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ABSTRACT
Reasoning about the nested beliefs or knowledge of other agents is
essential for many collaborative and competitive tasks. However,
reasoning with nested belief (for example through epistemic log-
ics) is computationally expensive. Proper Epistemic Knowledge
Bases (PEKBs) address this by enforcing syntactic restrictions on
the knowledge base. By compiling a PEKB and query formula into
a specific normal form, entailment can be checked in polynomial
time, which is sound and complete for the epistemic logic Kn. The
downside is that the complexity of compiling into the normal form
is exponential in time and space. In this work, we extend PEKBs
to handle belief in the logic of KDn. We show that this simplifies
the complexity of the required reasoning, and importantly, achieves
polynomial entailment checking without first having to compile the
PEKB into a normal form. Also, we present an alternative approach
that calculates the closure of a PEKB, which is exponential in the
maximum depth of nested belief, but for which entailment checking
is constant on average.

Categories and Subject Descriptors
I.2.4 [KR Formalisms and Methods]: Modal logic;
I.2.11 [Distributed Artificial Intelligence]: Intelligent Agents

General Terms
Algorithms; Theory

Keywords
proper epistemic knowledge bases; reasoning about belief; multi-
agent systems

1. INTRODUCTION
Reasoning about the nested beliefs or knowledge of various agents

is essential for many collaborative and competitive tasks. Many
modal logics for modelling epistemic and doxastic properties have
been presented in related literature. Hintikka’s seminal work [8]
proposed a logic for knowledge at the individual level, while Fa-
gin et al. [4] were some of the first to look at multi-agent logics,
including formal models of concepts such as common knowledge
and belief. These formalisms are based on the semantic notion of
possible worlds, as described in Section 2. These approaches offer
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neat semantics based on Kripke structures, but unfortunately they
suffer from several limitations: notably logical omniscience [8] and
high complexity [4, 14]. We are particularly interested in complex
tasks such as planning that require reasoning with a low complexity.
As such, rich epistemic modal logics are not feasible. One alterna-
tive is to use syntactic approaches to knowledge bases. The idea
of syntactic knowledge bases is not recent. Eberle [3] was one of
the first to contrast these semantic approaches to consider syntactic
belief and knowledge, while Konolige [9] built on such work for
logics that are expressive enough to support nested beliefs. These
approaches are expressive enough to model many domains, while
also offering some attractive computational properties.

More recently, Lakemeyer and Lespérance (abbreviated as LL
from now on) proposed a syntactic restriction on an agent’s knowl-
edge base that focuses on collections of nested modal literals [11],
specifically Restricted Modal Literals (RMLs) that are modal liter-
als that do not contain conjunction, disjunction,>, or⊥, and where
negation appears only in front of propositional variables. A Proper
Epistemic Knowledge Base (PEKB) is defined as a set of RMLs
consistent under the logic Kn.

LL build on Bienvenu’s work on Prime Implicate Normal Form
(PINF) [1] and describe how to compile a PEKB into PINF to per-
form queries efficiently on the knowledge base. The query mecha-
nism that they describe is sound and complete for certain restricted
classes of query, and can be made in polynomial time with respect
to the size of the knowledge base. The downside is that compiling
into PINF takes exponential time, and results in a PINF formula
that is exponentially larger than the initial knowledge base. If one is
willing to pay the upfront cost of compiling into PINF, then query-
ing can be done efficiently. LL also extend the work to the logic
K45n (i.e. introducing positive and negative introspection).

We extend the work of LL to consider the logics KDn and KD45n,
which imply that every agent’s belief represented in a PEKB is con-
sistent; i.e. no agent can derive ⊥ from their beliefs. Moving from
Kn to KDn simplifies reasoning about PEKBs. We present an ap-
proach for checking entailment in polynomial time, as is the case
with Kn, which additionally does not require pre-processing such
as the expensive compilation into PINF.

Moving to KDn has the advantage that the knowledge base it-
self is logically separable, which means informally that anything
entailed by a PEKB is entailed by a single RML in that PEKB.
Consider this example PEKB from LL [11, pg. 1]:

{ �1♦1p, ♦1�1p, �1�1¬p }

This PEKB is not satisfiable. Under Kn, to derive the inconsistency
requires reasoning about the first two RMLs together to derive that
they are inconsistent with the third. However, under KDn, the third
is inconsistent with either of the first two RMLs individually. In
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this paper, we show that this separability property holds for any
PEKB under KDn.

In addition, we propose an alternative approach to reasoning
about KDn PEKBs that first computes the deductive closure of
the PEKB, and then uses simple set membership to check entail-
ment. The resulting closure is exponential in the maximum depth
of nested belief in the original PEKB, but by using simple tech-
niques such as hashing, the average time complexity for querying
if an RML is entailed is constant while the worst-case time com-
plexity is linear in the size of the compiled PEKB. This approach
allows classes of epistemic reasoning problems to be encoded as
propositional problems, and then fed into propositional reasoning
tools. For example, a planning problem involving epistemic modal-
ities could be compiled into a classical planning problem and fed
into an existing planner as an off-the-shelf blackbox [12]. Also, we
present a simple extension to the logic KD45n, in which KD45n
problems are compiled into KDn problems in a manner similar to
how LL compile K45n problems into Kn problems.

The contributions of our work are three-fold: (1) we extend the
work of LL to handle KDn instead of Kn; (2) we demonstrate how
to use a simplified entailment mechanism for a PEKB in KDn both
with and without a prior compilation step that closes the PEKB
deductively; and (3) we evaluate the various query types to assess
both the size of the compiled knowledge base and the time to an-
swer queries.

