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ABSTRACT
Stackelberg game models have recently seen considerable
practical and academic success in security applications, with
defender as the leader, and attacker the follower. The key
conceptual insight of Stackelberg security games is that de-
fense needs to be proactive, optimally accounting for at-
tacker’s response to a defensive posture. We propose that
this insight has relevance in another important application
domain: vaccination. Vaccination therapies are important
tools in the battle against infectious diseases such as HIV
and influenza. However, many viruses, including HIV, can
rapidly escape the therapeutic effect through a sequence of
mutations. We propose to design vaccines, or, equivalently,
antibody sequences, that make such evasion difficult. For-
mally, we model the interaction between a vaccine and a
virus as a Stackelberg game in which the vaccine designer
chooses an antibody, and the virus chooses a minimal se-
quence of mutations to escape it.

Our crucial observation is that we can leverage protein
modeling software, Rosetta, as an oracle to compute bind-
ing score for an input virus-antibody pair. This observation
enables us to develop a fully automated bi-level stochastic
optimization algorithm for optimal antibody “commitment”
strategy. A key technical challenge is that score calcula-
tion for each possible antibody-virus pair is intractable. We
therefore propose a novel simulation-based bi-level optimiza-
tion algorithm to address this, which consists of three ele-
ments: first, application of local search, using a native anti-
body sequence as leverage, second, machine learning to pre-
dict binding for antibody-virus pairs, and third, a Poisson
regression to predict escape costs as a function of antibody
sequence assignment. We demonstrate the effectiveness of
the proposed methods, and exhibit an antibody with a far
higher escape cost (7) than the native (1).
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1. INTRODUCTION
Infectious diseases that defy definitive treatment are a ma-

jor public health challenge. Millions of people worldwide
are infected with HIV, many of them expected to die from
AIDS [21]. Antibiotic resistant bacterial strains have raised
much alarm, and show no signs of abating [3]. Annual in-
fluenza cycles, while not usually deadly, cause substantial
productivity loss and much temporary pain. Finally, a re-
cent Ebola outbreak in Africa has killed thousands so far,
and may kill many more before it runs out of steam [4].

An important problem faced by drug and vaccine design-
ers is evolution: diseases, particularly those that can mutate
rapidly, such as HIV and influenza, invariably escape specific
vaccine/drug treatment.

Vaccination, which is the focus of our work, stimulates
the immune system to produce antibodies that bind to the
vaccine substance. The goal is that the produced antibodies
are subsequently capable of binding relevant strains of the
live pathogen, rapidly militating immune response against
disease. Consequently, a core question in vaccination re-
search is how to design or discover an antibody that is effec-
tive against a particular pathogen. To simplify terminology,
we henceforth focus our discussion on viruses, although our
methods are general. Antibody effectiveness has two forms:
the first is that it actually binds the virus it is meant to
bind; the second is that the virus does not easily mutate
and escape such binding. This latter design criterion typi-
cally takes the form of designing/discovering broadly binding
antibodies, or antibodies that bind to many different known
strains of the same virus, for example, to many different
influenza or HIV strains found “in the wild” [11].

We formulate antibody design as a Stackelberg game be-
tween the vaccine designer (drug designer, etc), who stim-
ulates an antibody with particular binding characteristics
(this is the binding site in the antibody sequence), and the
virus subsequently responds to the antibody by attempting
to evade it (evade binding to it, that is) through a series of
local mutations. So, the “designer” chooses an antibody, and
the virus responds through a shortest sequence of mutations
leading to escape. In nature, evasion models natural selec-
tion where fitness criterion principally includes not binding
to the antibody (since otherwise the virus is killed by the
immune system).
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The designer-virus game poses two challenges: 1) enor-
mous search space for both the designer and the virus (≥
1050 in each case), and 2) determination whether an arbi-
trary antibody-virus pair bind. To tackle the former chal-
lenge, we propose, and compare the performance of, several
stochastic local search heuristics, using the native antibody
as a “springboard”. Even for computing virus escape alone,
this approach scales poorly. The major bottleneck is the
second challenge: binding evaluation. For this purpose we
make use of Rosetta, a premier computational protein mod-
eling tool [8]. Rosetta, however, can be extremely time con-
suming even for a single evaluation (which could take nearly
an hour, as it makes use of its own sophisticated amalgam
of local search techniques to simulate a binding complex).
To significantly speed up the search, we use classification
learning to predict whether or not an antibody-virus pair
bind, limiting Rosetta evaluations only to cases in which
the classifier predicts that they do not. While this makes
the virus escape search practical, the bi-level nature of the
problem means that antibody design is still quite time con-
suming. To address this, we make use of Poisson regression
to predict virus escape cost. Making use of the resulting
predictions now makes antibody design viable, with “inner
loop” (virus escape) evaluations restricted to a small set of
candidate antibodies predicted to be difficult to escape.

