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ABSTRACT
We are interested in continuous foraging with multi-agent
teams, where resources are replenished over time, and the
goal is to maximize the rate of foraging. Existing algorithms
for continuous foraging and area sweeping typically consider
homogeneous agents. We are interested in heterogeneous
teams, where agents have radically different capabilities. In
particular, we consider two types of agents: a foraging agent
that moves in the environment and forages resources, and a
reconnaissance agent that gathers information by visiting lo-
cations and determining the number of resources available.
In this paper, we consider three models of resource replen-
ishment: a Bernoulli model and a Poisson model where re-
sources appear probabilistically, and a stochastic Logistic
model where resources increase based on the existing num-
ber of resources. We contribute three foraging algorithms
that are inspired by existing algorithms, and contribute a
novel algorithm for the reconnaissance agent to gather in-
formation. We extensively evaluate our algorithms in simu-
lation, showing that our foraging algorithms outperform the
existing algorithms. We demonstrate the efficacy of our in-
formation gathering algorithm in improving the overall team
performance, even without communication between the for-
aging agents, and with noisy observations.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Multi-agent; foraging; information gathering; reconnaissance

1. INTRODUCTION
We are interested in continuous foraging, where agents

visit locations in the environment to forage resources and
deliver them to a home location. The resources replenish
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over time, and we consider three models of resource replen-
ishment. The first two are the Bernoulli and Poisson models
where resources replenish probabilistically, which is suitable
for scenarios with independently-occurring resources, such
as mail. The second model is the stochastic Logistic model
where the rate of resource replenishment depends on the
number of existing resources. The Logistic model is suitable
when the resources are populations of living things, such as
fish in the ocean. Thus, the continuous foraging problem is
general and applicable to many real-life scenarios.

In this paper, we formally define the continuous foraging
problem, where the goal is to maximize the rate of forag-
ing resources from the environment. The multi-agent team
comprises foraging agents that forage items back to a home
location, and a reconnaissance agent that gathers and shares
information with the team. A motivating example of this
problem is in fishing, where various fishing boats can be
sent to pre-determined fishing locations, and the goal is to
maximize the rate of fish caught. The reconnaissance agent
would then be an unmanned aerial vehicle that is able to
detect the number of fish, but is unable to forage them.

Existing algorithms, which we detail in the related work
section, typically consider homogeneous agents that each
carry a single item. We are interested in agents that carry
multiple items, and in teams with a reconnaissance agent
that cannot forage items, but gathers information. The ad-
dition of the reconnaissance agent makes the continuous for-
aging problem more interesting: how will the reconnaissance
agent increase the team’s foraging rate?

We consider the scenario where the foraging agents have
individual models of the resources available at locations,
and can only communicate within a limited distance and
with limited bandwidth, namely to communicate their des-
tination and payload, and not to share their models. The
reconnaissance agent broadcasts its observations to all for-
aging agents. We believe such a scenario is realistic since
it is difficult for the foraging agents to remain in constant
communications contact with one another.

We contribute three foraging algorithms that solve the
continuous foraging problem: one for the Bernoulli and Pois-
son distributions, and two for the Logistic distribution. In
particular, the algorithms are amenable to information gath-
ered by the reconnaissance agent, which will improve the
agents’ models. We contribute an information gathering al-
gorithm that uses the expectation of resource replenishment,
in order to determine the best locations for reconnaissance.
The information gathering algorithm is general and applica-
ble to any foraging algorithm.
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We evaluate our algorithms in simulation, and bench-
mark the performance against existing algorithms in sus-
tainable foraging [17] and continuous area sweeping [1].We
show that our algorithms outperform the benchmarks in the
Bernoulli, Poisson, and Logistic scenarios when no recon-
naissance agent is present, and demonstrate that the addi-
tion of the reconnaissance agent further improves the team
foraging rate. Further, we consider cases where the forag-
ing agents are unable to communicate at all, and when the
observations of the number of resources available are noisy,
and demonstrate the resilience of our algorithms.

The layout of the paper is as follows: in Section 2, we
discuss related work in foraging and the novel aspects of
this paper. In Section 3, we formally define the problem,
and give an overview of our approach. Section 4 presents the
three models of resources we consider, and Sections 5 and 6
present our algorithms for the foraging and reconnaissance
agents. Section 7 presents our experiments and results, and
we conclude in Section 8.