In the following section we provide the necessary background
notation for the paper, as well as describe LL’s approach for com-
piling a PEKB to PINF and querying the resulting knowledge base.
In Section 3 we extend LL’s approach to consider the KDn logic
and discuss options for querying a KDn knowledge base. We em-
pirically demonstrate the difference between the query mechanisms
in Section 4, and conclude with a summary and discussion of future
work in Section 5.

2. EPISTEMIC AND DOXASTIC LOGIC
Our larger research goals are to derive ways for reasoning about

knowledge and action in the presence of others. For this, we want
an agent to be able to represent what others believe (or know) about
their world, including what they believe about what we and other
agents believe: i.e., nested belief.

Epistemic and doxastic1 logics are useful for this. In particular,
we are interested in the modal logic KD45n, which we present here
briefly (for a more complete treatment, see Fagin et al. [5]).

2.1 Epistemic and Doxastic Modal Logics
Let P and Ag respectively be finite sets of propositions and

agents. The set of well-formed formulae, L, for epistemic logic
is obtained from the following grammar:

φ ::= p | φ ∧ φ | ¬φ | �iφ

in which p ∈ P and i ∈ Ag. Informally, the modal operator �iφ
means that agent i believes φ. Note that the grammar permits state-
ments of the form �i�j�kp, meaning that agent i believes that
agent j believes that agent k believes that p is true. Such nestings
can be arbitrarily long, and we use depth(φ) to refer to the maxi-
mum number of such nestings in the formula φ.

The semantics are given using Kripke structures [5]. Each Kripke
structure is a tupleM = (W, π, R1, . . . Rn), in whichW is the set
of all worlds considered in a model, π ∈ W → 2P is a function
that maps each world to the set of propositions that hold in that
1For simplicity, we will follow convention and use “epistemic” to
refer to both knowledge and belief throughout the paper.

world, and each Ri ⊆ W ×W (for each i ∈ Ag) is a belief acces-
sibility relation. Each modelled agent has an accessibility relation,
and this relation captures the agent’s uncertainty about the world
such that for the actual world, w, the set Ri(w) is the set of worlds
that agent i considers possible: Ri(w) = {w′ | Ri(w,w′)}.

Given these definitions, the satisfaction of a formula φ in a Kripke
structure M and a world w is denoted as M,w � φ, and it is de-
fined inductively over the structure of φ:

M,w � p iff p ∈ π(w)
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M,w � ¬ϕ iff M,w 2 ϕ
M,w � �iϕ iff for all v ∈ Ri(w), M, v � ϕ

We define entailment as: φ � ψ if and only if for every model M
and world w such that M,w � φ, we have M,w � ψ.

Additional operators for ∨, ⊃, and≡ can be derived in the usual
way, as can> (true) and⊥ (false). Further, we use a second modal
operator, ♦iφ, which indicates that i believes that φ is possibly
true. This is defined as ♦iφ ≡ ¬�i¬φ; that is, agent i believes φ
is possibly true if and only if it does not believe that ¬φ is true.

As discussed by Fagin et al. [5], placing certain constraints on
Kripke structures leads to specific properties of knowledge or be-
lief, which can be represented as axioms of the logic. We are par-
ticularly interested in KD45n systems, where n specifies that there
are multiple agents in the environment, and KD45n corresponds to
the axioms named K, D, 4, and 5. The axiom K holds for any stan-
dard modal logic, while the axioms D, 4, and 5 hold if the Kripke
structures are serial, transitive, and Euclidean respectively:

K �i(φ ⊃ ψ) ⊃ (�iφ ⊃ �iψ) (Distribution)
D �iφ ⊃ ¬�i¬φ (Consistency)
4 �iφ ⊃ �i�iφ (Positive introspection)
5 ¬�iφ ⊃ �i¬�iφ (Negative introspection)

Such a logic is able to represent expressive statements about the
world and the belief of those agents within it.

EXAMPLE 1. Suppose there are two agents, 1 and 2, who are
coworkers. Agent 1 is aware that agent 2 has applied for a promo-
tion. Agent 1 sees an envelope from the human resources depart-
ment containing the outcome, but has no information about whether
agent 2 has opened the envelope. However, agent 1 believes that if
agent 2 has opened the envelope, then agent 2 will have formed a
belief about whether she has gained her promotion. Agent 1 also
believes that if agent 2 has not opened the letter, she will not have
formed a belief on this. Assuming that ‘opened’ and ‘promoted’
are propositions representing that agent 2 has opened the letter and
has been promoted respectively, we can represent the above using
modal logic as follows:

�1(opened ⊃ (�2promoted ∨�2¬promoted))∧
�1(¬opened ⊃ ¬(�2promoted ∨�2¬promoted))

Ladner [10] showed that the satisfiability problem in KD45n
(for a single agent) is NP-complete, while Halpern and Moses [7]
demonstrated that for multiple agents, it becomes PSPACE-complete.
Later, Halpern showed that if the depth of nesting in modal formu-
las is bound, the problem is NP-complete [6].

To overcome the complexity of modal logics, Bienvenu [1, 2]
presents an algorithm for re-writing both a Kn modal knowledge
base and query into a specific normal form called prime implicate
normal form (PINF), from which entailment of the query from the
knowledge base can be checked in polynomial time.
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DEFINITION 1 (MODAL LITERALS, TERMS, AND CLAUSES).
Bienvenu [1] defined the notions of modal literal l, a term t2, and
clause c, which offer desirable properties for compiling and query-
ing knowledge bases:

l ::= > | ⊥ | p | ¬p | �iφ | ♦iφ
t ::= l | t ∧ t
c ::= l | c ∨ c

in which φ is any formula in L where negation appears only in
front of propositional variables; that is, φ is in negation normal
form (NNF).

DEFINITION 2 (PRIME IMPLICATE). A clause c is a prime im-
plicate of a formula φ if and only if: (1) φ � c; and (2) if φ � d and
d � c, for any clause d, then c � d (i.e., c is minimal).