In summary, we make the following contributions:

1. A novel Stackelberg game model of antibody design
and virus escape interaction,

2. stochastic local search techniques to determine optimal
virus escape, with classifier-in-the-loop used to speed
up the evaluations, and

3. stochastic local search techniques for optimal antibody
design, making use of Poisson regression to predict
minimal virus escape time.

Our methods ultimately exhibit antibodies that are far more
robust to mutation than the native antibody.

2. RELATED WORK
Conceptually, our work follows on the steps of Stackelberg

game modeling efforts in security [19, 13, 14]. However, the
specific models developed for security are completely inade-
quate for our domain: there are no meaningful targets and
no defense resources in vaccine design; rather, the specific
details of the antibody-virus interaction build on biochem-
istry and computational protein modeling.

Our work bears superficial similarity to game theoretic
models of vaccination decisions [2, 5, 17]. However, this
line of work aspires to model human decisions about be-
ing vaccinated, relative to socially optimal choices, whereas
our model involves molecular-level interactions between im-
munity and pathogen; the two models therefore have virtu-
ally nothing in common. A somewhat more similar model
by Huang et al. [12] considers, at a very high level, the
symbiotic-pathogenic spectrum of microbial-host relation-
ship through the lens of several simple game models (pure
cooperation, zero-sum, and prisoners’ dilemma). Another
model [1], uses a high-level public goods model and evolu-
tionary game theory to capture population-level evolution of
cancer cells, with implications for resistance to therapies tar-
geting growth factor production. However, our work, to our

knowledge, is the first game theoretic model of molecular-
level interaction between infectious disease treatment and
disease.

Previous work most similar to ours was
in combinatorial drug design, which involved the design

of rule-based expert systems to recommend individualized
treatment strategies for patients, based on individual muta-
tion history [16]. Rules are applied to infer mutation pat-
tern and this rule-directed search finds possible mutations.
The corresponding optimal drug combination is found by
solving a triply nested combinatorial optimization problem
[15]. The primary drawback of this approach (common to
all approaches using broad immunity as a criterion) is that
any unseen mutations are assumed non-existent. Moreover,
the search space is limited to the possible combination of
a few drugs, and is thus very small (can be searched ex-
haustively). In addition, domain expertise is required to
formulate the rules. Decision is made only based on fre-
quently observed mutations. Another set of research focuses
on understanding the dynamics of appearance of mutations
using dynamic probabilistic graphical models to predict vi-
ral evolution [9], while [20] use descriptive mining methods
to understand correlations and associations in mutations. In
these cases, mutation process is studied in the context of a
specific environment (e.g., drugs) using available data. Our
investigation requires a model of the mutation process for
arbitrary antibodies (or drugs), and therefore cannot make
direct use of such approaches.

3. ANTIBODY DESIGN AS A STACKELBERG
GAME

When an antibody is present in the system, it effectively
reduces the fitness of all virus mutations that bind to it.
This exerts selective pressure on virus mutants, ultimately
leading to survival of those which escape binding. The native
viral strains (also called wild type, in that they are typically
found “in the wild”) have, by definition, an evolutionary ad-
vantage in the absence of the antibody (vaccine), and can be
presumed to initially dominate. Consequently, mutations
that exhibit greater differences from the native (wild type)
are increasingly unlikely, both because three or more point
mutations are unlikely, and because general selective pres-
sures on the virus [18]. Thus, the virus in the presence of an
antibody that binds the native faces two opposing pressures:
one which pushes it to escape the antibody, and the other
to retain most of the native type protein structure.

