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ABSTRACT
We discuss bribery as a rational behaviour in two player bi-matrix
games in game settings, where one player can assign the strategies
to the other player. This can be observed as leader (or: Stackel-
berg) equilibria, where a leader assigns the strategy to herself and
to the other player, who follows this lead unless he has an incentive
not to. We make the rational assumption that a leader can further
incentivise decisions of her follower, by bribing him with a small
payoff value, and show that she can improve her gain this way.
This results in an asymmetric equilibrium for a strategy profile:
the incentive equilibrium. By ’asymmetric equilibrium’, we refer
to the strategy profile where a leader might benefit from deviation,
while her follower does not. We observe that this concept is strong
enough to obtain social optimum in the classic example of the pris-
oners’ dilemma. We show that computing such incentive equilibria
is no more expensive than computing leader equilibria: as opposed
to Nash equilibria, they are both tractable. We evaluated our tech-
niques on a large set of benchmarks (100,000 bi-matrix games) and
provide the experimental results for incentive equilibrium.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Economics

Keywords
Nash Equilibrium; Bi-matrix Games; Leader Equilibrium

1. INTRODUCTION
Nash Equilibria [14, 15] are a widely accepted way to reflect

rational behaviour of players by defining the stable strategies with
the intuition that only if no player gains from changing her strategy
unilaterally, the strategy will be maintained. Thus, Nash equilibria
are defined completely symmetrically.

We study bi-marix games [10] under game settings, where such
a symmetry in determining the strategy profile is not natural. We
therefore challenge the dominating role of symmetry in bi-matrix
games. While symmetry is a common way of generalising rational-
ity from two-player zero-sum games, we argue that it is not the only
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way, and that symmetry is not a global concept that always holds.
To the contrary, the setting of many games is distinctively asym-
metric. In some settings, one player has some power over the rules
of the game. This includes customer relationship models, where the
company has more power over the way they interact with their cus-
tomers than the customer has. Likewise, in auctions, the auctioneer
sets the rules of the auction in addition to being a stakeholder in
each individual auction. It is natural in these settings to observe
that a player with more power (the leader or dictator in this paper)
would be in a position to select a strategy profile for herself and for
the other player (the follower or subject). Therefore, the leader has
the liberty to select a strategy profile where she might benefit upon
deviation. This results in an asymmetry in the definition of optimal
strategy profiles. A similar asymmetry in the definition of optimal
strategy profiles occurs in von Stackelberg’s leader equilibria [19],
where the leader commits to a strategy and advises her follower to
follow a particular strategy, which can then be pure.

In some sense, the leader dictates an equilibrium, and we there-
fore refer to her as the dictator. As the dictator assigns the strate-
gies, we give her leeway to select those strategy profiles, she may
improve upon. This gives her a wider base of strategies to select
from as compared to Nash. The weaker player follows the assigned
strategy, though only if it is in his immediate interest in the simpler
sense that he cannot improve over the selected strategy: changing
his strategy will not yield a better payoff. We therefore refer to him
as the subject of the dictator. Such equilibria are not necessarily op-
timal for the leader in the Nash sense: it may be optimal for a leader
to fix her strategy in a way that she would benefit from changing it.

In order to define such strategies, the leader needs to be able to
communicate her strategy to the follower, and the follower needs
to trust her to follow up on the strategy she has committed to. We
argue that a leader who satisfies both requirements is also in a po-
sition to make further offers to her follower. We therefore consider
it a natural assumption that she can do this by incentivising her fol-
lower to follow the strategy she has advised to, e.g., by paying her
follower a small bribe. Incentivising the choice of her follower by
paying an incentive ι ≥ 0 effectively changes the payoff matrices:
it decreases the leader’s payoff by the same amount ι, by which the
follower’s payoff is increased. We refer to these equilibria as in-
centive equilibria. Like with leader equilibria, the way the dictator
arrives at an incentive equilibrium is manipulative and reflective.
Although the result is an equilibrium, its definition is—like Stack-
elberg’s leader equilibria [19]—by no means symmetric.

Bribery seems to be a very natural concept, and it might be ar-
gued to be almost unnatural to disregard it. In leader equilibria, the
leader needs to announce what she does, and her follower needs to
trust her to do so. In our view, the capacity of offering further in-
centives seems natural in all such settings, and we failed to think

1361



of an economic example where the popular leader equilibria sound
appropriate while incentive equilibria do not. We therefore incorpo-
rated a simple incentive scheme, where the leader can incentivise
different actions of the subject by offering different pay-off values.

As a first motivating example for incentive equilibria, we con-
sider a travel agent, who sells flight tickets to a customer. The travel
agent receives a fee from the company. These fees differ between
different companies. Customers want to travel, but the possible
connections are not of equal value to them. E.g., they might pre-
fer arriving in Heathrow over arriving in Stansted, or prefer leaving
at 10am over leaving at 5am. They value their benefit from buying
the various connections on offer differently, e.g., as follows:

Airline agent-value customer-value
Air India: $100 $170
German Wings: $50 $100
Lufthansa: $120 $80
Ryan Air: $5 $200
US Airways: $110 $150

The agent-value reflects the fees the agent charges to the com-
pany. The customer-value reflects the value the customer considers
an offer to have (value of flight to him minus the cost of the ticket).

When the travel agent learns the priorities and valuations of the
customer, she can make an offer to suit their needs. The agent can-
not increase the offer by the company, but she can discount them on
her own expenses. When the agent does not discount any offer, the
customer would choose the Ryan Air flight, but the travel agent can
simply offer the customer an incentive in form of a $30 discount on
the Air India flight, thus increasing her gain from $5 to $70.

Customer relationship models of this type usually lead to only
the customer making choices, as in the example above. When both
parties have choices, we face the same constraints as for Stackel-
berg equilibria. In particular, the leader must know ex ante that the
follower observes her action. We argue that, accepting that leader
can do this, it is natural to assume that she can announce a reward
for compliance with a suggestion.

When the leader announces her action, she effectively simplifies
the bi-matrix game to a vector, like the one from the travel agent
example. For a given selection of strategies, transferring utilities
makes sense for the same reason as shown in the travel agent ex-
ample. Optimising the chosen action and the incentive at the same
time would naturally provide the best results in cases, where such a
transferral of utilities is possible. It also explains why the transfer-
ral of utilities is uni-directional.

If there is insufficient trust in the transfer of utilities, one can
involve a trusted third party, e.g., a solicitor/notary. While relying
on a solicitor/notary is heavy handed, we would remark that this is
only the extreme position that would arise when the follower does
not trust the leader to transfer the utilities as promised. We would
argue that, in this case, it is far less likely that he would trust her
to follow the announced strategy: the prerequisite of Stackelberg’s
leader equilibria is the critical part, not the transfer of utilities.