DEFINITION 3 (PRIME IMPLICATE NORMAL FORM). As de-
fined by Bienvenu [1], a formula φ is in prime implicate normal
form (PINF) if and only if one of the following holds:

1. φ is > or ⊥; or

2. φ 2 ⊥ and > 2 φ and φ = c1 ∧ . . . ∧ cp where:

(a) ci 2 cj for i 6= j — that is, there are no redundant
conjunctions;

(b) any prime implicate of φ is equivalent to some ci;

(c) every ci is a prime implicate of φ such that the follow-
ing hold:

i. if d is a disjunct of ci, then ci is not logically equiv-
alent to ci \ {d}— that is, there are no redundant
disjuncts in ci;

ii. there is at most one disjunct in ci of the form �iψ
for every agent i;

iii. for every disjunct in ci of the form �iψ or♦iψ, ψ
is in PINF; and

iv. for disjuncts �iψ′ and ♦iψ′′ in ci, then ψ′ � ψ′′.

Essentially, a formula in PINF contains exactly the amount of
knowledge it requires to check entailment using a structural sub-
sumption algorithm, and no more. For example, in the logic Kn,
the formula �1♦1p ∧ ♦1�1p is not in PINF because ♦1♦1p is
a prime implicate of this formula, but is not a conjunction in the
formula, violating item 2(b). However, in the logic KDn, the for-
mula is in PINF, because ♦1♦1p is a ‘non-prime’ implicate: it is
derivable from either �1♦1p or from ♦1�p using axiom D.

Bienvenu shows that Kn knowledge bases in PINF have desir-
able properties, such as polynomial time entailment querying [1,
2]. However, the PINF itself is double-exponential in the length of
the original knowledge base.

2.2 Proper Epistemic Knowledge Bases
LL [11] investigate the computational complexity of restricted

class of Kn epistemic knowledge bases by restricting the syntax
for the logic used to store and query knowledge. These knowledge
bases, called proper epistemic knowledge bases (PEKBs), consist
of a set of restricted modal literals (RMLs), φ satisfying:

φ ::= p | ¬p | �iφ | ♦iφ

Note that RMLs are in negation normal form (NNF), i.e. nega-
tion appears only in front of propositional variables. Any formula
2Bienvenu calls this a cubal, but we follow LL’s terminology [11].

comprising an arbitrary string of modal operators terminated with
a literal can be converted into NNF through the following equiva-
lences:

¬�iφ ≡ ♦i¬φ ¬♦iφ ≡ �i¬φ ¬¬p ≡ p

We use Lit(φ) to refer to the literal at the end of the RML φ:

Lit(φ) =

{
Lit(ψ) if φ = �iψ or φ = ♦iψ
φ otherwise

This logic is not as expressive as the logic presented in Sec-
tion 2.1. For example, the formula in Example 1 cannot be ex-
pressed because it contains disjunctions. However, it is still ex-
pressive enough to be useful in many scenarios, as argued by LL
[11], who present an example of a recommender system for making
movie recommendations based on others with similar tastes [13].

Querying whether a formula follows from a set of RMLs is not
a simple set membership query. First, the PEKB may be incon-
sistent, in which case any query should return true for any query
formula. Second, a query can be a disjunction, conjunction, >, ⊥,
or negation of a modal term, none of which can be in the PEKB.
Third, queries may be deducible from a combination of formula.
For example, the PEKB {�i♦ip,♦i�ip} is consistent, and the
RML ♦i♦ip follows from the conjunction of the two formula in
the set, but not from either one individually. In terms of Kripke
semantics, this is because neither of the RMLs ensures that there is
a path of length two from the current world to a world in which p
holds (because �ip holds if there are no accessible worlds from the
current world). However, together they imply that there is at least
one such path.

To overcome these problems, LL follow the work of Bienvenu
[2] by compiling PEKBs into prime implicate normal form and re-
stricting queries for a specific normal form calledNF .

Converting PEKBs to PINF
LL first define the following abbreviations, where φ is a PEKB:

• Bi(φ) = {ψ | �iψ ∈ φ}

• Di(φ) = {ψ | ♦iψ ∈ φ}

• Prop(φ) = {l | l is a non-modal literal and l ∈ φ}

Then, they define the function PEKB2PINF (φ), which takes a
non-empty PEKB, φ, and returns a simple formula in PINF that is
equivalent to the conjunction of RMLs in φ. A simple formula is a
formula in NNF that does not contain any disjunction.

DEFINITION 4 (PEKB2PINF ). Lakemeyer and Lesperence
[11] define PEKB2PINF (φ) as:

1. Let Fi(φ) =
∧
ψ∈Bi(φ) ψ

Let ∆(φ) = Prop(φ) ∪
{♦i(ψ ∧ Fi(φ)) | ψ ∈ Di(φ) ∧Bi(φ) 6= ∅} ∪
{♦i(ψ) | ψ ∈ Di(φ) ∧Bi(φ) = ∅} ∪
{�i(Fi(φ)) | Bi(φ) 6= ∅}

2. For each l ∈ ∆(φ), if l is of the form ♦i(ψ), replace it by
♦i(PEKB2PINF (ψ)) and if l is of the form �i(ψ), replace
it by �i(PEKB2PINF (ψ)).

3. If either ♦i⊥ is in ∆(φ) or if both p and ¬p is in ∆(φ),
return ⊥, otherwise return

∧
ψ∈∆(φ) ψ.
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Essentially, step 1 of the algorithm combines all formulae that
begin with �i into a single operator; e.g. �ip and �i♦jq are com-
bined into �i(p∧♦jq); and infers new knowledge that♦i(φ∧ψ)
holds if �iφ holds, and agent i believes something is possible
(♦iψ), because from ♦iψ, we know that there is at least one ac-
cessible world on our Kripke frame, therefore, if φ holds for all
accessible worlds, it must also hold for that single world. From
�iφ alone, we do not know if there are any accessible worlds, so
this inference occurs only if ♦iψ also holds. Step 2 ensures that
formulae inside modal operators are in PINF, and step 3 checks for
consistency of the PEKB.

