is represented as a locally-fully observable decen-
tralized Markov decision process (Dec-MDP) [2] in which
each of n fully-cooperative agents possesses a local model,
Mi = 〈Si, αi, Ai, Pi, Ri, Ti〉, that specifies agent i’s: factored
state space (Si), initial state distribution (αi), action space
(Ai), transition function (Pi), reward function (Ri), and
finite time horizon (Ti). Using any of the standard tech-
niques [9], each agent can calculate an optimal local policy,
π∗i : Si × Ai 7→ [0, 1] from its Mi. These π∗i s together consti-
tute the joint policy for the system, π = 〈π∗1 , · · · , π∗n〉, which
may or may not be jointly optimal depending on how the
agents coordinate the construction of their local policies. The
joint Q-value, Qπ(s, a), is defined as the expected cumulative
reward of executing joint action a in global state s, then
following joint policy π.

To illustrate a problem of this type, we previously de-
veloped a simplified firefighting domain. To summarize the
domain (see [13] for a more complete description), two agents
move through a grid world to fight fires of various intensities
until some predetermined, fixed time horizon. Each cell has
a delay that stochastically prevents movement into that cell
(e.g., rubble or traffic), and the joint reward is determined
by the intensities of all the active fires in the grid. Figure 1
shows an example initial state with four fires, though in [13]
there was a maximum of two fires.

It is important to recognize that while the firefighting
domain may seem straightforward from the perspective of
the agents’ decision problems (despite there typically being
millions of states in the joint problem), the complexity of the
agents’ problems is of secondary importance to the complexity
of the organizational design problem. In this respect, the
firefighting domain presents several interesting challenges.
For example, since the local behaviors of the unorganized
system naturally perform quite well (even optimally in some
cases), an ODP must create an exceptional organization
in order to outperform the local baseline. Additionally, the
range of optimal coordination patterns is diverse (e.g., agent
1 should fight all of the fires in some random instances, only
one fire in others, etc.), which compels an ODP to create
flexible, robust organizations.

3.2 Organizational Design Problem
We build upon our previous work [13] and define an orga-

nizational influence, ∆i : Si ×Ai × Si 7→ Si ×Ai × Si as
a modification toMi at (si ∈ Si)× (ai ∈ Ai)× (s′i ∈ Si). Al-
ternatively, it is sometimes useful to view ∆i as a constraint
or re-prioritization to the agent’s local policy space brought
about by a modification to Mi. For example in the firefight-
ing problem in Figure 1, a ∆i could alter agent 1’s Mi to
not include the move-east action in the initial state, which
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prevents agent 1 from selecting polices with this state-action
mapping and biases it towards fighting the western fires.

An organizational design, Θ, is defined as a set of orga-
nizational influences for each agent, Θ ≡ 〈θ1, · · · , θn〉, where
θi ≡ {∆i} is the set of organizational influences for agent i.
To measure the performance of an organizational design, we
utilize metrics for the expected reward, ROp(Θ) and compu-
tational costs, COp(Θ), of the the agents’ joint policy with

respect to the organization, π|Θ, and define an operational
performance function, POp(Θ), to select from the Pareto

front of these metrics.1 Below, C(π
∗|θi
i ) designates agent i’s

expected local costs to compute π
∗|θi
i .

ROp(Θ) ≡
∑
s∈S

α(s)
∑
a∈A

π|Θ(s, a)Qπ
|Θ

(s, a)

COp(Θ) ≡Ei[C(π
∗|θi
i )]

POp(Θ) ≡f(ROp(Θ),COp(Θ))

Returning to the firefighting example, by carefully select-
ing appropriate influences like the one discussed above, a
Θ can designate regions that each agent is responsible for
fighting fires within (i.e., remove actions that if left available
would permit an agent to leave its organizationally desig-
nated region). Such an organization can decrease the amount
of computation that each agent requires to find its policy
(i.e., COp(Θ)), since an agent is not permitted to consider
actions that would take it out of its region. In exchange, the
expected joint reward (i.e., ROp(Θ)), might decrease if there
are specific problem instances where an agent should leave
its region (e.g., if there are no fires in its region).