Incentive equilibria in bi-matrix games. An important
category of bi-matrix games consists of games similar to the pris-
oners dilemma [18]. This class of games, which is also known as
arms-race games, reflects a situation, where two purely ‘rational’
individuals might not agree to co-operate even if it lies in their
best mutual interest. Such situations where two entities might ben-
efit significantly by co-operating—and similarly suffer if they fail
to co-operate—are the greatest strength of incentive equilibria: in
such cases, incentive equilibria provide socially optimal results.

Incentive equilibria in the prisoners’ dilemma. The con-
cept of incentive equilibria is strong enough to bring the socially
optimum solution in games similar to the prisoners’ dilemma. To
exemplify the way incentive equilibria work, we use the concurrent
bi-matrix game shown in Table 1, which represents the classic pris-
oners’ dilemma [18], one of the most researched problems in the
area of Nash equilibria. It has a famous antinomy that both prison-
ers do better if they both play co-operate (C), however, both of them
have the dominating strategy to defect (D). Consequently, (D,D)
is the only Nash equilibrium that is also the socially worst solution
with a joint return of −16, while, if both of them had co-operated,
it would have resulted in the socially optimal return of −2.

Prisoner II
C D

C −1,−1 −10, 0

Pr
is

on
er

I

D 0,−10 −8,−8

Table 1: Prisoners’ Dilemma

The first observation is that leader equilibria are not powerful
enough to overcome this antinomy. The only strategy dictator, say
Prisoner I, can advise successfully to her subject is the strategy to
defect as defect is strictly superior for all dictator strategies here.
In turn, her best strategy would be to defect, too, ending up in the
same (D,D) as the only leader equilibrium. If the dictator also
makes use of her power to incentivise, then she can bribe her sub-
ject, Prisoner II, into co-operation. An analysis with the techniques
we develop in this paper shows that it would be optimal for her to
commit to co-operating and to incentivise co-operation of Prisoner
II by paying a bribery of value 1. As a result, (C,C) becomes the
optimal choice, and we note that this is indeed the social optimum.
Interestingly, in this example the power of the dictator benefits the
subject more than the dictator: the dictator return after bribery is
−2, while the subject return is 0. We will see that this is not always
the case, and it is also not empirically the case on the random exam-
ples we generated to test our proof-of-concept implementation. As
another example from the class of arms-race games, consider two
countries, say the United States and Iran, who, because of a mutual
threat, have to spend a considerable amount of their resources on
the production of arms and their military. The countries can save a
considerable amount if they both agree on not entering in an arms
race. To achieve this, the more powerful country, say the United
States, may pledge not to enter an arms race and, at the same time,
offer the less powerful country (follower, here Iran) a trade advan-
tage, or promise support in obtaining public events like Olympic
games or any other major event in return for it not entering into
an arms-race either. If the pledge is believed and the incentive is
sufficiently high that the follower would have no incentive to enter
the arms-race, then the dilemma is overcome. This also exemplifies
that the incentive is not the main obstacle, but the trust in the pledge
not to enter into the arms race.

The improvement the dictator (and the follower) can obtain
through incentive equilibria is ε close to 1 compared to leader (and
Nash) equilibria, when we norm all entries of the bi-matrix to be
in [0, 1]. For this, we refer to Table 2, a variant of the prisoner’s
dilemma with pay-offs between 0 and 1. The social return in the
incentive equilibrium is 2−2ε, while in leader and Nash equilibria
the social return is 2ε. Note that, for any δ > 0, we can choose an
ε, e.g., ε = min{0.1, δ/3}, to obtain an improvement greater than
1 − δ, for the dictator’s return and the subject’s return at the same
time, using only values in [0, 1] for the pay-offs.

Another well studied class of games are battle of sexes games.
We do not expand on these games as leader equilibria (and even
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Prisoner II
C D

C 1− ε, 1− ε 0, 1
Pr

is
on

er
I

D 1, 0 ε, ε

Table 2: Prisoners’ Dilemma

Player 2
I II

I 1, 2 0, 0

Pl
ay

er
1

II 0, 0 2, 1

Table 3: A Battle-of-Sexes game

Nash equilibria) are sufficient to obtain any optimal solution in
such games. The incentive would therefore play no role in them.
Note that the example Battle-of-Sexes game from Table 3 has only
one leader/incentive equilibrium, but three Nash equilibria: the pure
strategies where both players play I or both play II and a third mixed
strategy equilibrium where Player 1 plays I with probability 1

3
, and

Player 2 plays I with probability 2
3

. The outcome of these strategy
profiles is (1, 2), (2, 1), and ( 2

3
, 2
3
), respectively. Note that, even

when one restricts the focus to those strategy profiles only, it needs
to be negotiated which of them is taken. The complexity of this ne-
gotiation is outside of the complexity to determine Nash equilibria
in the first place, but it is yet another level of complexity that is
reduced by using incentive (or leader) equilibria.

Friendly equilibria in bi-matrix games. The classic pris-
oners’ dilemma example discussed above explains how incen-
tive equilibria improve over leader equilibria and Nash equilibria.
While always beneficial for the dictator, it is interesting to note
that it is often beneficial for both players. To get an intuition why
incentive equilibria improve over leader and Nash equilibria, note
that the dictator can choose from strategies that satisfy the side-
constraint that the subject cannot improve over it by unilateral de-
viation. For incentive equilibria, the dictator can use incentives,
whereas leader equilibria would optimise only over strategies with-
out incentive (or: with zero incentives). Thus, incentive equilibria
are again an optimum over a large base than leader equilibria. This
optimisation may further leave a plateau of jointly optimal strate-
gies, strategies with the same optimal payoff (after bribery) for the
dictator. We argue that the dictator can-and should-move a step
ahead and choose an equilibrium that is optimal for her subject
among these otherwise equivalent solutions. This is another advan-
tage of a clear outcome for the dictator – the option to choose ex-
aequo an incentive equilibrium, which is good for the subject. We
call an incentive equilibrium friendly if it is optimal and assigns,
among this class of equilibria, the highest payoff to the subject.
Friendly incentive equilibria are therefore in favour of the subject
as well: when the dictator assigns strategies to herself and the other
player, her primary objective is to maximise her own benefit and
her secondary objective is that the subject receives a high gain, too.
Thus, they refer to a situation where both, the dictator and her sub-
ject, benefit, increasing the social quality of result.