LL show that the worst-case execution time of PEKB2PINF is
O(|φ|d+2). Steps 1 and 3 compare all pairs of RMLs in the PEKB,
which is at worst O(|φ|2). The recursive calls in step 2 depend on
the depth of the modal operators in the formula, therefore, for a
maximum depth of d, the worst case of all steps is O(|φ|d+2).

They also show that the size of a PINF is at most exponential in
the depth of the PEKB φ, and provide an example where this is the
case [11, cf. Theorems 2 and 3].

Query evaluation
LL then define a structural subsumption algorithm, V , for query-

ing whether a given formula, φ, in NNF is entailed by a formula,
Σ, in PINF. A call to V [Σ, φ] returns 1 for a “yes” and 0 for “don’t
know”, where 0 indicates that φ could not be proved from the Σ.

DEFINITION 5 (V [Σ, φ]). LL [11] define V [Σ, φ] inductively
on the structure of φ. Σ is a simple formula in PINF, and φ ∈ Σ
means that φ is one of the conjuncts in Σ.

1. V [Σ, φ] = 1 if Σ = ⊥; otherwise:

2. V [Σ,>] = 1;

3. V [Σ,⊥] = 0;

4. V [Σ, p] =

{
1 if p ∈ Σ
0 otherwise;

5. V [Σ, φ ∨ ψ] = max(V [Σ, φ],V [Σ, ψ]);

6. V [Σ, φ ∧ ψ] = min(V [Σ, φ],V [Σ, ψ]);

7. V [Σ,�iφ] =

{
1 if for some �iΣ′ ∈ Σ,V [Σ′, φ] = 1
0 otherwise;

8. V [Σ,♦iφ] =

{
1 if for some ♦iΣ′ ∈ Σ,V [Σ′, φ] = 1
0 otherwise;

LL note that the running time of a naive implementation of this
algorithm is O(n2), in which n is the size of the knowledge base.
However, with some indexing on the agent identities and modal
operators, this can be reduced to O(n log n).

They further show that when the knowledge base is converted
to PINF, their approach is sound for queries in NNF and complete
for queries in a restricted normal form called NF that includes all
queries PINF and more. To defineNF , they first define the concept
of logical separability.

DEFINITION 6 (LOGIC SEPARABILITY [11]). The set of for-
mulae P is logically separable if and only if for every consistent set
of simple formulae P ′ the following holds:

if P ∪ P ′ |= ⊥ then ∃φ ∈ P, s.t. P ′ ∪ {φ} |= ⊥

Intuitively, logical separability of the set of formulae P indicates
that there is no interaction between the logical statements in P .
That is, we cannot infer anything by combining two or more state-
ments that are not inferable from a single statement. For example,
the set {�ip,�i(p ⊃ q)} is not logically separable, because we
can infer �iq from the combination of the two, yet ♦i¬q is con-
sistent with each of the formulae in the set. This concepts plays an
important role later in the paper when considering only consistent
knowledge bases. Because we define logical separability using en-
tailment, we will assume the logic used is obvious from the context
(i.e., Kn here and KDn in the following section).

DEFINITION 7 (NF [11]). NF is the least set such that:

1. p ∈ NF , for all propositional variables p;

2. if φ ∈ NF then ¬φ ∈ NF;

3. if φ ∈ NF then �iφ ∈ NF; and

4. if Γ ⊆ NF , Γ is finite and logically separable, then∧
φ∈Γ φ ∈ NF .

3. QUERYING PDKBs
LL’s approach to PEKBs is an approximation of the logic Kn,

and they show how to add positive and negative introspection (ax-
ioms 4 and 5) in a straightforward manner. In our work, we are
concerned with the logics KDn and KD45n, in which the axioms
of K(45)n are extended with axiom D: that agents cannot have in-
consistent beliefs.

In this section, we present three query evaluation algorithms to
check entailment of a KDn PEKB, which we call a proper doxastic
knowledge base (PDKB) – we will use the symbol P in lieu of φ to
distinguish the fact that P is a PDKB. All three algorithms assume
that the PDKB is consistent prior to the query, and so would require
that the knowledge base be constructed using a sound belief change
operation. Assuming a consistent PDKB is not strictly required, but
simplifies the exposition. Including axiom D results in properties
that simplify the complexity of the algorithms relative to the Kn
case. The three algorithms that we propose are:

1. Entailment as structural subsumption: This is a simple ex-
tension to LL’s approach, which takes a PDKB and puts
it into a specific normal form, after which LL’s algorithm
V [Σ, φ] (cf. Definition 5) can be used as a sound entailment
algorithm.

2. Entailment without compilation: We show a polynomial-time
algorithm for querying a PDKB without first compiling into a
specific form, such as the expensive conversion to INF. This
algorithm is possible due to the consideration of axiom D.

3. Entailment as closure: We present an algorithm for compil-
ing the PDKB into its closure, which is the set of RMLs that
are in the deductive closure of the PDKB. As a result, entail-
ment is simple set lookup. The average case time complexity
using a hashed set is constant, while the worst case is linear
in the size of the compiled knowledge base (which may be
exponential in the maximum depth).