The purpose of an ODP is to find a Θ that optimally bal-
ances these objectives in order to maximize the operational
performance, Θ∗ ≡ argmaxΘ POp(Θ). Unsurprisingly, finding
such an organization is computationally intractable, thus we
developed an efficient algorithm for finding a locally optimal
Θ [13]. To summarize, our algorithm computes the incremen-
tal impact of an individual ∆i with respect to a candidate
organization, then embeds these calculations within a greedy
hill climbing algorithm. Abusing notation, the algorithm in
standard linear approximation form is:

Θj+1 = Θj + argmax
∆i

[
∆i ·

dROp
dΘj

(Θj)
δf

δROp
(Θj)

+∆i ·
dCOp
dΘj

(Θj)
δf

δCOp
(Θj)

]
A main contribution of this prior work was a set of techniques

for efficiently computing the ∆i · dROp

dΘj (Θj) and ∆i · dCOp

dΘj (Θj)
terms of this algorithm. To summarize those techniques,
the ODP samples instances from a global perspective of
the domain and computes optimal joint policies for each
sample, then aggregates across these samples to calculate
the expected impact of an influence.

4. ABSTRACT ORGANIZATIONAL
INFLUENCES

In the work just summarized, the ODP utilized an abstrac-
tion that relied on only an agent’s position to identify patterns
in that agent’s reasoning and behaviors. The resulting organi-
zations exploited specific problem properties—especially that

1We assume the Pareto optimality function f is monotonic in
each dimension s.t. higher ROp and lower COp is preferable.

a problem instance often had exactly one fire for each agent
to fight—and specified influences that essentially captured
that, once an agent starts moving toward a fire, it shouldn’t
think about reversing its movements, and that it is not useful
to (think about) moving to places more easily reached by
the other agent. The ODP discovered that, because each
agent typically fought only one fire, an organization that
disallows reverse movements and movements deep in to the
other agent’s territory performs well.

To pose greater challenges to the system and ODP, we
make two extensions to that firefighting domain. First, we
extend the number of fires per problem to four. Second,
in previous versions of the domain, there were implicitly
minimum durations before the agents could impact each other
(i.e., determined by the minimum number of moves required
to reach grid cells with active fires), but due to the cell delays
there was no finite maximum duration (other than the time
horizon). To provide meaningful finite maximum durations
before an agent could impact another, we introduce a cap
on the maximum number of consecutive failed movement
attempts before success is ensured. We maintain the Markov
property by adding a new state factor to maintain the number
of consecutive failed moves.

Since each agent might fight multiple fires in our extended
version of the domain, an encompassing abstraction that at all
times prohibits reverse movements could stop the agents from
reaching a second fire, and as a result have poor operational
performance. Intuitively, however, a narrower abstraction
(e.g., that partitions time) could provide the necessary or-
ganizational expressivity for the ODP to differentiate these
coordination patterns in a more nuanced specification.

4.1 Motivation for Abstract Influences
We have two primary motivations for abstract organiza-

tional influences in this paper:
1) By generalizing where influences apply beyond just the

seen instances, an appropriate abstraction can improve or-
ganizational performance. For example in the firefighting
domain, generalizing instances of purposeful movement to-
ward a fire to prohibit reverse movements everywhere.

2) By abstracting over a wider space of instances, an ap-
propriate abstraction can find influence patterns with greater
confidence (i.e., it avoids overfitting). For example in the
firefighting domain, seeing enough instances to confidently
constrain the agents to local partitions of the grid world.

Of course, these benefits can be lost if abstraction is taken
too far. Overextending abstraction can misapply influences,
and conflate patterns or properties of influences that can
harm operational performance and/or confuse an ODP’s
search algorithm. Alternatively, too little abstraction can too
sparsely distribute the ODP’s limited information, yielding
poor statistical estimates that make the ODP’s search al-
gorithm sensitive to sampling artifacts, and organizational
performance reflective of the agents’ arbitrary priors.