Let v0 denote the native virus, which we treat simply as a
sequence (vector) of amino acids, and v and a arbitrary virus
and antibody sequences, respectively. Let O(a, v) represent
binding energy for the antibody-virus pair (a, v), which is
computed by Rosetta. We stylize the “dilemma” faced by
the virus as the following constrained optimization problem:

min
v∈V
‖v0 − v‖0 (1a)

s.t. : O(a, v) ≥ θ, (1b)

where V is the space of virus sequences under considera-
tion, and θ is a threshold on binding energy which desig-
nates escape (that is, once binding energy is high enough,
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the proteins will no longer bind1); this threshold is typically
domain-dependent. The l0 norm simply computes the num-
ber of sequence positions in v that are different from v0.
While in principle we could consider the space of all possi-
ble virus sequences in this subproblem, since virus structure
and, consequently, its binding properties can be affected by a
change in any residue (amino acid) in its sequence. However,
first-order effect in regard to its antibody binding properties
is determined by the sequence that is a part of the native
virus binding site. Therefore, we only consider the problem
of virus escape in terms of binding site mutations.

The optimization problem (1) can be viewed as a best re-
sponse of the virus to a fixed antibody a. Now we consider
the problem of designing an antibody, a, that is robust to
virus escape. The target, virus escape, is now precisely de-
fined by the virus optimization problem (1). Let v(a) be
the solution to this problem—naturally, a function of the
antibody choice a. The designer’s decision problem is then

max
a∈A
‖v0 − v(a)‖0, (2)

where A is the antibody design space, which we restrict to
the native binding site for the same reasons as for the virus.
Alternatively, we can write this is a bi-level optimization
problem composing (2) with (1):

max
a∈A

min
v∈V
‖v0 − v‖0 (3a)

s.t. : O(a, v) ≥ θ, (3b)

Note that the antibody-virus interaction in our model is
a Stackelberg game in which the designer (antibody) is the
leader, and the virus is the follower, who chooses an alter-
native virus sequence in response to the antibody chosen
by the designer. Moreover, this game is zero-sum: the de-
signer wishes to maximize the number of escape mutations, a
quantity which is minimized by the virus. This interaction
bares more than surface similarity to Stackelberg security
games [19, 13, 14]; the nature of the model, of course, is
entirely distinct. Game theoretically, our focus is on com-
mitment to pure strategies (i.e., a fixed antibody sequence),
and the solution is therefore not necessarily equivalent to a
Nash equilibrium of the corresponding simultaneous move
game, unlike games in which commitment to a mixed strat-
egy is possible [14].

Returning to the bi-level optimization program that is the
core of our antibody design problem, we face two primary
challenges: 1) enormous search space for both the designer
and the virus, and 2) determination whether an arbitrary
antibody-virus pair bind. In the case of the former, even if
we restrict the search to the binding sites, the search space
for the antibody is 2052 and it is 2045 for the virus, since
there are 20 amino acids and the binding sites include 52
and 45 residues (sequence “slots”), respectively. Before we
begin with the associated algorithmic questions, we reduce
the search space significantly by abstracting amino acids into
7 groups that share common chemical properties, with each
group represented by a single prototype amino acid. We la-
bel these groups with letters {C,P,A,W,R,D,N}. In the
context of the second challenge, we note that even a single

1This idea may seem counterintuitive at first, but it is a re-
flection of the well-known tendency of chemical compounds
towards low-energy states.

evaluation of binding energy for an arbitrary antibody-virus
pair using Rosetta can take up to 40 minutes. However, local
search, which is one of our core techniques below, can help
with this. In particular, if we start with a known antibody-
virus binding structure and keep the antibody fixed, we can
evaluate the effect of single-point mutations in the virus an
order of magnitude faster (i.e., in several minutes). Sev-
eral minutes is still extremely slow if we consider the search
space size, so clearly it is not in itself sufficient, but is a
considerable help when coupled with our search methods
described below. Setting the challenges aside for the mo-
ment, at the high level the problem can be solved as shown
in Algorithm 1, where a0 and v0 are the native antibody-
virus pair. Algorithm 1 takes as a black box our ability to

Algorithm 1 High-level algorithm for antibody design

function ABDesign(a0, v0)
s = initializeState(a0, v0)
for K iterations do

a = chooseNext(s)
e = findEscape(a, v0) // e = escape time
a∗ = updateOpt(a, e)

return a∗

compute virus escape (which in turn relies on Rosetta as a
black box to evaluate binding strength), and is in the form of
a very general stochastic local search algorithm [10], which
proceeds through a sequence of iterations, choosing and eval-
uating candidate antibodies a in the process, returning the
most effective antibody found at the end.