3.1 Entailment as structural subsumption
In this section, we show a simple extension to LL’s approach for

querying PDKBs to account for axiom D. We present a new algo-
rithm for converting a PDKB into implicate normal form (INF). By
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this, we mean that the resulting formula obeys the items in Defini-
tion 3, except item 2(a): not all implicates in an INF are necessarily
prime. The difference in the algorithm is that we assume that the
PDKB is consistent, and that the D axiom can be used to infer new
knowledge. We call this algorithm PDKB2INF .

DEFINITION 8 (PDKB2INF ). AssumeP is a consistent PDKB.

1. Let Fi(P ) =
∧
ψ∈Bi(P ) ψ

Let ∆(P ) = Prop(P ) ∪
{♦i(ψ) | ψ ∈ Di(P ) ∪Bi(P )} ∪
{�i(Fi(P )) | Bi(P ) 6= ∅}

2. For each l ∈ ∆(P ), if l is of the form ♦i(ψ), replace it by
♦i(PDKB2INF (ψ)) and if l is of the form �i(ψ), replace
it by �i(PDKB2INF (ψ)).

3. Return
∧
ψ∈∆(P ) ψ.

There are two differences between the algorithms PDKB2INF
and PEKB2PINF : (1) the previous step 3 is simplified: because it
is assumed that φ is consistent, neither ⊥ nor ♦i⊥ can be derived,
so we simply return the conjunction of formula; and (2) step 1 is
simplified due to the assumption of axiom D. Due to axiom D, we
know that �iφ ⊃ ♦iφ, so if an RML �iφ exists in the PDKB, we
do not require another RML ♦iψ (for some ψ) to be able to infer
that ♦iφ.

Note that the result is not (necessarily) in PINF, because we
infer ♦iφ from �iφ, but ♦iφ is not a prime implicate. We opt
not to reduce to PINF because this would require a separate post-
processing step to remove formula such as ♦iφ. For example,
consider the PDKB {�i�ip,♦i♦ip}. Because the second for-
mula follows from the first, it is non-prime so should be removed.
However, to do this would require an additional algorithm after
step 3 that recursively parses the INF to remove non-prime im-
plicates. It cannot be done top-down in PDKB2INF (e.g. using
{♦i(ψ) | ψ ∈ Di(P ) \ Bi(P )} in step 2), because at the top
level for ♦iφ, φ is not in Bi(P ), requiring compilation of all sub-
formula into PINF, and then checking for all pairs of formula �iφ
and ♦iψ, whether φ ⊃ ψ.

Adapting LL’s proof (which is itself an adaption of Bienvenu’s
[2]), it is straightforward to see that this algorithm terminates, and
produces a formula in INF that is equivalent to the conjunction of
RMLs in P . The worst-case execution time for PDKB2INF is
O(|P |d). Due to the fact that this algorithm does not compare
pairs of literals as PEKB2PINF does, the ‘non-recursive’ case
is O(|P |). There will be at most d such calls, where d is the
depth of the modal operators, meaning that the overall complex-
ity is O(|P |d).

Following the compilation done by PDKB2INF , our first method
to query if a PDKB P entails φ is to test the following using LL’s
query algorithm V [Σ, φ] from Definition 5:

V [PDKB2INF (P ), φ] = 1

V remains sound for PDKBs, and also complete for queries in
NF . This result is interesting, as it shows that adding axiom D into
our theory results in a lower time complexity to compile an INF
formula than a PINF formula, while the complexity of the query
remains O(|P |2).

EXAMPLE 2. Returning to our example, consider the potential
knowledge base of agent 1 where they become aware of the fact that
¬opened holds. The initial PDKB to represent this would be:

P = {�1¬opened,�1♦2promoted,�1♦2¬promoted}

The procedure PDKB2INF (P ) would then result in the following:

�1(¬opened ∧ ♦2promoted ∧ ♦2¬promoted)∧
♦1¬opened ∧ ♦1♦2promoted ∧ ♦1♦2¬promoted

3.2 Entailment without compilation
In the previous section, the PDKB2INF algorithm computes an

INF formula inO(|P |d) time because it only infers new knowledge
from single RMLs using axiom D. This indicates an alternative so-
lution in which we only calculate this new knowledge on demand,
and eliminate the compilation phase. We consider such a case in
this section by relying on the following property:

THEOREM 1 (LOGICAL SEPARABILITY OF PDKBS). Every
consistent PDKB is logically separable.

Proof. The logical separability of consistent PDKBs can be seen
from the definitions of V [Σ, φ] and PDKB2INF .

From Definition 6, it is clear that for a set of formula P , and
for all formula φ such that P � φ, if φ is derivable from a single
formula in P , then P is logically separable. We show that this is
the case for PDKBs: when we derive the INF formula for a PDKB
and then query this formula, we use only single RMLs to derive
any new knowledge.

First, consider PDKB2INF . It is clear that the only new knowl-
edge is derived from this algorithm is in step 2, where we apply
axiom D. However, axiom D is applied only to single RMLs of
the form �iφ. This is unlike the original PEKB2PINF , which
combines two formula at this step.

This leaves V from Definition 5. However, it is clear that this
structural subsumption algorithm derives no new knowledge. �

This result is significant, and gives rise to many desirable proper-
ties that simplify reasoning about PDKBs. For example, we do not
need to calculate a normal form such as INF to query a knowledge
base, because there are no logical puzzles arising from the com-
bination of two formula in a consistent PDKB. Second, to check
entailment of an RML, we need to find only a single RML in the
knowledge base that entails the formula, allowing us to consider the
parts of P in isolation. More specifically, we can take advantage of
the following corollary of Theorem 1:

COROLLARY 1 (SINGLE RML ENTAILMENT). For a consis-
tent PDKB P and RML l, the following holds:

P |= l iff ∃m ∈ P,m |= l

Corollary 1 leads us naturally to consider a querying mechanism
that looks at each individual RML in a PDKB in turn, rather than
viewing the PDKB as a whole. Operating under the KDn system
(axioms K and D), m |= l if and only if there is a proof from m
to l under the KDn axioms. Because m and l are RMLs, we can
rule out general applications of axiom K, because RMLs cannot
contain implications. Thus, the only axiom applied to an RML is D
(�iφ ⊃ ♦iφ), and the only application of K is to apply D (which is
an implication) to a single RML. Informally, this means thatm |= l
if and only if we can get from m to l by repeatedly applying axiom
D, and P |= l if and only if there is at least one m ∈ P such that
m |= l.