Beyond these fundamental motivations, abstract influences
could have several other benefits depending on the applica-
tion. One intuitive example is that abstract organizational
influences can reduce organizational specification size. This
can be important when an agent queries its θi to find the
influences associated with the part of its Mi currently being
considered. In our computational agents, however, we employ
hashing to provide O(1) query complexity for organizational
lookup, which makes specification size a non-issue.
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A1 F2

a∗1 is East
incremental ROp = 1
incremental COp = 325

Time = 7

A1

F3

F2

F1

F1

a∗1 is West
incremental ROp = 5

incremental COp = 2100

Time = 0

A1

a∗1 is North
incremental ROp = 3

incremental COp = 2600

Time = 0

F2

F1

F3

F1

A1

a∗1 is West
incremental ROp = 0.2
incremental COp = 890

Time = 3

F1

F1

A1

a1 is {West, East, North}
incremental ROp = 2.3
incremental COp = 1479

Figure 2: Illustration of the Pos abstraction’s dimensions (see Table 1) for agent 1’s initial position. The influence’s inclusivity
is 1

50
, its uniformity is 1

3
, and its (ROp,COp) variance is (4.63, 1.11 × 106). Quantities shown are for the four example ∆1s

(rather than ∆̂1’s entire domain), and are for illustrative purposes only and not from empirical data.

The ODP’s computational costs are another possible moti-
vating factor for abstraction, where broader influences imply
a smaller organizational design space. The search algorithm
from Section 3.2 has complexity O(|{∆i}|2); however, it is
important to note that the search’s computational costs are
an insignificant portion (i.e., � 0.1%) of the ODP’s total
computational costs in our experiments. The bulk of the
computation is sampling problem instances and computing
optimal joint policies to estimate the influences’ incremental
impacts, which is not affected by abstraction choice.

Yet another possible motivation for organizational abstrac-
tion is to provide flexibility for the agents to make local de-
cisions within, while still providing organizational guidance
for that reasoning. However, counter to possible intuitions,
abstract organizational influences are orthogonal to the flexi-
bility an agent retains in an organization. For example, highly
flexible organizations can be specified as an aggregation of
many fine-grained influences (e.g., in si consider a1

i , and in
si also consider a2

i , and in si also consider a3
i , etc.). Thus,

flexibility stems from both number of influences and their
abstraction. Of course, abstraction choice could impact the
ODP’s decision of which/how-many influences to specify, but
such flexibility differences arise from ODP decisions rather
than as necessary consequences of the abstraction choice. In
future work, we plan to more fully investigate the relationship
between abstraction and flexibility.

4.2 Dimensions of Abstract Influences
To construct a framework for analyzing abstraction in

organizational designs, in this section we provide more precise
definitions for abstract influences and identify dimensions of
abstraction pertinent to organizational design and outcomes.

Broadly speaking, an abstract organizational influence
clusters together detailed influences and forces the ODP and
agents into a monolithic treatment of the clustered influences.
Figure 2 illustrates this concept. On the left are examples
of optimal actions for A1 to take in its initial position, but
sampled for different times and fire configurations. On the
right is the abstract influence that, based on the patterns
seen in the samples, indicates that at this position (at any
time or fire configuration) A1 should just consider any of the
West, East, or North movement actions.

Formally, an influence abstraction is a function G : ∆ 7→ ∆̂,
where ∆̂i ∈ ∆̂ is an abstract organizational influence.
Building from the clustering perspective, we identified three
primary dimensions for characterizing abstract influences.

Definition 1. The inclusivity of an abstract influence, ∆̂i,
corresponds to how encompassing the influence is. Formally,
the inclusivity of ∆̂i is the expected fraction of agent i’s local
model, si × ai × s′i ∈ Si ×Ai × Si, that ∆̂i modifies.2

Definition 2. The uniformity of an abstract influence,
∆̂i, corresponds to how well its composite influences agree
on the local model’s modification. Formally, the uniformity
of ∆̂i is the expected fraction of its composite influences that
modify agent i’s local model in the same way.

Definition 3. The variance of an abstract influence, ∆̂i, is
the expected variance of its composite influences’ incremental
(ROp,COp) impact. This differs from uniformity in that ∆̂i’s
composite influences could all modify Mi in the same way
(have uniformity of 1), but have varied estimates for how
meaningful the modification is (thus have high variance).

Figure 2 illustrates how the abstraction’s values along each
of these dimensions are calculated using an abstraction that
drops all state factors except the agent’s current position. For
each of these dimensions, we define it for an organizational
design as the expected value over all of the organization’s
influences; for example, the inclusivity of Θ is the expected
inclusivity of its influences.