4. ROSETTA PROTOCOL
An important component of our simulation-based opti-

mization procedure is the evaluation of binding energy for a
given antibody-virus pair using Rosetta. We now describe
the specific protocol used to this end, developed with the
aid of a Rosetta co-creator, striving to minimize the amount
of time spent evaluating binding energy.

The native virus-antibody complex PDB2 is obtained from
the protein database and is first cleaned. The fast relax
procedure3 is performed on this complex, which works by
iteratively making side chain repack and energy minimiza-
tion steps. The structure can change up to 2-3 Å from the
starting conformation during this process. We output 10
structures and choose the one with minimum ddg4 as the
starting relaxed complex. This process requires about 40
minutes per structure output. Ddg of this chosen relaxed
complex is the binding score between the native virus and
native antibody.

2The Protein Data Bank (PDB) format provides a stan-
dard representation for macromolecular structure data de-
rived from X-ray diffraction and NMR studies. The initial
antibody-virus complex is obtained in this format and all 3D
structures are output in this format after the relax/repack
steps described in the protocol.
3See https://www.rosettacommons.org/manuals/
archive/rosetta3.4_user_guide/d6/d41/relax_
commands.html for details.
4ddg is the energy of the antibody-virus complex less the
total energy of the two in isolation. Thus, when ddg is
negative it implies that the complex has a lower energy, i.e.,
is more stable, than individual proteins.
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To obtain 3D structures corresponding to single point mu-
tations, we make an appropriate amino acid change in the
virus/antibody part of the sequence. This is followed by 1
repack and 1 energy minimization step (as opposed to many
cycles of these two steps until some limit is reached required
by fast relax), for faster results. This takes about 6 min-
utes per structure output. Each such procedure is made to
output three 3D structures (about 20 minutes total time)
corresponding to the mutated sequence. Ddg score of each
of the structures is evaluated and the minimum ddg score is
recorded as the score corresponding to that particular mu-
tation. For all such quick repack and energy minimization
steps, the starting PDB is already relaxed, so there is only
a small difference compared to running the much slower fast
relax protocol each time.

5. COMPUTING MINIMAL VIRUS ESCAPE
Given that computing virus escape is a core subproblem—

the “inner loop” of the antibody design process—we begin
our endeavor with this subproblem.

5.1 Greedy Local Search
Our baseline approach for computing an escape sequence

for the virus, given an antibody a, is a greedy local search
algorithm initialized with the native virus v0 (Algorithm 2).
Before even undertaking the search, we check that v0 binds
to a; if it does not, we can immediately return 0 (that is,
there are 0 mutations needed to escape). At the high level,
the algorithm proceeds as follows. Starting with v0, the
binding score is evaluated for all the neighbors of v. The
single-point mutation causing the largest increase in bind-
ing energy score from the native is chosen at each iteration
until this score exceeds the threshold θ. The escape cost is
computed simply as the number of greedy iterations, e.

Algorithm 2 Greedy local search for a virus escape se-
quence minimizing ‖v0 − v‖0.

function VirusEscapeGreedy(a, v0)
v ← v0

e← 0
while O(a, v0) < θ do

v ← arg maxw∈V :‖v−w‖0=1O(a,w)
e← e+ 1

return e

As mentioned earlier, greedy local search has an impor-
tant feature that the binding score in each iteration can be
computed much faster by Rosetta, given the structure from
previous iteration, than if it were computed for an arbitrary
antibody-virus pair. An example run of greedy search is
shown in Figure 1 for θ = 0, where escape takes 5 muta-
tions.

Local search has two important disadvantages. First, it is
quite possible that by considering combinations of mutations
one can achieve much faster escape time. An arguably more
severe issue is that it still requires extremely slow evaluations
by running Rosetta in each iteration. Next, we tackle the
latter problem by using classification learning as a means to
avoid costly evaluations.
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Figure 1: Example greedy search to compute escape
cost. Horizontal axes correspond to point mutations
in each virus sequence position, relative to the se-
quence from previous iteration, and vertical axis is
the corresponding binding score. C,P,A,W,R,D,N
correspond to the 7 amino acid classes that are can-
didate mutations.