Tractability and purity of incentive equilibria. Another
appealing property of general and friendly incentive equilibria is
their simplicity: it suffices for the subject to consider pure strate-
gies, or, similarly, it suffices for the dictator to assign pure strate-
gies to her subject. Another strong argument in favour of general
and friendly incentive equilibria is that they are tractable, whereas

the complexity of finding mixed strategy Nash equilibria is known
to be PPAD-complete [4].

We give an algorithm for the computation of incentive and
friendly incentive equilibria and empirically evaluated the tech-
nique presented here on the randomly generated 100,000 data-sets
with continuous pay-off values and integer pay-off values for the
evaluation of friendly incentive equilibria.

Related Work. Leader equilibria, introduced by von Stackelberg
[19] and therefore sometimes referred to as Stackelberg equilibria,
have been studied in depth in Oligopoly theory [7]. The main con-
tribution of our work is conceptual, and the closest relation of our
equilibrium concept is to Stackelberg’s leader equilibria [3, 20].
Ehtamo and Hamalainen in [5] considered the construction of opti-
mal incentive strategies in two-player dynamic game problems that
are described by integral convex cost criteria. They considered the
problem of finding an incentive strategy for the leader by looking
at the rational response from the follower, such that in an optimal
strategy, cost functional of leader could be minimised. They further
considered in [6], the analytical methods for constructing mem-
ory incentive strategies for continuous time decision problem. The
strategies they study are time-consistent, that means the continua-
tion of equilibrium solution remains an equilibrium. Stark in [17]
studied how introduction of altruism into non cooperative game set-
tings can lead to an improved quality for both the agents. Stark
[16] further discussed special altruism – ’a mutual altruism’ and
their role in various contexts. Stengel and Zamir [20] studied a
commitment model in a leadership game with mixed extensions
of bi-matrix games. They show that the possibility to commit to a
strategy profile in bi-matrix games is always beneficial for the com-
mitting player. Conitzer and Sandholm [3] gives first insight into
the computation of Stackelberg strategies in normal-form games.
[2] considered a mechanism designer modelled as a player in the
game who has the opportunity to modify the game. In their set-
ting, the players’ utility and social welfare is seen as counter intu-
itive. E.g., social welfare may arbitrarily come worse and they focus
completely on pure strategies. Whereas, our solution approach al-
ways gives socially optimal outcomes and the equilibrium we study
is mixed: it suffices for the leader to play mixed strategies while to
assign pure strategy to the subject. Another related work is [13],
in which an external party who has no control over the rules of
the game can influence the outcome of the game by committing to
non-negative monetary transfers for the different strategy profiles
that may be selected by the agents in a multi-agent interaction.

2. DEFINITIONS
Formally, a bi-matrix game is defined as G(A,B), where A and

B are the real valuedm×n payoff matrices for the dictator and the
subject, respectively. In our settings, the dictator is the row player
and the subject, is the column player. In the remainder, we refer to
the number of rows by m and to the number of columns by n. We
also refer to the entry in row i and column j of A and B by aij
and bij , respectively. A (mixed) strategy of the dictator is a prob-
ability vector σ = (p1, . . . , pm), i.e.,

∑m
i=1 pi = 1 (the sum of

the weights is 1) and pi ≥ 0 for 1 ≤ i ≤ m. Likewise, a (mixed)
strategy of the subject is a probability vector δT = (q1, . . . , qn),
i.e.,

∑n
j=1 qj = 1 and qj ≥ 0 for 1 ≤ j ≤ n. Where conve-

nient, we read δT as a function and refer to the jth column of δ by
δT (j). For a given subject strategy δT = (q1, . . . , qn), we define
its support as the positions with non-zero probability, and denote it
as support(δT ) = {j ≤ n | δT (j) > 0}. We also define a bribery
vector βT = (β1, . . . , βn), with non-negative entries βj ≥ 0 for
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all j = 1, . . . , n, corresponding to each decision 1 through n of
the subject, where the dictator pays her subject the bribery βj when
he plays j. We call strategies with singleton support pure. We are
particularly interested in pure subject strategies, and abbreviate the
strategy with δT (j) = 1 by j, or by

−→
j to emphasise that j refers to

a strategy. We call a bribery vector βT = (β1, . . . , βn) a j-bribery
if it incentivises only playing j, that is, if βi = 0 for all i 6= j.

A pair of strategies 〈σ, δ〉 is called a strategy profile. For a
strategy profile (〈σ, δ〉, β) with bribery vector β, we denote the
dictator payoff by dpayoff(A; 〈σ, δ〉, β) = σAδ − δβ and sub-
ject payoff by spayoff(B; 〈σ, δ〉, β) = σBδ + δβ. A strategy
profile (〈σ, δ〉, β) is called stable under bribery or bribery sta-
ble, if spayoff(B; 〈σ, δ〉, β) ≥ spayoff(B; 〈σ, δ′〉, β) holds for all
subject strategies δ′. A bribery stable strategy profile (〈σ, δ〉, β)
is called an incentive equilibrium, if dpayoff(A; 〈σ, δ〉, β) ≥
dpayoff(A; 〈σ′, δ′〉, β′) holds for all bribery stable strategy pro-
files (〈σ′, δ′〉, β′). An incentive equilibrium (〈σ, δ〉, β) is called
friendly, if spayoff(B; 〈σ, δ〉, β) ≥ spayoff(B; 〈σ′, δ′〉, β′) holds
for all incentive equilibria (〈σ′, δ′〉, β′). A bribery stable strategy
profile (and an incentive equilibrium) (〈σ, δ〉, β) is called simple,
if δ is pure.

3. INCENTIVE EQUILIBRIA
In this section, we show that friendly incentive equilibria always

exists. Moreover, there is always a simple friendly incentive equi-
librium.
Existence of bribery stable strategy profiles. The exis-
tence of bribery stable strategy profiles is implied by the exis-
tence of Nash equilibria [4], as Nash equilibria are special cases
of bribery stable strategy profiles with the zero bribery vector.

THEOREM 1. Every bi-matrix game G(A,B) has a Nash equi-
librium [10].

COROLLARY 2. Every bi-matrix game G(A,B) has a bribery
stable strategy profile.

Optimality of simple bribery stable strategy profiles.
Different to Nash equilibria, there are always simple incentive equi-
libria. In order to show this, we first show that there is always a
simple bribery stable strategy profile. This is because, for a given
bribery stable strategy profile (〈σ, δ〉, β) and a j in the support of
δT , (〈σ, j〉, β) is an incentive equilibrium, too.