DEFINITION 9 (VRML[P, φ]). First, we define VRML[m, l],
in which m and l are both RMLs, as the function that returns 0
(false) if one of the following conditions are met, and returns 1
(true) otherwise:

1. Lit(m) and Lit(l) differ.
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2. The sequence of agent identifiers on the modalities in m and
l differ.

3. There exists an agent i and index k ≤ depth(l) such that the
kth modal operator in m is ♦i and the kth modal operator
in l is �i.

Thus, VRML[m, l] = 1 if and only if the sequences of agent
identifiers on the nested modalities are the same, the literals at the
end of the respective sequences are the same, and at each index of
the sequence, the modalities inm are the same or stronger than the
modality in l (�i implies♦i). We can now define the query for any
clause or term φ on a PDKB P as:

1. VRML[P, l] =

{
1 if for some m ∈ P,VRML[m, l] = 1
0 otherwise;

2. VRML[P, φ ∨ ψ] = max(VRML[P, φ],VRML[P,ψ]);

3. VRML[P, φ ∧ ψ] = min(VRML[P, φ],VRML[P,ψ]);

When restricted to a literal l, checking entailment involves look-
ing through the PDKB to find an RML m such that m entails l
from axiom D. For the non-literal case, a clause (term) is entailed
if either (both) of the sub-clauses (sub-terms) is entailed.

THEOREM 2. Let φ be inNF . VRML[P, φ] = 1 iff P |= φ.

Proof. First, we need to establish the soundness and completeness
of VRML[m, l] when m and l are both RMLs: VRML[m, l] = 1
iff m |= l. The left to right case is straightforward: if the propo-
sitional literals match, the sequence of agent identifiers match, and
the modal operators are always “box to diamond” from left to right
(for example VRML[�1♦1p,♦1♦1p]), then from axiom D, it must
be that m |= l.

We prove the right to left case by contradiction. Define Mm =
{M | M |= m} and Ml = {M | M |= l}. Assume that m |= l.
Therefore, Mm ⊆ Ml. Now, if the right to left case does not hold,
then it must be that VRML[m, l] = 0, and therefore one of the
following must hold: (1)Lit(m) andLit(l) differ, which cannot be
the case because it is straightforward to construct a model M such
that Lit(m)∧¬Lit(l) holds in every world, therefore Mm 6⊆Ml;
(2) the agent sequence of identifiers differ, which cannot be the
case, because different agents can believe different propositions so
it is straightforward to construct a model for any such formula such
that Mm 6⊆Ml; and (3) agent identifiers agree, but at one index m
contains ♦i and l contains �i, which cannot be the case because it
is straightforward to construct a model such that♦il holds and �il
does not, and therefore Mm 6⊆Ml.

From this and Collorary 1, we have that VRML[P, l] iff P |= l
where l is an RML.

Next, we need to show cases for terms and clauses, which we do
by induction on the size of φ. Assume P |= φ ∧ ψ. This holds iff
P |= φ and P |= ψ, which by induction, holds iff VRML[P, φ] =
1 and VRML[P,ψ] = 1, which holds iff VRML[P, φ ∧ ψ] = 1.

For the clausal case, the left to right case is analagous to the case
above for terms. For the right to left case, we follow LL (Theorem
6). Assume P |= φ∨ψ. From this, we know that P ∪{¬φ,¬ψ} is
inconsistent. Since φ∨ψ is inNF , we know that the set {¬φ,¬ψ}
is logically separable. From the definition of logical separability,
we know that either P ∪ {¬φ} is inconsistent or P ∪ {¬ψ} is
inconsistent, which implies that P |= φ or P |= ψ. By induction,
this implies that VRML[P, φ] = 1 or VRML[P,ψ] = 1, which is
equivalent to VRML[P, φ ∨ ψ] = 1. �

The worst-case running time of a naïve implementation of the
query algorithm VRML[P, φ] is O(|P | · d). An implementation of
VRML[P, φ] would be required to iterate over all l in P , and for
each l it must iterate along the modalities until it reaches a diver-
gence (as in Definition 9) or reaches the end (a successful entail-
ment), which is at most d iterations. This complexity is similar to
the O(|P |2) complexity for the structural subsumption algorithm.

EXAMPLE 3. Consider the initial PDKB P provided in Exam-
ple 2 and the query VRML[P,♦1¬opened]. It is clear to see from
Definition 9 that VRML[�1¬opened,♦1¬opened] will hold, and
thus so will VRML[P,♦1¬opened]. On the other hand, consider
VRML[P,�1�2¬promoted]. The result is false, as every RML
fails to entail the query:

1. VRML[�1¬opened,�1�2¬promoted] fails because the se-
quence of agent identifiers differ (Def. 9, condition 2)

2. VRML[�1♦2promoted,�1�2¬promoted] fails because the
literals are different (Def. 9, condition 1)

3. VRML[�1♦2¬promoted,�1�2¬promoted] fails because
the query RML is strictly stronger (Def. 9, condition 3)

3.3 Entailment as closure
In this section, we present a method for calculating the closure of

an entire PDKB, which then allows us to check entailment simply
as membership of the closure. This is useful in situations where
an underlying reasoning engine cannot handle nested modalities,
such as tools for reasoning about propositional knowledge bases.
For example, in recent work we defined an automated planning ap-
proach for deriving plans in the presence of other agents, and this
uses nested modalities to represent the mental states of other agents
[12]. This approach encodes the multi-agent epistemic problem de-
scription into a classical planning problem. Thus it must remove
any fluent that conflicts with new information, and further maintain
a state that is closed. Following the intuition behind Corollary 1,
we can define the closure of a single RML as follows:

DEFINITION 10 (RML CLOSURE). Given an RML l, we de-
fine Cl(l) to be the smallest set such that l ∈ Cl(l) and,

If X�im ∈ Cl(l), then X♦im ∈ Cl(l)

in which X is a string of modal operators and m is an RML.