5.2 Speeding Up Search through Learning
Figure 1 reveals an interesting piece of structure about the

problem: most candidate mutations in any iteration make
little difference in binding score, but there are typically a
few that make a rather significant difference. Conceptually,
this is an opportunity: if we could restrict our evaluations
only to those that are likely to matter, we can save much
time in the execution of the greedy search.

To operationalize this observation, we train a classifier
that predicts for a given (a, v) pair whether the virus se-
quence v will cause a significant change in binding score
relative to other single-point mutations from its neighbor
(since the said neighbor is left unspecified, we are effectively
assuming that significant deviation from baseline score is
primarily a property of the evaluated virus sequence, rather
than the sequence for which we are considering single-point
mutations). To generate training data for this classifier, we
collect a set of actual greedy search runs for alternative an-
tibodies. For each (a, v) pair, the feature vector consists of
binary indicators whether a particular position is different
from the native (a0, v0) sequences, as well as a collection
of 15 amino acid features defined with the help of domain
experts for each position in the sequence pair.
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For a given feature vector (i.e., a given (a, v) pair), we as-
sign a label +1 if O(a, v) > M(a, v̄) + 0.9(g(a, v̄)−M(a, v̄)),
and −1 otherwise, where v̄ is the virus sequence for which
v is a single-point mutation, M(a, v̄) is the median binding
score of all single-point mutations from v̄, and g(a, v̄) is the
highest score among these. We denote the resulting classifier
by Ω(a, v).

In addition, we train using the same data and same fea-
tures a classifier Ψ(a, v) which predicts whether a and v bind
(labeled as +1) or not (labeled as −1).

In each case, we train a linear SVM classifier with l2 loss
and l1 penalty, ensuring sparsity to cope with our rather
large feature space. Also, since in both cases the two classes
are highly unbalanced (very few mutations cause large in-
crease in the score and we stop searching as soon as there is
escape, so most pairs bind), we assign class weights for the
two classes that are inversely proportional to their frequen-
cies in the training dataset.

Armed with the two classifiers just constructed, we can
now significantly speed up the greedy search. The new al-
gorithm (Algorithm 3) works as follows. In each iteration
of the virus escape search and for each possible neighbor w
(i.e., single-point mutation) of the current virus iterate v,
we first check whether w will effect a significant difference
from the baseline score for v using the classifier Ω(a,w). If
so, we also check using Ψ(a,w) whether w will still bind to
a; if we expect that it will not, we verify this prediction by
actually evaluating the binding using Rosetta. If it is con-
firmed, we can now stop the search. Otherwise, w is added
to the consideration set of next virus iterates. Finally, we
only evaluate those possible single-point mutations from v
which we expect to make a significant difference, and which
are not predicted to have already escaped (if they are, but
were verified to bind, we can simply reuse the correspond-
ing binding score here, so there is no need to evaluate this
mutation again).

Algorithm 3 Classifier-guided greedy search.

function ClassifierGuidedSearch(a, v0)
v ← v0

e← 0
while O(a, v0) < θ do

B ← ∅
e← e+ 1
for w : ‖v − w‖0 = 1 do

if Ω(a,w) = +1 then
if Ψ(a,w) = −1 then

if O(a,w) ≥ θ then
return e

else
B ← B ∪ w

v ← arg maxw∈B O(a,w)

return e

6. ANTIBODY DESIGN
Having considered the problem of computing virus escape

for an arbitrary antibody a, we now turn to the “outer loop”
of the bi-level optimization problem: antibody design. We
begin by considering two alternative local search heuristics,
taking the evaluation function (virus escape) as given. We

then proceed to shortcut virus escape evaluation altogether
through another application of machine learning.

6.1 Stochastic Local Search for Antibody
Design

Random with a Native Antibody Bias (BiasedRan-
dom): Our simplest algorithm is a random search which
is biased towards the native antibody sequence a0 (and re-
stricted to changes in its binding site alone, as all other
methods), so as to take advantage of the structure in the
native antibody a0. In particular, we first choose the num-
ber of mutations n to a0 uniformly at random in the interval
[1, 52] (that is, randomly changing between 1 and all residues
in the binding site of the native antibody). Then we choose
a random subset of n residues, R, in the a0 binding site.
Finally, independently for each residue (slot) r ∈ R, we pick
an amino acid group distinct from a0 uniformly at random
from all the 7 groups we consider. This yields a candidate
antibody a ∈ A. We proceed through this search by drawing
I such candidate antibodies {ai}i=1,...,I . Here, we leverage
the classifier Ψ(a, v) to predict whether the (a, v) pair bind.
In particular, if ai drawn according to the procedure above
is predicted not to bind to the native virus v0, it is simply
discarded, and another is drawn in its place, until one is
found which binds to the native virus. Each ai is evaluated
by calling the findEscape(ai, v