THEOREM 3. For every bi-matrix game G(A,B)
and every bribery stable strategy profile (〈σ, δ〉, β) and
dpayoff(A; 〈σ, j〉, β) = v for the dictator, there is always a simple
bribery stable strategy profile with dpayoff(A; 〈σ, j〉, β) ≥ v for
the dictator.

PROOF. Let S = support(δT ) and let s =
spayoff(B; 〈σ, δ〉, β) be the payoff for the subject in this
simple bribery stable strategy profile. We first argue that, for all
j ∈ S, (〈σ, j〉, β) is a simple bribery stable strategy profile with
the same subject payoff as (〈σ, δ〉, β). First, the subject payoff
cannot be higher, as (〈σ, j〉, β) would otherwise not be a simple
bribery stable strategy profile (the subject could improve his payoff
by changing his strategy to j). Assuming for contradiction that
there is an j ∈ S with spayoff(B; 〈σ, j〉, β) < s implies, together
with the previous observation that spayoff(B; 〈σ, j〉, β) ≤ s holds
for all j ∈ S, that

∑
j∈S δ

T (j) · spayoff(B; 〈σ, j〉, β) < s,
which contradicts s = spayoff(B; 〈σ, δ〉, β). Taking into account
that the dictator payoff v =

∑
j∈S δ

T (j) · dpayoff(A; 〈σ, j〉, β)
is an affine combination of the dictator payoffs for these sim-
ple bribery stable strategy profiles, there is some j ∈ S with
dpayoff(A; 〈σ, j〉, β) ≥ v.

Description of simple bribery stable strategy profile.
Theorem 3 allows us to seek incentive equilibria only among sim-
ple bribery stable strategy profiles. Note that this is in contrast to
general Nash equilibria, cf. the rock-paper-scissors game. Simple
bribery stable strategy profiles are defined by a set of linear inequa-
tions.

THEOREM 4. For a bi-matrix game G(A,B), (〈σ, j〉, β) is a
simple bribery stable strategy profile if, and only if, σB

−→
j +β

−→
j ≥

σB
−→
i +β

−→
i holds for all pure strategies i=1, . . . , n of the subject.

PROOF. If (〈σ, j〉, β) is a simple bribery stable strategy profile,
then in particular changing the strategy to a different pure strategy
i cannot be beneficial for the subject. Consequently, it holds for
all i = 1, . . . , n that σB

−→
j + β

−→
j ≥ σB

−→
i + β

−→
i . If it holds

for all i = 1, . . . , n that σB
−→
j + β

−→
j ≥ σB

−→
i + β

−→
i , then we

note that, for any subject strategy δ, the payoff under σ is an affine
combination spayoff(B; 〈σ, δ〉, β) =

∑
i∈S δ(i) · σB

−→
i + β

−→
i

of the payoffs for the individual pure strategies. Using σB
−→
j +

β
−→
j ≥ σB

−→
i + β

−→
i , we get spayoff(B; 〈σ, δ〉) =

∑
i∈S δ(i) ·

σB
−→
i + β

−→
i ≤

∑
i∈S δ(i) · σB

−→
j + β

−→
j = σB

−→
j + β

−→
j =

spayoff(B; 〈σ, j〉, β).

THEOREM 5. For a bi-matrix game G(A,B) with a bribery
vector β′ = (β′

1, . . . , β
′
n)

T , and for a simple bribery stable strat-
egy profile (〈σ, j〉, β′), we can replace β′ by a j-bribery vector
β = (β1, . . . , βn)

T with βj = β′
j .

PROOF. According to Theorem 3, for a bi-matrix game G(A,B)
and a bribery vector β′ = (β′

1, . . . , β
′
n)

T , there is always a simple
bribery stable strategy profile δT =

−→
j with optimal pay-off for the

dictator. We now choose δT =
−→
j and β = (β1, . . . , βn)

T , with
βj = β′

j and βi = 0 for all i 6= j. We first observe that (〈σ, j〉, β)
provides the same dictator and subject payoff as (〈σ, j〉, β′). Next
we observe that if (〈σ, j〉, β′) is bribery stable, then so is (〈σ, j〉, β)
by Theorem 4.

In our equation systems, we can therefore focus on simple incentive
equilibria (〈σ, j〉, β) with j-bribery β. The value of this j-bribery
β can then be described by the value of the incentive ι = βj that
the dictator gives to her subject to solicit him to play j.

Computing Incentive equilibria. This invites the definition
of a constraint system CG(A,B)

j for each pure subject strategy j, that
describes the vectors σ by σ = (p1, . . . , pm). Theorem 4 and The-
orem 5 invites to reflect the fact that (〈σ, j〉, β) is a simple bribery
stable strategy profile with j-bribery β by using a constraint sys-
tem. This constraint system CG(A,B)

j consists of m + n + 1 con-
straints, where m+ 1 constraints describe that σ is a strategy,

•
∑m

i=1 pi = 1 (the sum of the weights is 1) and

• the m non-negativity requirements pi ≥ 0 for 1≤ i≤m,

and n− 1 constraints reflect the conditions from Theorem 4 on an
incentive equilibrium. That is, CG(A,B)

j contains n − 1 constraints
of the form

•
∑m

k=1(bjk − bik)pk + ι ≥ 0,

one for each i 6= j with 1 ≤ i ≤ n, and a non-negativity constraint
on the bribery value ι,

• ι ≥ 0,

As this reflects the conditions from Theorem 4, we first get the
following corollary.
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COROLLARY 6. The solutions to CG(A,B)
j describe the set

of dictator strategy and j-bribery vector pairs (σ, β) such that
(〈σ, j〉, β) is bribery stable.

EXAMPLE 7. If we consider the first strategy of PrisonerII from
the Prisoner’s Dilemma from Table 1, then C1 consists of the con-
straints

• p1 + p2 = 1,

• ι, p1, p2 ≥ 0, and

• ι− p1 − 2p2 ≥ 0.
Note that the constraints do not depend on the payoff matrix of

the dictator. What depends on the payoff matrix of the dictator is
the formalisation of the objective. We denote with LPG(A,B)

j the
linear programming problem that consists of the constraint system
CG(A,B)
j and the objective function

m∑
k=1

ajkpk − ι 7→ max,

where
∑m

k=1 ajkpk − ι = dpayoff(A; 〈σ, j〉, β) is the payoff the
dictator obtains for such a simple bribery stable strategy profile
(〈σ, j〉, β) with σ = (p1, . . . , pm) and βj = ι ≥ 0 is the bribery
value of the j-bribery vector β.