The Cl operator efficiently captures the deductive closure of a
single RML, and as we have seen from Corollary 1, this can be a
powerful technique when Cl is complete.

THEOREM 3 (RML CLOSURE COMPLETENESS). For any pair
of RMLs l and m, the following holds:

m |= l⇒ l ∈ Cl(m)

Proof. This follows from the correspondence of Definition 10 to
the PDKB2INF algorithm – we use the axiom D to replace one
or more � operators with ♦ operators. �

To close an entire PDKB P , we simply close each RML in P :

DEFINITION 11 (PDKB CLOSURE). The closure of a PDKB
P , denoted as Cl(P ), is the smallest set such that P ⊆ Cl(P ) and

l ∈ Cl(P )⇒ Cl(l) ⊆ Cl(P )

With a procedure to deductively close a PDKB, we use the fol-
lowing to query if a formula is entailed by the PDKB P .
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DEFINITION 12 (VCl[P, φ]). We define the query mecha-
nism for a closed PDKB Cl(P ) as:

1. VCl[P, l] =

{
1 if l ∈ Cl(P )
0 otherwise;

2. VCl[P, φ ∨ ψ] = max(VCl[P, φ],VCl[P,ψ]);

3. VCl[P, φ ∧ ψ] = min(VCl[P, φ],VCl[P,ψ]);

To query an RML on PDKB, one needs to compute the entire
closure of the PDKB, and check that the RML is a member of the
closure set. Conjunction and disjuction are defined as in VRML.

THEOREM 4. Let φ be inNF . Then VCl[P, φ] = 1 iff P |= φ.

Proof. The case for l holds directly from Theorem 3. The cases
for terms and conjunctions are the same as for VRML (proof of
Theorem 2). �

The simplicity of VCl comes at the expense of increasing the size
of the PDKB to be deductively closed – a single RML l will lead to
an additional (2k − 1) RMLs if l contains k � operators. The ♦
operators add no new RMLs. Further, the compilation time is high.
For a PEKB P , each element must be closed, with a complexity of
O(2d), where d is the depth of the formula, leading to a worst-case
execution time of O(|P | · 2d). However, an average case query is
constant assuming that a simple hash set implementation is used,
while the worst case (all hash values are the same), would require
iteration over all RMLs in the PEKB.

EXAMPLE 4. For the PDKB P introduced in Example 4, the
closure would be computed by adding new RMLs entailed by P ac-
cording to Definition 10. This would result in the following PDKB:

Cl(P ) = { �1¬opened,♦1¬opened,
�1♦2promoted,♦1♦2promoted,

�1♦2¬promoted,♦1♦2¬promoted }

3.4 Summary
Table 1 summarises the complexity results of the three approaches,

and the approach for Kn knowledge bases proposed by LL [11].

Table 1: Summary of complexity results

Algorithm Compilation Size Query
Time Time

Subsump (Kn) O(|P |d+2) O(|P | · 2d) O(|P |2)

Subsump (KDn) O(|P |d) O(|P | · 2d) O(|P |2)

No compilation — O(|P |) O(|P | · d)

Closure O(|P | · 2d) O(|P | · 2d) O(1) (avg)
O(|P | · 2d)

From this table, one can see that the closure approach has the
lowest query time complexity, but at a high cost of compilation
(size and time). One would expect to make many queries on a
PDKB to make this cost valuable; although we note that to insert a
new consistent RML, we need only to compute the closure of that
RML and not the entire knowledge base.

The approach requiring no compilation is also attractive because
the complexity of querying is polynomial, yet there are no setup
costs. For the structural subsumption approach, the compilation
cost is reduced with the addition of axiom D, while the querying
cost remains the same.

3.5 Extending to KD45n
Extending to the KD45n case — that is, adding positive and neg-

ative introspection (axioms 4 and 5 respectively) — is straightfor-
ward. We note the following theorems under KD45n:

�i�iφ ≡ �iφ �i♦iφ ≡ ♦iφ
♦i�iφ ≡ �iφ ♦i♦iφ ≡ ♦iφ

LL define an i-objective formula as a formula that is about the
world and agents other than i. For example, �j(p ∧ �i¬p) is i-
objective, but �jp∧�i¬p is not. A formula is i-reduced iff for all
sub-formulae �iφ and ♦iφ, φ is i-objective.

One can see that any formula �iφ or ♦iφ can be i-reduced by
applying the equivalences above to strip out consecutive occur-
rences of modal operators of the same agent. Therefore, one can
reduce both a KD45n PDKB and KD45n query into a KDn PDKB
and KDn query respectively, thereby allowing application of the
approaches in Section 3.

LL present a similar case of extending Kn to K45n. However,
the absence of axiom D means that the formula �i♦iφ reduces
to �i⊥ ∨ ♦iφ. While a query containing such a formula can be
reduced to a Kn formula in NF , a Kn PEKB containing such a
formula cannot be reduced to a Kn PEKB because the resulting
RML contains a disjunction.