0) evaluation function, which
executes Algorithm 3.
Simulated annealing: A relatively widely used stochastic
local search method is simulated annealing [10]. Our vari-
ation of simulated annealing (Algorithm 4) uses as a start-
ing point a random antibody that is sampled in exactly the
same biased way as BiasedRandom above. In addition, it
leverages the classifier predicting binding described above
to check that an antibody generated in a given step binds to
the native virus v0, throwing away any instance that does
not.

Algorithm 4 Simulated Annealing search

function ABSearchSA(a0, v0, α, T0)
do

a← BiasedRandom()
while Ψ(a, v0) = −1
e =findEscape(a, v0)
a∗ ← a
u∗ ← e
T ← T0

for i in 1 to I do
T ← αT
do

a′ ← random neighbor of a
while Ψ(a′, v0) = −1
∆E ←findEscape(a′, v0) −e
if ∆E > 0 then

a← a′

e← findEscape(a′, v0)
else

a← a′ w.p. exp (∆E/T )
e← findEscape(a′, v0)
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6.2 Speeding Up Antibody Search through
Learning

Clearly, the main bottleneck of the antibody design search
is evaluation. While we previously described a collection of
strategies for speeding up evaluation, ultimately they are
all relatively slow, each requiring multiple calls into Rosetta
even in the best case. A natural question is whether we can
shortcut this lengthy process altogether by predicting escape
time. We implement this idea by using Poisson regression
as stochastic prediction of escape times for a given antibody
a. The advantage of using Poisson regression is that it prop-
erly captures the stochasticity of our escape evaluations, an
important source of which is stochasticity in Rosetta evalua-
tions. In Poisson regression, the escape time Z is distributed

as Pr(Z = z) = e−µµz

z!
, where log(µ) = βx, with β the pa-

rameter vector and x the vector of features. We used the
same set of features as for the classification tasks above.

After the Poisson regression model is learned, it can be
used in place of findEscape(a, v0) in all of the design algo-
rithms, with actual evaluations only necessary to check the
final solution.

We wish to make an important final point about overall
antibody design implementation. All of the learning meth-
ods described need training data, the collection of which
must take place during the design process itself. Therefore,
the overall algorithm would work as follows. For the first
subset of iterations of antibody design, the baseline greedy
approach must be used to collect sufficient training data to
train the classifiers Ω(·) and Ψ(·). In the next subset of iter-
ations, the evaluations use the classifier-based methods, as
additional training data is collected to predict escape times.
Finally, we can proceed with many more iterations of anti-
body design by only using the predicted escape times. While
this is the ideal use of the proposed approach, our evaluation
below considers the different proposed pieces in isolation to
enable sound practical recommendations.

7. EVALUATION
To evaluate our approach we used a native antibody-virus

interaction for HIV.
The native structure is the co-crystal structure of the an-

tibody VRC01 complexed with the HIV envelope protein
GP120.

This structure has 3 chains, the virus chain G and the
heavy and light chains in the antibody H and L. The bind-
ing site on the virus is chain G with 45 residues, while the
binding site on the antibody includes chains H and L with
a total of 52 residues.

The binding score for the native pair is O(a0, v0) = −49.5.
The visual representation of the native binding structure is
shown in Figure 2 (left).