2. RELATED WORK
Foraging has been considered as a multi-robot task al-

location (MRTA) problem [4]. Some approaches consider
decentralized algorithms for the robots so as to ensure scal-
ability (e.g., [8, 16]). Other approaches use market-based
techniques to determine how the foraging tasks are assigned
to the robots [18]. Synergy graphs have been considered
for modeling team performance in collaborative multi-agent
teams [9, 13], in areas such as role assignment [10], and
configuring modules for multi-robot teams [12, 11]. In this
paper, we consider the case where a relatively small num-
ber of robots are used for foraging, where each robot has a
large capacity, as we believe that such a scenario better re-
flects real-life scenarios. Hence, we contribute decentralized
algorithms for such agents.

Foraging algorithms have also been inspired from biology,
such as ant-colony optimization [3]. Ant-based algorithms
typically use pheromones that are left in the world, in or-
der to guide the other agents’ paths, e.g., [15, 14], or local
communication to emulate pheromones [6]. Non-pheromone
based algorithms have also been considered, e.g., [7, 2], where
techniques used by bees are translated into multi-agent be-
haviors. We are interested in the selection of which loca-
tion each agent should forage, and not on the search for
resources or the optimization of the path to the locations,
which ant and bee algorithms excel in. In contrast, ant and
bee algorithms use simple heuristics such as shortest path
to determine which locations the agents should forage.

There is also interest in sustainable foraging, i.e., forag-
ing items from locations so as not to completely deplete the
resources but allow the resources to replenish [17]. We are
interested in such scenarios as well, but our main focus is
on continuous foraging, i.e., maximizing the rate of resource
foraging. However, there are many similarities between sus-
tainable and continuous foraging, and thus we compare our
algorithms with that of [17]. In addition, continuous area
sweeping (e.g., [1]) has similarities to continuous foraging,
with the main difference being that the agents have a carry-
ing capacity and must periodically return to the home loca-
tion. We believe the carrying capacity is applicable to real-
world scenarios (e.g., the inverse of energy on the robots),
and also compare to [1].

3. PROBLEM AND APPROACH
In this section, we formally present the continuous for-

aging problem, and give an overview of our approach. We
are interested in a multi-agent team comprising foraging and
reconnaissance agents, that maximizes the rate of foraging,
through the use of the reconnaissance agent by gathering
and sharing information. To aid in the explanation of the
problem, we use a motivating scenario.

3.1 Motivating Scenario
Suppose that there is a fleet of fishing boats that capture

fish from the ocean and deliver them to a “home” location,
e.g., the harbor. There are pre-determined locations where
fish may be found (e.g., locations determined through satel-
lite imagery), and the fishing boats model the number of fish
are present and they change over time.

The fishing boats are unable to determine the number of
fish at a location unless they are physically there, due to the
limited range of their on-board sensors, which may also be
noisy. After a fishing boat arrives at a location, it captures as
many fish as possible. The fishing boats are only capable of
communication with limited range and bandwidth, and thus
can only coordinate their destinations and payloads to one
another, and cannot share their models and observations.

An unmanned aerial vehicle (UAV) is launched periodi-
cally from the home location. Due to the UAV’s limited
power, it is only able to visit a subset of the locations. When
the UAV arrives at a location, it uses its sensors to obtain
a (possibly noisy) measurement of the number of fish, and
broadcasts that information to all fishing boats.

3.2 Formal Problem Definition
Let A = {a1, . . . , an} be the foraging agents, e.g., the

fishing boats. Each agent ai has an associated speed si,
maximum capacity ci, and payload yi ≤ ci, i.e., the number
of resources ai is currently carrying. Let R be the recon-
naissance agent, e.g., the UAV, that performs information
gathering.

Let L = {l0, . . . , lm} be the set of locations, where l0
is the agents’ home location, e.g., l1, . . . , lm are the fishing
locations. Let vj,t be the number of resources available at
location lj at timestep t, e.g., the number of fish at lj .

The number of resources at each location changes over
time, and we assume that the change is Markovian, i.e., the
number of resources vj,t at a location lj at timestep t de-

pends only on vj,t−1. Let v̂
(i)
j,t be ai’s estimate of vj,t.

When a foraging agent ai arrives at a location lj (j >
0), max(vj,t, ci − yi) resources at lj (i.e., all resources at lj
subject to the remaining capacity of ai) are transferred to ai,

and ai makes an observation v̂
(i)
j,t of the number of resources

remaining. When ai arrives at l0, all yi resources carried by
ai are transferred to l0.