COROLLARY 8. The solutions to LPG(A,B)
j describe the

set of dictator strategy and j-bribery vector pairs (σ, β)
such that (〈σ, j〉, β) is bribery stable and the dictator return
dpayoff(A; 〈σ, j〉, β) is maximal among simple bribery stable
strategy profiles with subject strategy j and j-bribery vectors β.

EXAMPLE 9. If we consider the first strategy of PrisonerII from
the Prisoner’s Dilemma from Table 1, then the LP1 consists of the
constraints from C1 and the objective

−p1 − ι 7→ max .

This provides us with a simple algorithm for determining (simple)
incentive equilibria.

COROLLARY 10. To find an incentive equilibrium for a game
G(A,B), it suffices to solve the linear programming problems
LPG(A,B)

j for all 1 ≤ j ≤ n, to select a i with maximal solu-
tion among them, and to use a solution (〈σi, i〉, β), where β is a
i-bribery vector with βi = ι from the solution of LPG(A,B)

i . This
solution (〈σi, i〉, β) is an incentive equilibrium.

PROOF. Obviously, LPG(A,B)
j has some solution iff CG(A,B)

j is
satisfiable, and thus, by Corollary 6, if there is a dictator strategy
σ and a j-bribery vector β such that (〈σ, j〉, β) is a simple bribery
stable strategy profile. In this case, a solution to LPG(A,B)

j reflects
an optimal simple bribery stable strategy profile among the pure
subject strategies that always play j; in particular, such an opti-
mum exists. (Note that the dictator return is bounded from above
by the highest entry aij in her payoff matrix). Thus, the maximal re-
turn from some LPG(A,B)

i is the optimal solution among all simple
bribery stable strategy profiles. Assuming that a better non-simple
bribery stable strategy profile exists implies by Theorem 3 that a
better simple incentive equilibrium exists as well and thus leads to a
contradiction. Note that the existence of some simple bribery stable
strategy profile is established by Corollary 2 and Theorem 3.

As linear programming problems can be solved in polynomial
time [8, 9], finding an incentive equilibria is tractable.

COROLLARY 11. An optimal incentive equilibrium can be con-
structed in polynomial time.

Friendly incentive equilibria. As discussed in the introduc-
tion, the dictator follows a secondary objective of being benign to
the subject. We have seen that it is cheap and simple to determine
the value vdmax that the dictator can at most acquire in an incen-
tive equilibrium. It is therefore an interesting follow-up question to
determine the highest payoff vsmax for her subject in an incentive
equilibrium with dictator payoff vdmax, i.e., to construct and evalu-
ate friendly incentive equilibria. We first observe that friendliness
does not come to the cost of simplicity.

THEOREM 12. For every bi-matrix game G(A,B) and every
incentive equilibrium (〈σ, δ〉, β) with payoff v for the subject, it
holds for all j ∈ support(δT ) that (〈σ, j〉, β) is an incentive equi-
librium with payoff v for the subject.

PROOF. Let S = support(δT ) be the support of δT and let
vdmax = dpayoff(A; 〈σ, δ〉, β) be the dictator payoff for (〈σ, δ〉, β).
In the proof of Theorem 3 we have shown that, for all j ∈ S,
(〈σ, j〉, β) is a simple bribery stable strategy profile with the same
payoff spayoff(B; 〈σ, j〉, β) = spayoff(B; 〈σ, δ〉, β) for the sub-
ject. To establish that (〈σ, j〉, β) is also an incentive equilibrium,
we first note that the dictator payoff cannot be higher than in
an incentive equilibrium, such that dpayoff(A; 〈σ, j〉, β) ≤ vdmax

holds for all j ∈ S. Assuming for contradiction that there is an
j ∈ S with dpayoff(A; 〈σ, j〉, β) < vdmax would, together with
the previous observation that dpayoff(A; 〈σ, j〉, β) ≤ vdmax holds
for all j ∈ S, imply that the affine combination

∑
j∈S δ(j) ·

spayoff(B; 〈σ, j〉, β) < vdmax of these values defined by δ is
strictly smaller than vdmax, and would therefore lead to a contra-
diction.

THEOREM 13. For a bi-matrix game G(A,B) and every incen-
tive equilibrium (〈σ, δ〉, β) with payoff v for the subject, there is al-
ways a pure subject strategy j with a j-bribery vector β′ such that
(〈σ, j〉, β′) is an incentive equilibrium with subject payoff ≥ v.

PROOF. First, according to Theorem 12, we can observe that
there is always a pure subject strategy j, such that (〈σ, j〉, β) is
an incentive equilibrium for the subject as it returns the maximal
gain for the subject. Following the same argument as in the proof
of Theorem 5, we can amend β by only incentivising the subject to
play j, replacing all other entries βi, i 6= j, by β′

i = 0 and setting
β′
j = βj . The payoff for the dictator and subject are unaffected, and

if (〈σ, j〉, β) is bribery stable, so is (〈σ, j〉, β′): the subject return
for playing j is unaffected, while the subject return for all other
strategies is not increased.

Like in the quest for ordinary incentive equilibria, we can there-
fore focus on pure subject strategies j and the respective j-bribery
vectors when seeking friendly incentive equilibria. Recall that each
constraint system CG(A,B)

j describes the set of dictator strategies
σ and gives a j-bribery vector β, such that (〈σ, j〉, β) is a simple
bribery stable strategy profile. In order to be an incentive equilib-
rium, it also has to satisfy the optimality constraint

m∑
k=1

ajkpk − ι ≥ vdmax.

We refer to the extended constraint system by EG(A,B)
j By Corol-

lary 6, the set of solutions to this constraint system is non-empty iff
there is an incentive equilibrium of the form (〈σ, j〉, β).

COROLLARY 14. The solutions to EG(A,B)
j describes the set of

dictator strategies σ and a bribery value ι, such that (〈σ, j〉, β) is
an incentive equilibrium for G(A,B).
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EXAMPLE 15. Considering again the Prisoner’s Dilemma
from Table 1, E1 consists of the constraints from C1 plus the op-
timality constraint

−p1 − ι ≥ −2

We now extend the constraint system EG(A,B)
j to an extended linear

programming problem ELPG(A,B)
j by adding the objective

m∑
k=1

bjkpk + ι 7→ max

COROLLARY 16. The solutions to LPG(A,B)
j describe the set

of dictator strategy and j-bribery vector pairs (σ, β) such that
(〈σ, j〉, β) is an incentive equilibrium that satisfies, if such a so-
lution exists, that the subject return spayoff(B; 〈σ, j〉, β) is maxi-
mal among these simple bribery stable strategy profiles with subject
strategy j and j-bribery vectors β.