4.3 Incorporating Abstract Influences
Incorporating abstract organizational influences into the

ODP algorithm from Section 3.2 requires extending the cal-
culation of an influence’s incremental impact to an abstract
influence’s incremental impact. We do this by taking the

2Beyond abstracting the domain of influences, one could
also envision abstracting the range (i.e., the effect of the
modification). However, such an approach often decreases
uniformity, which is typically undesirable (see Section 5).
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expectation over ∆̂i’s constituent influences.

∆̂i ·
dROp
dΘj

(Θj) = E∆i 7→∆̂i
[∆i ·

dROp
dΘj

(Θj)]

∆̂i ·
dCOp
dΘj

(Θj) = E∆i 7→∆̂i
[∆i ·

dCOp
dΘj

(Θj)]

Using Figure 2 as an example, the ODP’s estimate for ∆̂i’s
incremental ROp and COp impact is the expected impact of
its constituent influences. The ODP search algorithm uses
these values exactly as it would with un-abstracted influences.

Agents incorporate abstract organizational influences into
their local reasoning in exactly the same way they incorporate
un-abstracted influences. As each agent i is solving its local
decision problem, it queries θi to find the ∆̂i that applies
to the si × ai × s′i currently being considered within its
Mi, and then modifies its Mi in accordance with that ∆̂i.
For simplicity in this work, we limit our consideration to
abstractions where a ∆i maps to a single ∆̂i. In other words,
G must be many-to-one, which implies the agents will only
receive logically consistent Θs that do not entail incompatible
modifications for any si×ai×s′i. Investigating many-to-many
abstractions could be an interesting line for future work,
since it provides flexibility for hierarchical organizational
influences like those found in modern organizational modeling
languages [4, 6] and/or conflicting influences brought about
by simultaneous membership in multiple organizations.

For example, as agent 1 is solving for its organizationally

optimal policy π
∗|θ1
1 , in any state whose location is its initial

position, θ1 specifies the ∆̂1 shown in Figure 2. Using ∆̂1,
agent 1 will modify its model to only permit consideration of
the West, East, and North movement actions in its currently
considered state.

5. INFLUENCE ABSTRACTION EFFECTS

5.1 Methodology
The research community has developed an extensive li-

brary of abstraction techniques such as: state abstraction [7]
and finite controllers [3, 8] for decision-theoretic problems;
influence [16] and coordination locale [15] abstractions for
efficient coordination; hierarchical planning [1, 14] and task
networks [10] for sequential reasoning; and the various ab-
stract modeling constructs for an organizational modeling
language [4, 6], among many others. Two overarching com-
monalities within these techniques, however, are to approach
abstraction as 1) overlooking unimportant or irrelevant in-
formation, and/or 2) clustering similar information together.
Using these as a basis for designing abstractions over various
points along our dimensions, we hand-crafted several families
of abstractions for the firefighting domain that are summa-
rized in Table 1. Broadly speaking, organizations created
from these abstractions map a set of state factors (for specific

mappings see Table 1) to the ∆̂i for that state, where ∆̂i

informs agent i of which actions it should consider for that
state. Together, these ∆̂is essentially construct regions of
responsibility for each agent, which can vary over time if
system time is a state factor represented in the abstraction.

We empirically evaluated these abstraction choices using
the firefighting domain. To observe the impact of abstract
influences with respect to POp’s Pareto topology (i.e., as
agents have more or less available computational resources),
we encoded POp(Θ) = ROp(Θ)− 1

b
COp(Θ) for parameter b >

Figure 3: POp curves for each abstraction for different
amounts of ODP information. Solid, dashed, and dotted
curves correspond to perfect information, 2/3 information,
and 1/3 information respectively.

0, and for each abstraction had the ODP create organizations
for different values of b. High b values represent when the
agents have abundant computational resources relative to
the pace of the environment, and vice versa for low values.

To observe the impact of abstract influences with respect
the amount of information the ODP possesses, we addition-
ally had the ODP create organizations from three different
available information profiles. We controlled the amount of
information available to the ODP by artificially manipulating
the problem samples from which it constructed estimates of

the ∆̂i · dROp

dΘj (Θj) and ∆̂i · dCOp

dΘj (Θj) terms used in its search
algorithm. At one extreme, the ODP exactly sampled the
evaluation problem set, which encodes that the ODP has
perfect information. Then, as the ODP based its estimates
off of fewer sample problems (i.e., the training set is a di-
minishing subset of the test problems), the ODP possessed
increasingly imperfect domain information.