Let D : L×L → R+ be the distance function of the loca-

tions. Thus, an agent ai takes
⌈
D(lj ,lk)

si

⌉
timesteps to move

from location lj to location lk. For notational simplicity, we

denote t(ai, lj , lk) =
⌈
D(lj ,lk)

si

⌉
.

Every timestep, the reconnaissance agent R observes the
number of resources at M ≤ m locations. In our motivat-
ing scenario, this corresponds to the UAV being launched
from l0, instantaneously visiting M locations, observing the
number of resources, and sharing the information with all
ai ∈ A. The instantaneous nature of the reconnaissance

1326



agent’s movement in our problem is motivated by the rel-
ative speeds of a UAV and a fishing boat, and the limited
M ≤ m is motivated by the lower battery capacity of a UAV.

The goal is to maximize the rate of resources foraged to
l0 after T timesteps, i.e., maximize

v0,T
T

.

3.3 Our Approach
Our approach to solving the continuous foraging problem

is:

• We assume that vj,t follows a known model — in this
paper, we assume that vj,t follows the Bernoulli model
(Section 4.1), the Poisson model (Section 4.2), or the
stochastic Logistic model (Section 4.3). The parame-
ters of these models may or may not be known a priori ;

• The estimates v̂
(i)
j,t are updated using the models, ob-

servations from foraging agents ai visiting locations lj ,
and observations by the reconnaissance agent R;

• The foraging agents do not share their models v̂
(i)
j,t , but

they share their destinations with one another, subject
to a maximum communication distance C, i.e., agents
communicate only if they are within distance C of each
other.

• We contribute algorithms that control the foraging agents

ai, that use v̂
(i)
j,t and other agents’ destinations and

payloads, to plan their next destination (Section 5.2);

• We contribute observation algorithms that computes
M locations that are observed by the reconnaissance
agent (Section 6).

4. RESOURCE MODELS
In this section, we discuss three models of resource re-

plenishment at the locations lj ∈ L. The first is a Bernoulli
model, where resources have a static, independent probabil-
ity of being generated every timestep. The second is a Pois-
son model, where the number of resources generated every
timestep follows a mean value. The third is a stochastic Lo-
gistic model, where the rate of increase of resources depends
on the number of existing resources.

4.1 Bernoulli Model of Resources
In the Bernoulli model, every location lj ∈ L is associated

with a probability pj ∈ (0, 1]. Every timestep, there is a pj
probability that a new resource is generated at lj :

vj,t =

{
vj,t−1 + 1 with pj probability

vj,t−1 otherwise
(1)

The Bernoulli model was chosen for a number of reasons:

• It is intuitive and easily-understood, and corresponds
to real-life scenarios such as mail entering a mailbox;

• New resources are generated independently;

• vj,t is non-deterministic even if pj is known.

However, the Bernoulli model has a drawback — there is
no upper limit to the number of items at a location. Thus,
if a location lj is not visited for a long time, there is a high
probability that the number of items exceeds an agent’s ca-
pacity.

One method to circumvent the drawback is to impose an
maximum Mj for each location lj . However, we believe that
such a limit would be artificial, and instead considered the
Logistic model that we describe later.

4.2 Poisson Model of Resources
The Poisson model is similar to Bernoulli, except that the

resource generation follows a Poisson distribution:

vj,t = vj,t−1 + αj , where αj ∼ Pois(λj) (2)

Also, the Poisson model allows more than one resource to
be generated per timestep, and we are interested to inves-
tigate the impact of this property on the multi-agent team
performance. For example, suppose that an agent ai last
visited a location lj at time t and foraged all its resources,
and will next visit lj at time t′. In the Bernoulli model,
there is at most t′ − t resources at lj , but in the Poisson
model this may not be true.

4.3 Stochastic Logistic Model of Resources
The Logistic model has been widely used in multi-robot

systems to study the optimization of communication [19] and
sustainable foraging [17]. In order to consider the density-
dependent population growth and environmental stochastic-
ities, the resource is generated from the following stochastic
Logistic model [5]:

dvj,t
dt

= rvj,t(1−
vj,t
K

) + σevj,t ◦ dWe(t) (3)

where r is the unconstrained population growth rate, K is
the maximum population, σe is the intensity of the growth
rate fluctuation, and dWe(t) is white noise with mean zero
and randomly changing sign within any short time interval,
i.e. dWe(t) is delta-autocorrelated. The process with incre-
ments dWe(t) representing the noise is the Brownian motion.
Furthermore, “◦” denotes “Stratonovich calculus”.