4. EXPERIMENTAL EVALUATION
In this section, we present an empirical study to assess and com-

pare the three query mechanisms introduced in Section 3. This is a
valuable evaluation because, while the theoretical worst-case com-
plexity was analysed in Section 3, the average case is likely to differ
significantly. For example, even though the closure approach has
a bad theoretical worst case, this worst case is highly unlikely and
the approach has the best average case.

Experimental setup. We implemented each approach and tested
queries of random RMLs on a range of PDKBs. The implementa-
tion for each method was completed in Python, and all experiments
were conducted on a Linux Desktop with a 3.4GHz processor.

We measured three key aspects for each of the three query meth-
ods: (1) the time taken to compile a knowledge base (i.e. into INF
or closed form); (2) the size of the compiled knowledge base; and
(3) the time taken to answer a random RML query, which may or
may not be entailed by the PDKB. The size of the compiled knowl-
edge base for the first query type is the size of the implicate normal
form created by PDKB2INF – every modal operator and propo-
sition counts toward the size. For an unclosed or closed PDKB P ,
the size of P is measured as

∑
φ∈P depth(φ) + 1.

The complexity analysis presented in Section 1 assumes that no
indexing is used on the knowledge bases (except for the closure, for
which we assume something similar to a hash set is used). How-
ever, our implementations of these concepts all use some form of
indexing. We include these in the experiments, first, because we
believe anyone using such concepts would indeed use indexing,
and second, because indexing will have different effects due to the
different knowledge base shapes. For the structural subsumption
approach, knowledge bases are implemented as hash sets of for-
mula indexed by the agent identifier. This includes sub-formula;
for example, �i(�jp ∧ �kq) will index i at the top level, and the
sub-formula will also be represented using a hash set with indices j
and k. For the closure approach, knowledge bases are implemented
as hash sets of RMLs, with each RML indexed by the hash value of
its string format. For the approach with no compilation, knowledge
bases are implemented as hash tables with keys indexed by agent
prefixes. The values are the RMLs that correspond to that prefix.
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Figure 1: Size of the compiled knowledge bases as a function of
the number of agents and maximum depth. Legend indicates the
three query approaches from top (largest) to bottom (smallest).

We generated random PDKBs for a range of parameters that in-
clude: (1) the number of agents (ranging from 3 to 10); (2) the
maximum depth (3 to 10); and (3) the number of RMLs (20 to 200).
The number of RMLs was defined as a function of the maximum
depth and number of agents. To generate a PDKB, we inserted ran-
dom RMLs one after another while continually checking whether
or not the resulting PDKB was consistent and skipping RMLs that
caused the PDKB to become inconsistent. In total, we generated
100 PDKBs in this manner for every configuration of agents and
maximum depth (64 in total), and took the average over the 100
PDKBs generated for each particular parameter setting.

For the queries, we generated 200 random RMLs for each of
the 100 PDKBs for a particular parameter setting, half of which
were entailed by the PDKB. We measured the query time for each
approach, and averaged the result over all queries and PDKBs.

Results. Figure 1 shows a size comparison as a function of the
maximum depth and number of agents. We find a strict dominance
of VRML < INF < Closure (lower is better). As expected, we
also find an exponential increase in the size of both Cl and (to a
lesser extent) INF when we scale either the number of agents or
the maximum depth. Both follow from the exponential increase in
RMLs that would be entailed.

Figure 2 shows the query timing for all three query types. Again,
we find a strict dominance between the query types (lower is bet-
ter): Closure < VRML < INF . Note that we have used a log
scale for the query time of the three approaches.

Graphs for the compilation time are omitted, however, the shape
of the graph is very much similar to Figure 1, except VRML is not
present (no compilation required) and the difference between the
INF and closure times is not as great.

From these results, one can see that the closure is the fastest,
but this is at the expense of a longer compilation time and larger
compiled size than the other two. However, one can also see that
for logic KDn, compilation into INF is unnecessary: using an un-
compiled knowledge base gives a similar querying time3 with a
smaller size and without an expensive compilation phase.

3It is faster in our experiments, but perhaps a similar indexing tech-
nique can be used on the INF formulae to reduce this gap.

Figure 2: Average query time as a function of the number of agents
and maximum depth. Legend indicates the three query approaches
from top (slowest) to bottom (fastest).

5. SUMMARY AND DISCUSSION
For an agent reasoning about the nested belief of others, it is cru-

cial to maintain a consistent view of the world. If the agent can
believe that a door is both locked and unlocked simultaneously, we
cannot expect that agent to reason through an efficient course of
action for stepping through the door. In this paper we extended
PEKBs, which deal primarily with the logic K45n, to address con-
sistent knowledge bases (i.e., the logic KD45n). We found that
adding the axiom D not only provides a natural level of reasoning
for an agents mental state, but it also simplifies the computational
mechanism required for dealing with proper epistemic knowledge
bases. Because of the properties inherent in a PDKB that is pre-
sumed to be consistent, we were able to construct two additional
query methods for checking entailment; each trading off the stor-
age requirement and response time for answering a query. Through
an empirical evaluation of the three query methods, we found that
closing a PDKB offered the fastest query time (at the expense of
requiring a large amount of space), while keeping the PDKB un-
closed resulted in the smallest knowledge base with a query time
that was still faster than using implicate normal form.

A key assumption of this work is that the knowledge base is con-
sistent. While it is a straightforward polynomial-time task to check
whether or not a PDKB is consistent, in future work we are partic-
ularly interested in algorithms for belief update and belief revision,
which maintain a consistent knowledge base. This makes it possi-
ble to use knowledge bases as the state representation for a planning
process (e.g., building of our current work on encoding PDKBs for
automated planning [12]). Additionally, we hope to investigate the
feasibility of extending PDKBs to capture limited forms of disjunc-
tive belief to capture concepts such as “know whether”, and also to
consider how to represent notions of group beliefs.
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