7.1 Computing Virus Escape
We begin the evaluation with the subproblem of comput-

ing virus escape. To evaluate the effectiveness of using the
two classifiers in the search process, we consider 346 anti-
bodies drawn according to the Biased Random distribution
described above (to mirror the distribution with which they
are drawn algorithmically). For evaluation, we consider two
settings: a) using 75% for training, and b) using 50% for
training, with the rest used for evaluation. In our running
time comparison (so that the comparison is meaningful), we

H

L L

HH

G G

Figure 2: The native antibody, H and L, with the na-
tive virus, G (left) and antibody with escape cost=7
(right). The arrows point at some significant differ-
ences.

use the combined running time expended both in collecting
the training data and the evaluation. We used the LIBLIN-
EAR SVM implementation [6], using l2 loss and l1 regular-
ization. The ratio of +1 to −1 instances in the training data
is ∼0.005 for both classifiers. The average accuracy for the
classifier Ω which predicts which neighbors will cause a sig-
nificant change in the baseline score is 90.3% when 75% of
the data is used for training and 90.7% when 50% of the
data is used for training. The corresponding false negative
rates are 6% and 10.2% respectively. For the classifier Ψ, the
respective accuracies/false negative rates are 90.5%/17.6%
and 90.4%/15.3%.

All these results are based on five-fold cross-validation.
The results of the comparison between the baseline and

classifier-based greedy approaches for computing virus es-
cape are shown in Figure 3. As expected, using the clas-
sifiers in the greedy loop dramatically reduces the number
of Rosetta evaluations. The main question is whether it
preserves the quality of the resulting solutions. The results
in Figure 3 (bottom) show a scatterplot of the escape time
difference (∆e) compared to baseline greedy (verified us-
ing Rosetta) for the collection of antibodies tested. Zero, of
course, means that they are the same; above zero means that
the classifier-based approach finds mutations with smaller
escape time than greedy—that is, it actually yields a better
solution, whereas below zero results imply that the classifier-
based approach results in a worse solution than the baseline.
It is clear from the figures that quite often the classifier-
based approach is actually better, in part because of the
randomness that the classifier inaccuracy introduces into the
process (as a result of this, it is no longer strictly hill climb-
ing). The average differences, which are −0.02, 0.07, 0.11,
and 0.15 for (a), (b), (c), and (d) respectively, suggest that
we lose very little by switching to the classifier-based search
in terms of expected solution quality.

7.2 Antibody Design
An important contribution towards practical antibody de-

sign was the proposal of using Poisson regression in place of
the full virus escape subroutine. The effectiveness of this
approach for optimization purposes hinges on our ability to
distinguish among antibodies in terms of escape cost, far
more so than actual accuracy. Correlation is a natural mea-
sure of this. We train the Poisson regression model on the es-
cape cost for the same 346 antibodies considered above. We
use the GLMNET package in R [7] to fit Poisson regression
parameters, using l1 regularization. We find that the av-
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Figure 3: Comparison between baseline (A) and classifier-based greedy (B) algorithms for computing virus
escape in terms of the number of evaluations (top) and computed escape time (bottom). (a) θ = 0, 75% of
data for training; (b) θ = 0, 50% of data for training; (c) θ = −15, 75% of data for training; (d) θ = −15, 50% of
data for training. Horizontal axes denote antibodies.

erage correlation between predicted and actual (computed)
escape times is 0.66 (based on 10-fold cross-validation), sug-
gesting that the idea is potentially quite viable. Next, we
actually utilize the predicted escape costs in the local search
algorithms proposed for antibody design: biased random (or
simply “random” in the experiments) and simulated anneal-
ing. The comparison in terms of predicted escape time, as
a function of the number of iterations, is shown in Figure 4
. The random biased approach appears clearly better than
simulated annealing, perhaps somewhat surprisingly. The
likely reason is that our filter that removes any candidates
that do not already bind to v0, combined with the bias in-
troduced in search, already provide a good balance between
global search and local structure. Next, we evaluated the
quality of the final candidate antibody generated by each
search after 400 iterations, averaged over 80 independent
search sequences using actual greedy local search for virus
escape. The results, shown in Figure 5 demonstrate both
that the ordering predicted by the Poisson regression is con-
sistent with the evaluation result: random, again, is signifi-
cantly better than simulated annealing (p-value< 0.001).

Finally, we report the upshot: the actual set of antibodies
we generated as a part of our search process, ranked in terms
of evaluated escape cost (Figure 6). It is noteworthy that
we found many antibodies which are much more robust to
escape than the native when θ = 0.