Now rewrite (3) in the integral form:

vj,t = vj,0 +

∫ t

0

(rvj,s(1−
vj,s
K

))ds+

∫ t

0

σevj,s ◦ dWe(s)

(4)

and consider the following Riemann-Stieltjes integral∫ t

0

σevj,sdWe(s) = lim
n→∞

n∑
q=1

σevj,τq (We(sq+1)−We(sq))

where τq ∈ [sq, sq+1].
Since We(·) is not smooth in the above model, the limit

will depend on τq’s value. τq = sq leads to “Ito calculus” de-

noted by
∫ t

0
σevj,s · dWe(s) and τq = (sq + sq+1)/2 leads to

“Stratonovich calculus” denoted by
∫ t

0
σevj,s ◦ dWe(s). Fur-

thermore the relationship between “Stratonovich calculus”
and “Ito calculus” is as follows:∫ t

0

σevj,s ◦ dWe(s) =

∫ t

0

1

2
σ2
evj,sds+

∫ t

0

σevj,s · dWe(s)

Therefore, Equation (4) can be rewritten as:

vj,t =vj,0 +

∫ t

0

(
rvj,s(1−

vj,s
K

) +
1

2
σ2
evj,s

)
ds

+

∫ t

0

σevj,s · dWe(s)
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Figure 1: Resources following the stochastic Logistic model.

By Euler’s method, we obtain a discretized approximation
v̄j,t of the solution vj,t between t and t+ ∆t by

v̄j,t+∆t =v̄j,t +

(
rv̄j,t(1−

v̄j,t
K

) +
1

2
σ2
e v̄j,t

)
∆t

+ σev̄j,t(We(t+ ∆t)−We(t)) (5)

The distributionWe(t+∆t)−We(t) can be simulated by gen-
erating a standard Gaussian distribution N (0, 1) multiplied

by
√

∆t. For example, we chose the stochastic environmen-
tal noise σe = 0.02 and the other parameters r = 0.04, K =
100 and vj,0 = 1. Note that the incrementWe(t+∆t)−We(t)
can be generated as new independent draws from a Gaus-
sian distribution at each iteration due to the independent
increment of Brownian motion. Here we used Monte Carlo
simulation, with N = 100 scenarios. Fig. 1 shows several
iterations of the approximated resource evolution vj,t. The
red dotted curve shows the resource evolution without noise.

5. FORAGING ALGORITHMS
The multi-agent team A consists of agents that visit the

locations lj ∈ L, j > 0, foraging the resources available at
these locations, and deliver them to the home location l0 ∈
L.

In this section, we first describe how the foraging agents
maintain individual models of the number of resources at
each location. We next describe our three distributed forag-
ing algorithms.

5.1 Maintaining a Model of Resources
Each agent maintains its own model of the resources avail-

able at every location. Let v̂
(i)
j,t be agent ai’s model of the

number of resources at location j at timestep t.
We assume that the type of resource model is known to

the multi-agent team, i.e., whether the resources follow the
Bernoulli, Poisson, or stochastic Logistc model. However,
the parameters of the models are not known a priori :

1. Bernoulli model: pj is not known; the agents use a
preset estimate p̂j ;

2. Poisson model: λj is not known; the agents use a preset

estimate λ̂j ;

3. Stochastic Logistic model: The unconstrained popu-
lation growth rate r and maximum population K are

known, but the intensity of growth rate fluctuation σe
is unknown; the agents use a preset estimate σ̂e = 0.

In each agent’s resource model, the estimate v̂
(i)
j,t is up-

dated every timestep using the equations from Section 4,
but with their estimates of the model parameters. When-
ever a foraging agent makes an observation oj of the number
of resources at a location j (i.e., when the agent visits the lo-

cation), the agent resets its estimate so that v̂
(i)
j,t = oj . Sim-

ilarly, when the reconnaissance agent visits a location and
makes an observation oj , it broadcasts oj to all the foraging

agents, and they update their estimates so that v̂
(i)
j,t = oj .

All the agents in the multi-agent team assume that v̂
(i)
j,0 =

0 for the Bernoulli and Poisson models (i.e., there are no

resources at any location at time 0), and that v̂
(i)
j,0 = K

2
for

the stochastic Logistic model (i.e., the population size is half
the maximum at time 0).