EXAMPLE 17. If we consider the Prisoner’s Dilemma from Ta-
ble 1, then ELP1 consists of the constraints from E1 and the objec-
tive

−p1 − 10p2 + ι 7→ max

Together with the observation of Theorem 12, Corollary 16 pro-
vides an algorithm for finding a friendly incentive equilibrium.

COROLLARY 18. To find a friendly incentive equilibrium for a
game G(A,B), it suffices to solve the linear programming prob-
lems ELPG(A,B)

j for all 1 ≤ j ≤ n, to select a i with maximal
solution among them, and to use a solution (〈σi, i〉, β), where β is
a i-bribery vector with βi = ι from the solution of ELPG(A,B)

i .
This solution (〈σi, i〉, β) is a friendly incentive equilibrium.

PROOF. ELPG(A,B)
j has some solution iff EG(A,B)

j is satisfi-
able, and thus, by Corollary 12, if there is a dictator strategy σ
such that (〈σ, j〉, β) is an incentive equilibrium. In this case, a
solution to ELPG(A,B)

j reflects an incentive equilibrium with the
maximal subject payoff among the incentive equilibria of the form
(〈σ, j〉, β); in particular, such an optimum exists. Thus, the re-
turned result is the optimal solution among all simple incentive
equilibria. Assuming that a better non-simple friendly incentive
equilibrium exists implies by Theorem 12 that a better simple
friendly incentive equilibrium exists as well, and thus leads to a
contradiction. Note that the existence of some simple optimal in-
centive equilibrium is implied by Corollary 10.

As linear programming problems can be solved in polynomial
time [8, 9], finding friendly incentive equilibria is tractable.

COROLLARY 19. A simple friendly incentive equilibrium can
be constructed in polynomial time.

Incentive equilibria in zero-sum games. Here, we estab-
lish friendliness of incentive equilibria in zero-sum games and
show that the dictator can not gain anything by paying a bribery in
zero-sum games. Zero-sum games are bi-matrix games where the
gain of the dictator is the loss of the subject and vice versa. They
satisfy aij = −bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. Differ-
ent to the general bi-matrix games, zero-sum games are determined
in that they have determined expected payoffs for both the players
when both play rational. A rational behaviour for zero-sum games
is therefore an acid test for new concepts: they do not have different
levels of reasoning, and the opponent is predictable. We would like
to make a few simple observations to show that incentive equilibria
pass this acid test.

THEOREM 20. If 〈σ, δ〉 is a Nash equilibrium in a zero-
sum game and j ∈ support(δT ), then 〈σ, j〉 is a friendly
incentive equilibrium with zero bribery vector β0 and with
dpayoff(A; 〈σ, j〉, β0) = dpayoff(A; 〈σ, δ〉, β0).

PROOF. We first establish that (〈σ, j〉, β0) is a simple bribery
stable strategy profile. To see this, we use that (〈σ, δ〉, β0) is
a Nash equilibrium, and therefore spayoff(B; 〈σ, j〉, β0) ≤
spayoff(B; 〈σ, δ〉, β0) holds for all j ≤ n. Assuming that
this inequation is strict for any j ∈ support(δT ) violates
spayoff(B; 〈σ, δ〉, β0) =

∑n
j=1 δ(j) · spayoff(B; 〈σ, j〉, β0)).

Second, we observe that playing δ offers a return
spayoff(B; 〈σ′, δ〉, β0) ≥ spayoff(B; 〈σ, δ〉, β0), as other-
wise the dictator could benefit by deviating from (〈σ, δ〉, β0).
By a similar “≤, but not < as it would contradict ≥ from the
affine combination” argument, we can lead the assumption that
spayoff(B; 〈σ′, δ〉, β0) > spayoff(B; 〈σ′, j〉, β0) holds to a
contradiction for all j ∈ support(δT ). Consequently there is,
for all dictator strategies σ′, an j ∈ support(δT ) such that
spayoff(B; 〈σ′, j〉, β0) ≥ spayoff(B; 〈σ, δ〉, β0). The zero-sum
property then provides the claim.

Note that all incentive equilibria are for this reason friendly in
zero-sum games. The definition of a simple bribery stable strategy
profile now shows that the dictator return dpayoff(A; 〈σ, j〉, β0)
can only be improved when the subject changes her strategy. (Note
that this does not generally hold for non-zero-sum games.) Con-
sequently, her incentive equilibrium provides her with the same
guarantee as her rational strategy from zero-sum games. Her sub-
ject might be left exploitable, but in the selected strategy profile, he
will receive the same payoff as with a rational strategy, but does not
have to resort to randomisation. As these games are symmetric, this
in particular implies that both players can play dictator strategies in
zero-sum games, and thus dictator can not gain anything by paying
a bribery (as it is applicable only when there is an asymmetry).

COROLLARY 21. If (〈σ, j〉, β0) is an incentive equilibrium in a
zero-sum game G(A,B) and (〈δ, i〉, β′

0) is an incentive equilibrium
in G(B,A), where β0 and β′

0 are the zero vectors, then 〈σ, δ〉 is a
Nash equilibrium in G(A,B).

Naturally, this does not extend to general bi-matrix games.

THEOREM 22. The dictator payoff in incentive equilibria
grows monotonously in the payoff matrix of the dictator. If all en-
tries grow strictly, so does the dictator payoff.

PROOF. As observed earlier, the individual constraint systems
do not depend on the payoff matrix of the dictator, and the set of
simple bribery stable strategy profiles is not affected by replacing a
payoff matrix A by an entry-wise greater payoff matrix A′. An in-
centive equilibrium forA is thus a bribery stable strategy profile for
A′, too, and the payoff of this equilibrium for A′ has the required
properties. Consequently, an incentive equilibrium for A′ has them
as well.

THEOREM 23. If (〈σ, j〉, β) is a friendly incentive equilibrium
with j-bribery vector β, then j is the socially optimal response to σ.

PROOF. First, there is always a pure socially optimal response.
Let us assume for contradiction that there is a socially better pure
response i. For i to be socially strictly better than j, it must hold
that σA

−→
i +σB

−→
i > σA

−→
j +σB

−→
j (Note that bribery is socially

neutral). This is equivalent to σA
−→
j + σB

−→
j − σA−→i < σB

−→
i .