7.3 The Best Antibody
The best antibody discovered in our experiments has es-

cape cost of 7 (compared to only 1 mutation needed to es-
cape the native VRC01 antibody!), and the resulting anti-
body complexed with the native virus is shown in Figure 2
(right). The designed antibody has 39 amino acid changes
from the native. Structurally, this antibody has two portions
of the mid-H chain that are somewhat wider apart, which
likely leads to a better grip on the virus chain G. Similarly
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Figure 4: Antibody design algorithms comparison
(θ = 0).

there is a larger area of interaction between the L chain and
G chain in the new antibody. Visually, the differences ap-
pear quite small, but make a significant difference in the
ultimate breadth of binding, emphasizing the importance of
a computational micro-level design approach.

8. DISCUSSION
We have, for the first time, formulated the virus evading

antibodies problem as a Stackelberg game in which the anti-
body designer moves first, and the virus responds by escap-
ing through the smallest number of protein sequence edits.
We were able to exploit the problem structure to develop ef-
fective classification algorithms to significantly speed up the
evaluation of escape cost for a particular antibody, as well
as to predict escape cost, with little loss in solution quality.
Moreover, we exhibited an antibody that is far more robust
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Figure 6: Evaluated antibodies for θ = 0, ranked by
escape cost. The native antibody escape cost is 1.

to virus escape than the native (i.e., the antibody found in
nature to bind to the corresponding virus epitope).

8.1 Generalizability
While the proposed framework was developed in the con-

text of antibody design (vaccination) for HIV viruses, noth-
ing in it was specific to HIV, and the framework is therefore
applicable directly to vaccination design for other viruses
(e.g., influenza). Perhaps less obviously, it can also be ap-
plied almost without change to drug design: the primary
difference is that drugs are typically not protein sequences.
However, we can leverage chemical fragment databases specif-
ically engineered for use in computational drug design as the
core constituent component, turning our problem into the
search over drug fragment space, and having little impact
on the overall structure of the problem. Note that in the
context of drug design (as well as vaccine design), nothing
about our framework is unique to viruses, and can be gener-
alized directly to other pathogens. This would, in principle,
enable application, for example, to ebola vaccine design, as
well as design of vaccines and antibiotic treatments for many
bacterial infections. Moreover, our framework would tackle

head-on the issue of antibiotic resistance, a problem of enor-
mous and increasing concern for global health.

8.2 Limitations and Future Research
While our general approach shows much promise as an

alternative route for antibody design to what is tradition-
ally pursued, it has a number of limitations. First, we use
protein sequence edit distance as a proxy for the difficulty
of viral escape. In reality, a more meaningful measure is the
number of nucleotide mutations required. This gives rise to
two questions for future research: first, how good a metric is
edit distance in predicting virus escape, and second, how can
one map a metric based on nucleotide mutations into protein
sequence edits (necessary for our search process). For the
second question, a promising idea is to define a more generic
cost function for virus escape, where cost of edit from one
amino acid to another is measured in terms of corresponding
mRNA mutations. If we could devise such a cost function,
the approach developed in this paper is almost immediately
applicable.

Another important consideration is that escape is not the
lone survival criterion for a virus protein. Other important
considerations are virus protein stability, and its ability to
function and reproduce. For example, antibodies generally
bind to a functional region of the virus, so that escaping
an antibody will often imply weakened binding to a body
protein critical for reproduction (such as CD4 in the case
of HIV and sialic acid in the case of influenza). Modeling
this balancing game is relatively direct in our framework:
we would need to include additional binding energy con-
straints on virus escape, and our approach remains largely
unchanged.

Yet another issue is the viability of an antibody. This in-
volves two considerations: protein stability, and the ability
to develop a vaccine that would elicit it. The first consid-
eration can be handled directly in our framework: stability
would entail an additional constraint on the energy of the an-
tibody 3D structure, which can be evaluated using Rosetta.
This additional constraint would, again, have little qualita-
tive impact on the proposed approach. The second issue is
a problem for all research in antibody design and character-
ization, and is not limited to our method in particular [11].
Addressing this issue requires both extensive “wet-lab” eval-
uation, and, ultimately, clinical evaluation, both clearly out-
side the scope of this paper.

A final issue worth noting is that typically we encounter a
population (more precisely, a quasispecies) of viruses, rather
than a single type, whenever mutation rates are high. The
simplest way to integrate this aspect into the model is by
considering multiple native virus proteins, and optimizing
an antibody, or a collection of antibodies, that target all of
these. Fundamentally, this doesn’t change the overall ap-
proach, but clearly introduces additional challenges which
likely require further computational advances (e.g., cluster-
ing of virus epitopes).
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