5.2 Algorithms for Foraging
We now describe our three distributed foraging algorithms.

5.2.1 Greedy Rate
We contribute the Greedy Rate algorithm, that actively

replans the agent ai’s destination based on the estimates

v̂
(i)
j,t . The Greedy Rate algorithm is inspired by algorithms

proposed for continuous area sweeping [1]. The main differ-
ence is that instead of selecting the location with the highest
expected number of resources, our Greedy Rate algorithm
selects the location with the highest expected rate of re-
source foraging. Further, our Greedy Rate algorithm ignores
resources that have been “earmarked” by another robot (de-
scribed below). Algorithm 1 shows the pesudo-code of the
Greedy Rate algorithm. The seemingly small differences be-
tween our Greedy Rate algorithm and the continuous area
sweeping algorithm [1] has a large effect, as we show in the
results section.

Algorithm 1 Compute the next destination of agent ai that
is currently at location lα

GreedyRate(ai, lα)

1: if ci = yi then
2: return l0
3: end if
4: // Compute the rate if ai heads home
5: (rbest, lbest)← ( yi

t(ai,lα,l0)
, l0)

6: // Compute the rate if ai visits lj then heads home
7: for all lj ∈ L s.t. j > 0 do
8: ej ←

∑
ak∈A heading to lj

(ck − yk)

9: y′i ← max(ci, yi + max(0, v̂
(i)

j,t+t(ai,lα,lj)
− ej))

10: r′ ← y′i
t(ai,lα,lj)+t(ai,lj ,l0)

11: if r′ > rbest then
12: (rbest, lbest)← (r′, lj)
13: end if
14: end for
15: return lbest

Line 4 of Algo. 1 computes the rate if ai heads to l0 with its
current payload, and lines 7–9 compute the rate if ai visits a
new location lj , then heads to l0. Line 7 first computes the
number of resources “earmarked” by other foraging agents
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heading to lj (if communication is available and the agents
were in communication range). Line 8 uses the estimate

v̂
(i)

j,t+t(ai,lα,lj)
, which is the expected number of items at lj

after t(ai, lα, lj) timesteps from the current timestep t.
We use “earmarking” (instead of more complex coordi-

nation strategies) to minimize communication among the
foraging agents. We believe that foraging agents tend to
have limited computational power and communication band-
width, and so we sought to minimize the computational and
communication requirements. Further, we believe that if
communication among foraging agents was impossible, it
would still be feasible for a foraging agent to infer another
agent’s destination by observing its direction of travel.

Thus, the Greedy Rate algorithm seeks to improve the
marginal rate of foraging by considering possible locations,

and using the estimates v̂
(i)
j,t . Since the estimates v̂

(i)
j,t are

used, the performance of the Greedy Rate algorithm may
be improved when further observations of vj,t are made by
the reconnaissance agent. The Greedy Rate algorithm has a
computational complexity of O(Tn|L|) (T total timesteps,
and O(n|L|) operations per timestep).

5.2.2 Adaptive Sleep
Our Adaptive Sleep algorithm is adapted from an algo-

rithm from sustainable foraging [17]. Algorithm 2 shows the
psuedo-code of our Adaptive Sleep algorithm. Each agent ai
chooses a location lα, and the agent forages from the location
when it has Kα

2
resources, where Kα is the maximum num-

ber of resources at lα. Whenever the agent is at the home

location l0, it sleeps (stays idle) until v̂
(i)

α,t+t(ai,l0,lα), ai’s es-

timated number of resources at lα (considering the travel
time t(ai, l0, lα)), is at least Kα

2
, since the rate of increase of

resources (assuming the Logistic model) is maximum when
there are Kα

2
resources.

lα is chosen randomly from L, with the caveat that for-
aging agents that are initially within communication range
coordinate so that there are no conflicts; agents outside com-
munication range can pick the same location.

Algorithm 2 Compute if agent ai that is assigned to loca-
tion lα should sleep further

AdaptiveSleep(ai, lα)

1: if ai is not at l0 then
2: return false
3: end if
4: if v̂α,t+t(ai,l0,lα) <

Kα
2

then
5: return true
6: else
7: return false
8: end if

One key difference in our Adaptive Sleep algorithm is that
the agent sleeps until the estimated number of resources is
at least Kα

2
. In [17], the agent computes an initial amount

of time to sleep before it forages resources, and the sleep
time is adjusted when it forages and observes the number of
resources, and is not able to take advantage of observations
by the reconnaissance agent.

Another difference is that the foraging agents coordinate
on the locations, subject to communication range limits,
while the sustainable foraging algorithm [17] uses a central-
ized static allocation based on the distance to the locations.