We evaluated each organization on 300 problem instances
to empirically compute ROp and COp for each Θ, from which
we calculated POp for various Pareto optimality parameter-
izations. Figure 3 shows the POp curves for each of these
organizations. Figure 4 shows the separate ROp and COp
curves for the perfect-information organizations as well as
organizations constructed from abstractions we present in
Section 6. In the next sections, we systematically analyze
these results to develop a framework for characterizing how
abstraction dimensions impact: the operational performance
of an organization (Section 5.2), the sensitivity of the ODP’s
search algorithm (Section 5.3), and the effects of information
availability on the ODP (Section 5.4).

5.2 Operational Performance
The POp curves in Figure 3 reveal two differentiating char-

acteristics for operational performance across abstractions: a
curve’s smoothness (which will be discussed in Section 5.3)
and a curve’s raw quality (i.e., its vertical placement on the
graph). Analysis reveals that an organization’s uniformity is
strongly correlated with performance quality. One exemplary
case of this is the None abstraction, where the organizations
at low b (i.e., when computation is expensive) restrict all
but a single action from consideration (i.e., the same action
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Abstraction Expected Organizational
Name Inclusivity Variance (10−3ROp, 103COp) Description of Θs Constructed from Abstraction

None 1 (2.50, 1297) Every state maps to the same ∆̂i.

Time 1
12

(35.2, 17.26) System time in a state maps to ∆̂i.

Pos 1
50

(2.08, 0.99) Agent’s position in a state maps to ∆̂i.

TCluster 1
4

(34.5, 204)
Like Time, but system time is clustered into intervals. For
example, states with times in [1, 3] map to the same ∆̂i.

Time +
Pos

1
600

(18.1, 0.02)
System time and agent’s position in a state, together, map

to ∆̂i.
TCluster
+ Pos

1
200

(22.0, 0.22)
Clustered system time and agent’s position in a state,

together, map to ∆̂i.

Table 1: Descriptions of the organizational abstractions we evaluate in Section 5. Uniformity for each abstraction relies on the
specific Pareto characterization, but typically decreases as agent computation becomes less costly. We evaluated variants of the
Pos abstractions using clustered positions, but these abstractions were qualitatively identical to their respective Pos variants.

must be taken in every state). These Θs by definition have
maximal uniformity and also obtain relatively high POp as
compared to other abstractions with similar inclusivity (e.g.,
Time). Then, as b increases, the None organizations permit
consideration of additional actions, eventually decreasing uni-
formity to its minimal value, and these minimal-uniformity
Θs obtain the worst POp.

Analyzing this observation more deeply, decreased unifor-
mity arises when alternative behaviors could be optimal for
specific instances entailed in ∆̂i’s domain, for example like
in Figure 2. Rather than restrict the agent from consider-
ing some subset of Pareto-valuable actions that the ODP
knows the agent might need in a specific problem instance,
the ODP instead permits consideration of all actions that
could be Pareto-valuable, and relies on the agent’s local in-
telligence to appropriately select from among this set. As
a result, the ODP under-constrains the agents’ reasoning,
which increases COp and thus decreases POp. However, for
high-uniformity influences, the ODP can aggressively restrict
the agents’ actions to a limited set of Pareto-valuable actions.

POp’s reliance on inclusivity is interesting in that excess
inclusivity can yield poor POp (e.g., the None and Time
abstractions), and too little inclusivity can also result in
poor POp (e.g., the Time+Pos abstraction). However, ab-
stractions with moderate inclusivity are associated with the
maximal POp curves. It is straightforward to show that excess
inclusivity increases susceptibility to the effects of decreased
uniformity; that is, additional problem situations map into
the same ∆̂i but may not have the same optimal behaviors.
Too little inclusivity is detrimental for the opposite reason;
that is, since a low-inclusivity ∆̂i applies to such a narrow
space, there is insufficient diversity in the ODP’s statistical
estimates to generalize to unseen problem instances.

Examining the ROp and COp curves in Figure 4 illustrates
that, broadly speaking, as the agents’ computation becomes
relatively cheaper (b increases), the ODP induces the agents
to consider more actions, which in turn provides operational
flexibility for the agents to achieve higher ROp. The Time
and Time+Pos curves deviate from this pattern due to low
uniformity across all of the Pareto conditions; that is, the
specific behavior an agent should take is poorly correlated
with system time, meaning that time-based abstractions
cluster together different behaviors. This biases the ODP
into permitting the agents to consider additional actions even
when Pareto conditions discourage excessive agent reasoning.