As (〈σ, j〉, β) is a friendly equilibrium and βT = (β1, . . . , βn) is a
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j-bribery vector, we know that σB
−→
j +βj ≥ σB

−→
i . In order to in-

centivise the subject to play i, it suffices to choose a i-bribery vector
β′ = (β′

1, . . . , β
′
n)

T such that σB
−→
i +β′

i ≥ σB
−→
j +βj , for which

we can choose β′
i = βj +σB

−→
j −σB−→i , which is non-negative as

(〈σ, j〉, β) is bribery stable. Note that this immediately provides all
inequalities from Theorem 4, such that (〈σ, j〉, β′) is bribery stable.
The dictator payoff, however, would be dpayoff(A; 〈σ, i〉, β′) =

σA
−→
i − β′

i > (σA
−→
j + σB

−→
j − σB−→i ) − β′

i = σA
−→
j − βj =

dpayoff(A; 〈σ, j〉, β), which contradicts the optimality require-
ment of incentive equilibria.

4. EVALUATION
In this section, we give detail of our proof-of-concept implemen-

tation and the results obtained. We randomly generated two set of
benchmarks with uniformly distributed entries in the bi-matrices.
One set of benchmarks uses continuous pay-off values in the range
from 0 to 1 (Table 4), and the other set of benchmarks uses integer
pay-off values in the range from -10 to 10 (Table 5). They contain
samples of 100,000 games for each matrix form covered.

An incentive equilibrium (IE) of a bi-matrix game G(A,B)
can be computed by solving the linear programming problems
from Corollaries 8 and 16. The result is a simple strategy pro-
file (〈σ, j〉, β), where j is a pure strategy of the subject, σ
is given as a tuple of probabilities that describe the likeli-
hood the dictator chooses her individual strategies, and β is a
j-bribery vector. We implemented Algorithm 1 for computing
friendly incentive equilibrium, using the LP solver [11], taken
from http://lpsolve.sourceforge.net/5.5/. The al-
gorithm returns a friendly IE in form of a strategy profile
(〈σ, j〉, β), as well as the payoffs obtained by the subject and dic-
tator in the friendly IE under the j-bribery vector returned for the
given bi-matrix game. We implemented our algorithm in C and our
implementation is available [1]. We have used GAMBIT [12] to
compute the Nash equilibria(NE). The data size is given in terms
of number of subject strategies (#SSt) and the number of dictator
strategies(#DSt).

Experimental results. We analysed the outcome of the ran-
dom games along the parameters ‘average optimal return value of
the dictator (DictR)’, ‘average optimal return value of the subject
(SubjR)’, ‘average bribery value’, and the confidence interval ra-
dius for both dictator and subject return for a 95% confidence inter-
val. We also gave the execution time for 100,000 games. The high-
est average execution time observed, which is obtained for friendly
incentive equilibria, is 21.5 milliseconds.

We summarise the results for friendly incentive equilibria (IE)
and leader equilibria (LE), respectively, in Table 4 for continuous
variables in the 0 to 1 range and in Table 5 for integer variables in
the -10 to 10 range. The results indicate that the bribery value falls
with the number of dictator strategies and, less pronounced, with
the number of subject strategies. This is not very surprising: the
limit value for infinitely many strategies is 0, as there is, with limit
probability 1, an entry arbitrarily close1 to the social return 2 in the
continuous case, and with the social return 20 in the integer case.
For the same reason, it is not surprising that the dictator benefits
from an increase in her own strategies and in the strategies of the
subject alike, whereas the subject does not seem to benefit from an
increase in the number of dictator strategies.

Table 6 compares incentive, leader, and Nash equilibria for dicta-
tor return and subject return, respectively, for uniformly distributed

1ε close for an arbitrarily small, but fixed, ε > 0

Algorithm 1: The Algorithm outputs a (pure) friendly incentive equilib-
rium (〈σ, j〉, β), a j-bribery vector β, dictator payoff dpayoff(A; 〈σ, j〉, β)
and subject payoff spayoff(B; 〈σ, j〉, β)
Input: A bi-matrix game G(A,B)
Output: A friendly incentive equilibrium 〈σ, j〉, a j-bribery vector β

(represented by the value ι = βj ), dpayoff(A; 〈σ, j〉, β), and
spayoff(B; 〈σ, j〉, β)

max← min{aij | i ≤ m, j ≤ n}
// initialise the dictator payoff to minimal entry of A
opt← ∅ // initialise optimal pure subject strategies
for j ← 1 to n //for each pure subject strategy do

write linear programme LPG(A,B)
j ;

call LPsolver();
get objective value obj_val
if obj_val > max then

max← obj_val
opt← {j}

end
if obj_val = max then

opt← obj ∪ {j}
end

end
max′ ← min{bij | i ≤ m, j ≤ n} − 1
for j ∈ opt //for pure subject strategies with IE do

write linear programme ELPG(A,B)
j ;

call LPsolver();
get objective value obj_val and solution σ
if obj_val > max′ then

max′ ← obj_val
IE ← (〈σ, j〉, β)

end
end
return IE, max′, max, and ι

dictator return subject return
#SSt #DSt Incentive Leader Nash i_gain Incentive Leader Nash

2 2 5.96 4.28 1.34 0.56 5.24 4.05 3.53
2 3 6.13 4.78 2.45 0.54 3.77 2.61 1.9
2 5 5.33 5.33 2.81 0.48 2.87 0.94 0.14
2 10 8.81 8.81 7.1 0.66 5.69 5.26 1.89
3 2 4.93 3.43 1.23 0.54 5.31 5.3 5.3
3 3 5.94 4.71 0.67 0.57 5.56 4.3 4.3
5 3 5.95 4.34 1.12 0.52 6.24 6.12 5.2

10 10 9.13 9.01 6.72 0.78 7.27 6.7 1.96

Table 6: average dictator return and subject return for same datasets with
pay-offs -10 to 10 in different equilibria

integer entries in the range from -10 to 10. We have used Gambit
[12] to compute Nash equilibrium. If there is more than one NE in
a data-set, we have considered the optimal one with the maximum
pay-off for the dictator, using the subject payoff as a tie-breaker.
Our results show that, for both dictator and subject, return is always
higher in IE as compared to LE and even more so when compared
to NE. Table 6 also outputs the gain for the dictator in IE as com-
pared to NE. Its value is given by i_gain = (DictRetbribery −
DictRetNash)/(Maxdictvalue − DictRetNash) to describe the
improvement obtained.

The data set used there is tiny, 10 samples each. This is because
it is expensive to compute optimal Nash equilibria. The unsurpris-
ingly large differences to the values from Tables 4 and 5 confirm
that the values have to be read with caution, but they suffice to give
an impression on the advantage obtained over Nash equilibria.