Also, the sustainable foraging algorithm [17] is deeply con-
cerned with over-foraging and causing locations to collapse
(not able to produce any more resources), we are mainly
focused on maximizing the overall rate of foraging, as this
makes our problem more general beyond sustainable forag-
ing. However, to prevent over-foraging, we ensured that our
Adaptive Sleep algorithm always leaves a minimum popula-
tion at each location (e.g., if 5 resources are available and
a minimum of 2 are required for resource generation, then
only 3 resources are foraged).

5.2.3 Adaptive Sleep with Target Change
The Adaptive Sleep with Target Change algorithm is a

slightly modified version of the Adaptive Sleep algorithm.
While “sleeping” at the home location, an agent ai may visit
another location lβ that was not assigned to any foraging
agent (to ai’s best knowledge). ai selects lβ such that the
travel time is within the expected amount of time to sleep,
and maximizes the number of resources collected. However,
due to the limited communication range, it is possible that
another agent selected lβ as its primary location.

This modification of the Adaptive Sleep algorithm allows
the foraging agents to potentially increase the overall rate
of foraging, since locations that were previously ignored by
Adaptive Sleep may now be foraged (if m > n). However,
if the communication range is small (or the agents cannot
communicate), then agents may visit one another’s assigned
locations and affect the overall foraging rate.

6. INFORMATION-GATHERING TO
IMPROVE FORAGING PERFORMANCE

In this section, we describe our algorithm that determines
the M ≤ m locations in L the reconnaissance agent should
observe and broadcast to the foraging agents.

We contribute the Expected Observation algorithm that
runs m simulations, one for each location lj ∈ L. The ex-
pected number of resources at each location is used for the
simulations. The difference in the m simulations is that dif-
ferent information is given to the foraging agents, e.g., in
the first iteration, it is assumed that l1 is observed, so all

foraging agents ai receive an observation v̂
(i)
1,t. Note that

the observations received by the foraging agents may not be

equal, e.g., v̂
(i)
1,t 6= v̂

(i′)
1,t , and this reflects both the error in ob-

servation by the reconnaissance agent, and communication
errors between reconnaissance and foraging agents.

Them simulations are run for a constant Tforward timesteps,
and the number of resources at the home location l0 is noted.
The algorithm then returns the M locations whose simula-
tions correspond to the highest resources at l0.

It is interesting that the m simulations start off identically,
but the difference in information provided to the foraging
agents give different results. For example, if l1 is observed by
the reconnaissance agent, an agent that would have headed
to l1 might decide to go to l2 instead, and such a change in
plans has repercussions further down the road.

Our Expected Observation algorithm assumes that the
foraging agents’ algorithms are known to the reconnaissance
agent. We believe this assumption is reasonable, since the
foraging and reconnaissance agents are in the same collab-
orative team. While our Expected Observation algorithm
may seem intuitive and straight-forward, our contribution
lies not only in the Expected Observation algorithm, but
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Figure 2: Comparison of our Greedy Rate (GR) algorithm
against the benchmark of Continuous Area Sweeping (CAS)
when resources follow the Bernoulli model of replenishment.

Figure 3: Comparison of our Greedy Rate (GR) algorithm
against the benchmark of Continuous Area Sweeping (CAS)
when resources follow the Poisson model of replenishment.

in the combination of both the foraging and information-
gathering algorithms. Previous foraging algorithms gener-
ally do not consider incorporating new information from
other sources (e.g., the reconnaissance agent), while our for-
aging algorithms exploit the fact the new information can
arrive at any time, and thus improves the overall team for-
aging rate, as we describe in the next section.

7. EXPERIMENTS AND RESULTS
We describe the extensive experiments we conducted to

analyze the performance of our algorithms we introduced
in the previous sections. We compare against the baselines
from sustainable foraging and continuous area sweeping, and
evaluate our Expected Observation algorithm.

7.1 Experimental Setup
The foraging locations were randomly generated, follow-

ing a uniform distribution over a square of size N ×N , and

Figure 4: Effect of communication among foraging agents
when resources follow the Bernoulli model of replenishment.

Figure 5: Effect of observational noise when resources follow
the Poisson model of replenishment.

either followed the Bernoulli, Poisson, or the stochastic Lo-
gistic models. The agents’ initial positions were randomly
generated to be also be within the N × N square. In each
experiment, we simulated T = 1000 timesteps, and recorded
the number of resources v0,T foraged to the home l0.