5.3 ODP’s Search Sensitivity
A striking observation from Figure 3 is the large dip in POp

for some of the abstractions as computation becomes less
costly (e.g., in the None abstraction), when we would nor-
mally expect smooth, monotonically increasing POp curves.
In each of these cases, the pre-dip organization would actu-
ally be a preferable Θ to the one created by the ODP for
these Pareto conditions, which implies that the ODP’s greedy
search algorithm performed poorly in these instances.

Notice that these dipping cases occur most significantly in
the abstractions with high variance. Recalling our definition
of the variance dimension, high variance corresponds to ∆̂is
composed of ∆is with significantly different expected values

for ∆i · dROp

dΘj (Θj) and ∆i · dCOp

dΘj (Θj), which in turn makes

the incremental impact of ∆̂i have high statistical variance.
Utilizing such imprecise estimates for a ∆̂i’s incremental
impact naturally makes the greedy search algorithm sensitive
to initial conditions and small data errors introduced from
the ODP’s sampling process, which results in the unexpected
POp performance dips. In other words, the ODP believes
from its data that certain influences will improve POp, when
in reality, the ODP is overestimating the reward and/or
underestimating the computational costs of adding the influ-
ences to the design, and experimentation in the evaluation
domain ultimately reveals that these influences are actually
detrimental to operational performance.

5.4 ODP’s Information Scope
While Figure 4 omits the ROp and COp data for organiza-

tion’s created when the ODP had limited information, the
almost unanimous trend is that Θs created from more infor-
mation have higher COp and ROp than those created from
less information. The few exceptions to this trend are caused
by search sensitivities like those described in Section 5.3.

Turning to Figure 3, we unexpectedly observe that or-
ganizations created from less information tend to achieve
higher POp, whereas intuition would dictate that additional
information should tend to improve the quality of an organiza-
tional design. Further analysis reveals that an abstraction’s
inclusivity is a primary determining factor for analyzing
an ODP with respect to its available information. As the
ODP receives additional information, it is being exposed to
increasingly-unusual problem instances, analogously to how
the cumulative probability of drawing a value three stan-
dard deviations from the mean of a Gaussian increases as
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Figure 4: ROp and COp curves for organizations in Sections 5 and 6 constructed from perfect information.

you draw more samples. For abstractions with high inclu-
sivity, the behaviors from these unusual problem instances
inevitably get clustered together with the more common
behaviors, essentially creating multimodal distributions for
the ∆̂is’ statistical estimates. Since our ODP computes a
∆̂i’s incremental impact as a simple expectation of its con-
stituent ∆is’ incremental impacts, multimodal distributions
fundamentally violate the assumptions of our ODP’s statis-
tical representation, and result in decreased POp from the
resulting organizations. This argues that an ODP should
employ more sophisticated statistical models for represent-
ing estimates of high inclusivity influences. An interesting
direction to consider for future work would be an automated
approach for correcting the ODP’s statistical representation
in response to influence inclusivity.

Figure 3 also demonstrates that some abstractions are
more robust to the effects of information availability than
others. For example, the None abstraction is completely im-
mune to these effects and the TCluster abstraction is also
exceptionally resilient in this regard. While these abstrac-
tions have high inclusivity and thus should be susceptible to
information availability effects, they also have extremely low
uniformity. Thus, incorporating specialized ∆is into a ∆̂i

cannot induce the ODP to permit additional actions, because
those actions are already permitted due to the common cases.

6. TASK-DELINEATED ABSTRACTIONS
To summarize the key findings from our analysis in the

previous section, the best abstractions are ones that:
Have moderate inclusivity. This provides enough lee-

way for an ODP to specify nuanced influences where appro-
priate but is broad enough to permit influences to generalize
to the larger problem space.

Have high uniformity. This allows the ODP to more ag-
gressively restrict the agents’ local models to a smaller set of
behaviors for consideration, which streamlines computational
effort thereby improving performance.

Have low variance. Low variance reduces sensitivity in
the ODP’s search algorithm, resulting in smoother perfor-
mance curves that better match the Pareto topology.