The improvement obtained (numerator) is the difference between
the dictator payoff in the IE and the best NE, while the maximum
improvement possible (denominator) is the difference between the
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#SSt #DSt Dict R Subj R Bribery conf I conf I ET Dict R Subj R conf I conf I ET
average average average dict subject (minutes) average average dict subject (minutes)

2 2 0.726498 0.621347 0.031252 0.001188 0.001705 4.2175 0.698048 0.612999 0.001332 0.001774 2.7368
2 3 0.798458 0.585959 0.020400 0.000926 0.002014 4.6354 0.785525 0.577285 0.001009 0.002068 3.8177
2 5 0.868985 0.529380 0.010426 0.000642 0.002537 4.5459 0.865601 0.523492 0.000667 0.002555 4.0808
2 10 0.929643 0.434452 0.003310 0.000365 0.003249 6.4351 0.929367 0.432039 0.000367 0.003250 4.5798
3 2 0.752211 0.697569 0.043221 0.001051 0.001526 5.0878 0.710645 0.683939 0.001274 0.001623 4.5323
3 3 0.818569 0.662023 0.027266 0.000809 0.001893 6.5401 0.800711 0.647836 0.000926 0.001970 4.9813
5 3 0.856830 0.558777 0.026226 0.000646 0.003482 11.1242 0.817277 0.725141 0.000843 0.001852 8.0363

10 10 0.967437 0.184819 0.003880 0.000160 0.005209 35.8585 0.954231 0.684151 0.000207 0.003089 34.0453

Table 4: dictator return(avg), subject return(avg), bribery value(avg), confidence interval radius(dictator), confidence interval radius(subject), total execution
time for 100,000 samples in incentive equilibria (left) and leader equilibria (right) with pay-offs 0 to 1

#SSt #DSt Dict R Subj R Bribery conf I conf I ET Dict R Subj R conf I conf I ET
average average average dict subject (minutes) average average dict subject (minutes)

2 2 4.748595 3.030555 0.661109 0.024802 0.030519 3.5780 4.227947 2.982509 0.027691 0.030597 3.5780
2 3 6.272594 2.880576 0.432742 0.019294 0.030389 3.9091 6.041986 2.797888 0.020913 0.030337 3.3044
2 5 8.723898 2.894013 0.217244 0.013183 0.029920 4.1927 7.666887 2.831469 0.013692 0.029740 3.3426
2 10 8.982101 3.039720 0.068128 0.006878 0.029555 4.9849 8.977945 3.013178 0.006930 0.029482 4.1737
3 2 5.295267 4.623187 0.901498 0.021894 0.025617 4.9897 4.552556 4.473518 0.026218 0.025743 3.6521
3 3 6.680038 4.444846 0.575029 0.016841 0.025512 5.3623 6.356434 4.286942 0.019193 0.025418 3.9804
5 3 7.4977325 6.740712 0.548419 0.013251 0.032891 7.6684 6.728477 5.887561 0.017346 0.019969 5.7481

10 10 9.727398 7.82520 0.065963 0.002783 0.046590 37.3025 9.41755 7.587172 0.003934 0.013824 24.9537

Table 5: dictator return(avg), subject return(avg), bribery value(avg), confidence interval radius(dictator), confidence interval radius(subject), total execution
time for 100,000 samples in incentive equilibria (left) and leader equilibria (right) with integer pay-offs from -10 to 10

maximal entry in the payoff matrix of the dictator and her payoff
in her best NE. The value thus norms the dictator’s gain if she pays
bribery to the subject. The higher the value, the more is dictator’s
gain in IE by paying bribery as compared to NE. For the subject,
her gain with bribery is also always higher or equal to her gain
without bribery, or in NE. Thus, the friendly IE guarantees a local
social optimum in the form of a socially optimal subject return.

Note that the execution time given for each data-size is the total
time required for the complete data-set, i.e., 100,000 games. The
execution time rises faster with an increasing number of subject
strategies than with an increasing number of dictator strategies.
This was to be expected, as the number of subject strategies de-
termines the number of linear programmes need to be solved to
find a friendly incentive equilibrium. Our expectation for randomly
drawn examples was to find roughly a quadratic growth in the num-
ber of subject strategies and a linear growth in the number of dic-
tator strategies. The actual growth seems to be a bit lower, but this
may well be due to noise and random effects. The execution time
is tiny in all instances.

Symbolic analysis of relevant classes. As discussed in the
introduction, prisoners dilemma / arms race games are one standard
class of problems, where our technique provides very nice results.
We give a short overview on their symbolic solution. A general bi-
matrix game of this class are games in the form of Table 7 that
satisfy the following constraints:

• d > b > h > f and e > a > g > c, and

• min{b− g, a− g} > max{d− b, h− f, e− a, g − c}.

Player II
1 2

1 a, b c, d

Pl
ay

er
I

2 e, f g, h

Table 7: "prisoners dilemma" pay-off matrix

It is easy to see that the only Nash and leader equilibrium is to
play (2,2), with dictator return g and subject return h. In an incen-
tive equilibrium, however, the dictator can incentivise her subject to
play 1 when she pledges to play 1 herself and promises to pay him
a bribery of d − b for playing 1. The subject return then increases
to d, while the dictator return increases to b+ a− d.

As mentioned in the introduction, the class of battle of sexes
games—these are the games satisfying g > a > max{c, e} and
b > h > max{d, f}—is a class of games, for which incentive
equilibria provide optimal result for the dictator, namely the strat-
egy (2,2) with bribery 0. This is, however, also a leader equilibrium.

Finally, when we consider the games where the dictator has no
choice except for the selection of the bribery value, we note that an
incentive equilibrium provides the social optimum, without effect-
ing the outcome for the subject. If, e.g., the individual values for
the dictator and subject are N(0, 1) normal distributed, the social
outcome for each pair is N(0,

√
2) normal distributed, such that

the expected dictator return is (
√
2− 1) times the expected subject

return for all numbers of subject strategies, whereas it would be 0
for leader and Nash equilibria.

5. CONCLUSION
With incentive equilibria, we have introduced an asymmetric

type of equilibria that reflects the asymmetry in the evaluation of bi-
matrix games by allowing the more powerful agent to suggest so-
lutions to her follower and by incentivising her follower’s actions.
It translates into more freedom for the dictator to select the strat-
egy profiles. As observed for the prisoners’ dilemma (cf. Table 1),
incentivising proves to be individually better for both players. Nat-
urally, the observation incentive equilibria beat leader equilibria
beat Nash equilibria was confirmed. Our experimental results also
suggest that the subject would often benefit from incentive equilib-
ria. Incentive equilibria, therefore, provide a natural explanation for
bribery in asymmetric non-zero sum games.
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