We varied the number of agents n from 1 to 10, and the
capacities from 1 to 20. We chose 10 and 20 because it was
sufficient for a Random foraging algorithm (i.e., agents that
randomly select their destinations) to forage almost all re-
sources in the Bernoulli and Poisson scenarios. We set the
number of locations |L| = 20 (since it is twice the number of
agents) and set the number of location that the reconnais-

sance agent could visit at each timestep to be M = |L|
4

.
As a baseline, we assumed that foraging agents were ca-

pable of limited communication when they were within N
10

distance, and could communicate their destinations and pay-
loads. We assumed that observations are not noisy as a
baseline. We investigate the effects of no communication
and noisy observations in the Bernoulli and Poisson models.

7.2 Experiments with Bernoulli and Poisson
Models of Replenishment

We compared our Greedy Rate (GR) algorithm against
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the Continuous Area Sweeping (CAS) algorithm [1]. As a
baseline, we used a Random foraging (R) algorithm where
agents randomly select their destination.

Both our GR algorithm and the CAS algorithm can use
information gathered by the reconnaissance agent, and we
compared our Expected Observation (EO) algorithm to a
Random Observation (RO) algorithm, where M locations
would be randomly chosen by the reconnaissance agent.

Figures 2 and 3 show the performance of our algorithms
when the capacities of the agents are 10. Since the num-
ber of resources generated in simulation varied, we mea-
sured the percentage of resources that were successfully for-
aged at the end of the experiment. The solid red, black
and blue lines show Greedy Rate with Expected Observa-
tion (GR+EO), Continuous Area Sweeping with Expected
Observation (CAS+EO), and Random Foraging (R), and
the shaded areas show the standard deviations of these al-
gorithms. The dotted and dashed lines show other combi-
nations of foraging and reconnaissance algorithms.

As the number of agents increase, R outperforms both GR
and CAS (p = 1× 10−24 and p = 3× 10−27 with a 2-tailed
T-test on R vs GR in Bernoulli and Poisson respectively),
primarily because the agents do not share their models, so
agents tend to head to similar locations. Even though agents
coordinate when possible, the limited range of communica-
tion causes inefficiencies in foraging.

However, the introduction of a reconnaissance agent sub-
stantially improves both GR and CAS. Our EO algorithm
outperforms the RO algorithm (p = 1 × 10−15 and p =
2 × 10−39 for GR+EO vs GR+RO on Bernoulli and Pois-
son respectively), and GR+EO outperforms CAS+EO and
R (p = 3 × 10−26 and p = 1 × 10−29 for Bernoulli, and
p = 5 × 10−36 and p = 1 × 10−31 for Poisson). It is inter-
esting to note that CAS+EO performs substantially better
than the baseline CAS. In general, adding a single reconnais-
sance agent with EO provides a much higher benefit than
increasing the number of foraging agents.

We investigated having no communication (among the for-
aging agents) and noisy observations. Figures 4 and 5 shows
the effects as the number of agents and their capacities vary.
While a lack of communication and noisy observations affect
our algorithms, the effect is minimal (a median of 0.3% and
2.2% respectively for communication and noise, thus illus-
trating that our algorithms are robust to a lack of commu-
nication and noisy observations.

In addition, Figures 4 and 5 clearly illustrate the efficacy
of our GR+EO algorithms over the baseline CAS, across all
numbers of foraging agents and agent capacities. We chose
10 to be the maximum number of foraging agents, and 20
to be the maximum capacity, because our algorithm have
already hit the 100% foraging rate before that point. In
contrast, CAS does not reach 100% even with 10 foraging
agents with a capacity of 20 each.

7.3 Experiments with Stochastic Logistic Model
We compared our Adaptive Sleep (AS), Adaptive Sleep

with Target Change (ASTC) algorithms against Sustainable
Foraging (SF) [17], and a Random (R) foraging algorithm as
baseline. Only our algorithms could use information gath-
ered by the reconnaissance agent.

Fig. 6 shows the algorithms’ performance when the agent
capacities are 20, and the stochastic Logistic noise is σe =
0.08. The shaded regions show the standard deviations of

Figure 6: Comparison of our Adaptive Sleep (AS) and Adap-
tive Sleep with Target Change (ASTC) algorithms against
the benchmark of Sustainable Foraging (SF) when resources
follow the stochastic Logistic model of replenishment.

Figure 7: Effect of noise in the stochastic Logistic model.