These observations lead to a high-level strategy of adopt-
ing abstractions that segment each problem instance into
maximally-sized components that agree on the same behavior

with (nearly) the same expected incremental computational
and reward impacts. Although such a strategy is not compu-
tationally practical as it would involve searching through the
space of clusterings, it does suggest a heuristic proxy, which
is to group together situations that are collectively pursu-
ing the same outcome. We refer to this heuristic clustering
strategy as a task-delineated abstraction.

For example, in the fire-fighting domain, this would imply
segmenting a problem instance into tasks associated with
putting out a specific fire. See Table 2 for the task-delineated
abstractions we provided to the ODP for the firefighting do-
main, where the number of active fires serves as an indicator
variable for which task an agent should currently be pursu-
ing. This heuristic leads to abstract influences with moderate
inclusivity, high uniformity, and low variance. Inclusivity is
moderate because the abstraction allows the ODP to restrict
the task-level behaviors of the agents while still allowing
information to generalize within the scope of a single task
(i.e., provides leeway for agents to use their local expertise to
most effectively complete their organizationally designated
tasks). Uniformity is high and variance is low if appropriate
tasks are identified that cluster similar behaviors with similar
incremental impacts.

Figure 5 shows the POp curves of these abstractions us-
ing the same evaluation methodology as in Section 5, along
with the local baseline and the best abstraction from Sec-
tion 5 (TCluster+Pos). We observe that the heuristically-
recommended task-delineated abstraction achieves essentially
the same POp quality as the TCluster+Pos abstraction, which
is unsurprising given that the clustered system times essen-
tially proxy for task-delineation. Notice, however, that be-
cause FCount+Pos has lower variance, it is less sensitive
to information availability effects (i.e., its three POp curves
for information quantities are nearly identical), and also ex-
hibits fewer ODP search sensitivities (i.e., the POp curves are
smoother and monotonically increase over the Pareto topol-
ogy). As our framework predicts, the FCount abstraction’s
high variance and low uniformity make it suboptimal.

Finally, it is interesting to recognize that, in retrospect, our
previous [13] position-based abstraction is essentially task-
delineated for the version of the firefighting domain with
only two fires, and as our framework predicts, performed
well. That is, since each agent was expected to fight a single
fire, there is a single task for each agent.
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Abstraction Expected Organizational
Name Inclusivity Variance (10−3ROp, 103COp) Description of Θs Constructed from Abstraction

FCount 1
4

(3.48, 120) Number of active fires in a state maps to ∆̂i.

FCount +
Pos

1
200

(3.46, 0.11)
Number of active fires and agent’s position in a state,

together, map to ∆̂i.

Table 2: Descriptions of task-delineated abstractions (Section 6). Uniformity for each abstraction relies on the specific Pareto
characterization, but typically decreases as agent computation becomes less costly. For completeness, we included the FCount
abstraction despite our framework predicting that it has poor performance characteristics. We also created a clustered position
variant, but it was qualitatively identical to FCount+Pos.

Figure 5: POp curves for task-delineated abstractions along-
side bounding abstractions from Section 5. Solid, dashed,
and dotted curves correspond to perfect information, 2/3
information, and 1/3 information respectively.

7. CONCLUSION
In this paper, we systematically examined how abstraction

choices can impact an ODP and the subsequent operational
performance of the design it produces. We constructed a
framework for characterizing abstract organizational influ-
ences along key dimensions, and empirically evaluated several
families of abstract organizational influences. In our subse-
quent analysis, we identified the heuristic that the most
effective abstractions tend to have moderate inclusivity, high
uniformity, and low variance, and using this as a foundation,
constructed a task-delineated abstraction that achieves the
desired characteristics, and in turn compares favorably to
the other abstraction choices in our evaluation domain.

This work points to several other research directions in
abstraction for organizational design. Beyond extensions to
many-to-many abstractions mentioned in Section 4.3, future
work could also investigate the possibility of multiple abstrac-
tions which could allow the ODP to specify detailed, low-
inclusivity influences when it is important to differentiate be-
haviors, and then specify better generalizing, high-inclusivity
influences elsewhere. Other directions include investigating
the relationship between organizational abstraction and flexi-
bility, and identifying more robust statistical representations
for modeling the incremental impact of high-inclusivity influ-
ences.
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