ASTC+EO, AS+EO, SF and R. SF and AS both increase
linearly, since the agents select a single destination; our AS
algorithm outperforms SF (p = 7× 10−61).

R outperforms AS and SF when the number of agents
are small, primarily because changing destinations allows
resources to replenish at a higher rate. However, as the
number of agents increase, R’s performance begins to plum-
met as locations become over-foraged and the replenishment
rate lowers. ASTC combines the benefits of AS and R, al-
lowing agents to choose a destination, and also visit other
unassigned locations. Thus, the shape of the ASTC curve is
similar to R, albeit at a much higher foraging rate.

The introduction of a reconnaissance agent improves the
foraging rate. EO and RO perform similarly with the AS
algorithm. For ASTC, EO and RO perform similarly when
the number of agents n < 5 (p = 0.14), but EO outperforms
RO when there are n ≥ 5 (p = 8 × 10−6). The constant 5
corresponds to the number of locations the reconnaissance
agent visits: EO determines the best locations to visit, com-
pared to RO’s random choice. When n < 5, there is a high
probability that RO visits all agents’ locations.

Fig. 7 shows the effect of stochastic Logistic noise (σe =
0.04 to 0.20). SF performs poorly as the noise increases, but
ASTC+EO performs better with higher noise, showing that

1331



our algorithm takes advantage of the noise (noise creates a
probability of generating resources ahead of schedule).

7.4 Summary of Experimental Analysis
Across the Bernoulli and Poisson models of replenish-

ment, our Greedy Rate (GR) algorithm outperforms the
baseline Continuous Area Sweeping (CAS). Further, the ad-
dition of the reconnaissance agent improves the performance
of both GR and CAS, since additional information is pro-
vided to both algorithms. Our Expected Observation (EO)
algorithm outperforms the Random Observation (RO) algo-
rithm, showing that although the reconnaissance agent can

visit |L|
4

of the locations each timestep, selecting which lo-
cations to visit still plays a very important role. Random
selection (which will visit every location every 4 timesteps on
average) improves the team foraging rate, but not as much.

In addition, it is important to note that our EO algo-
rithm significantly improves the CAS algorithm’s foraging
rate, so our information-gathering algorithm is not specific
to our foraging algorithms, but can be applied to any forag-
ing algorithm that makes use of new information. Also, our
algorithms are robust to noise in observations, and performs
with minimal degradation when communication among the
foraging agents are unavailable.

Similarly, for the stochastic Logistic model of replenish-
ment, our Adaptive Sleep (AS) and Adaptive Sleep with
Target Change (ASTC) algorithms outperform the baseline
of Sustainable Foraging (SF), across all numbers of forag-
ing agents and agent capacities. Our algorithm is robust to
the noise in the stochastic Logistic model, and the EO al-
gorithm improves our foraging algorithms significantly. The
ASTC algorithm incorporates both the features of the AS
algorithm (to maximize the foraging rate at the assigned lo-
cation) and the Random algorithm (to exploit the resource
replenishment at unassigned locations).

Thus, our experiments show that our algorithms are dis-
tributed and require little communication among the forag-
ing agents, and are robust to noise in observations, a lack
of communication, and noise in the models. We outperform
the baselines significantly, and the addition of the reconnais-
sance agent improves the multi-agent team’s foraging rate,
even for foraging algorithms that we did not create.

8. CONCLUSION
We formally defined the continuous foraging problem, where

agents visit known foraging locations to collect and deliver
resources to a home location. The resources replenish over
time, and we defined three models of resource replenishment:
the Bernoulli and Poisson models where resources replen-
ish probabilistically (e.g., mail entering a mailbox), and a
stochastic Logistic model where the rate of resource replen-
ishment depends on the number of existing resources (e.g., a
population of fish).

We considered two types of agents: foraging agents that
actively forage resources, and a reconnaissance agent that
cannot forage items, but can visit a subset of the locations
to determine the number of resources available.

We contributed algorithms for the foraging and recon-
naissance agents, and to evaluate our algorithms, we per-
formed experiments in simulation, benchmarking against ex-
isting algorithms in sustainable foraging and continuous area
sweeping. We showed that our algorithms outperform the
existing ones even without the use of the reconnaissance

agent. Further, we demonstrated that the reconnaissance
agent further improves the foraging rate of the multi-agent
team, even in the presence of noisy observations and no com-
munication among the foraging agents, thus illustrating the
benefits of our algorithms.
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