
Semi-feature Level Fusion for Bimodal Affect Regression 

Based on Facial and Bodily Expressions 
 

Yang Zhang 
Computational Intelligence Research Group 

Department of Computer Science and Digital 
Technologies  

Faculty of Engineering and Environment  

Northumbria University 

Newcastle NE1 8ST, UK 

yang4.zhang@northumbria.ac.uk 

 
Li Zhang 

Computational Intelligence Research Group 

Department of Computer Science and Digital 
Technologies  

Faculty of Engineering and Environment  

Northumbria University 

Newcastle NE1 8ST, UK 

li.zhang@northumbria.ac.uk 

ABSTRACT 

Automatic emotion recognition has been widely studied and 

applied to various computer vision tasks (e.g. health monitoring, 

driver state surveillance, personalized learning, and security 

monitoring). As revealed by recent psychological and behavioral 

research, facial expressions are good in communicating 

categorical emotions (e.g. happy, sad, surprise, etc.), while bodily 

expressions could contribute more to the perception of 

dimensional emotional states (e.g. arousal and valence). In this 

paper, we propose a semi-feature level fusion framework that 

incorporates affective information of both the facial and bodily 

modalities to draw a more reliable interpretation of users’ 

emotional states in a valence–arousal space. The Genetic 

Algorithm is also applied to conduct automatic feature 

optimization. We subsequently propose an ensemble regression 

model to robustly predict users’ continuous affective dimensions 

in the valence–arousal space. The empirical findings indicate that 

by combining the optimal discriminative bodily features and the 

derived Action Unit intensities as inputs, the proposed system 

with adaptive ensemble regressors achieves the best performance 

for the regression of both the arousal and valence dimensions. 

Categories and Subject Descriptors 
I.2 [ARTIFICIAL INTELLIGENCE]: Miscellaneous; 

General Terms 

Algorithms, Performance, Experimentation, Human Factors. 

Keywords 

Affective computing; multimodal affect sensing; adaptive 

ensemble models; feature selection; optimization. 

1. Introduction 
Automatic emotion recognition is a well-established and fast 

growing field, and there is an extensive literature available on 

emotion recognition from different modalities or their 

combinations (e.g. [1]-[6]). It has been widely acknowledged that 

the use of multimodal information allows for a more complete 

emotional description and enables more accurate recognition 

results. 

Moreover, recent multimodal emotion recognition research has 

mostly focused on the recognition of facial and vocal expressions 

in terms of a small number of discrete emotion categories (e.g. 

[7]-[10]). However, people tend to exhibit non-basic, subtle and 

rather complex emotional states in real-life interactions, which 

may pose a great challenge to the aforementioned categorical 

recognition systems. In this research, we propose a semi-feature 

level fusion framework that incorporates affective information of 

both the facial and bodily modalities to draw a more reliable 

interpretation of users’ emotional states in a valence–arousal 

space. The Genetic Algorithm (GA) based feature optimization 

and an ensemble regression model are also proposed to 

respectively identify the most optimal bodily and facial muscular 

features and robustly predict continuous affective dimensions. 

The rest of the paper is organized as follows. Section 2 reviews 

the state-of-the-art developments in bimodal/multimodal emotion 

recognition. In Section 3, we present the detailed methodology of 

the proposed semi-feature level fusion. Section 4 discusses the 

GA based automatic feature optimization. Section 5 presents the 

proposed adaptive ensemble model for affective dimension 

regression, together with the other two benchmark single 

regression methods. Experiment, evaluation and discussion are 

presented in Section 6. Finally, we draw conclusions and identify 

future work in Section 7.  

2. Related Work 
In this section, we firstly introduce the discrete and dimensional 

conceptualization of emotions. We then summarize the state-of-

the-art automatic multimodal dimensional emotion recognition 

systems and developments. 

2.1 Different Emotion Theories 
In the field of psychology, the modelling of emotions has been 

well studied. In literature, there are a number of widely 

acknowledged theories (e.g. OCC model [11] and Scherer theory 

[12]). In this research, we focus on two representative ones for 

emotion modelling: (1) categorical and (2) dimensional 

approaches. 
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Therefore, we propose a semi-feature level fusion framework that 

integrates users’ whole-body expression features with facial 

Action Unit intensities for dimensional affect interpretation. The 

Genetic Algorithm (GA) based optimization is then employed to 

conduct automatic feature selection. We employ a variety of 

machine learning algorithms including Feedforward Neural 

Networks with Backpropagation (BPNNs), Support Vector 
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Table 1 Summary of multimodal and dimensional affect recognition systems (SAL: SAL database [41], BLSTM-NN: Bidirectional 

Long Short-Term Memory Neural Network, LSTM: Long Short-Term Memory Neural Network, BPNN: Backpropagation Neural 

Network, LDA: Linear Discriminant Analysis, SVM: Support Vector Machine, SVR: Support Vector Regression, GMM: Gaussian 

Mixture Model)

The former advocates that affective state is able to be represented 

by a small number of prototypical emotions or their mixtures, 

which are basic, hard-wired in our brain, and recognized 

universally, such as the six basic emotions (i.e. happiness, 

surprise, fear, anger, sadness, and disgust) identified by Ekman 

and his colleagues [13]-[15]. 

The latter argues that affective state could be described by certain 

continuous attributes. A representative model proposed by Posner 

et al. [16] suggested that the majority of affect variability is able 

to be covered by two orthogonal dimensions, i.e. arousal and 

valence. The arousal dimension refers to the intensity of the 

emotional experience, and it ranges from apathetic sleepiness to 

frantic excitement. The valence dimension describes the level of 

pleasure of an emotion, and it ranges from negative unpleasant 

feelings to positive pleasant feelings. 

The dimensional model could be a more natural, flexible and 

effective way to interpret emotions [17, 18]. Thus, we employ the 

dimensions of arousal and valence in a continuous scale for the 

automatic interpretation of users’ emotional states in this research. 

2.2 Review of State-of-the-Art Developments 
Recently, a growing body of research has focused on dimensional 

affect recognition based on various combinations of modalities. 

For example, Karpouzis et al. [19] employed a Recurrent Neural 

Network which lends itself well to modeling dynamic events in 

both users’ facial expressions and speech for the recognition of 

emotion in naturalistic video sequences. In their work, a quantized 

dimensional representation of users’ emotional states (i.e. 

activation and valence) was applied, instead of detecting discrete 

emotion categories. Kanluan et al. [20] employed late fusion of 

facial expression and audio channels by using weighted linear 

combinations of their outputs respectively obtained by Support 

Vector Machines for regression to estimate the valence, 

activation, and dominance dimensions (on a 5-point scale, for 

each dimension). 

Most recently, a few attempts have been proposed for actual 

continuous affective dimension regression (without quantization). 

For example, Nicolaou et al. [17] employed three modalities 

including facial expression, shoulder gesture and vocal cues for 

continuous tracking of the valence and arousal affective 

dimensions using Support Vector Regression (SVR) and Long-

System Modality/Feature 

type 

Database/Number 

of sample 

Learning/Classification 

model 

Fusion 

strategy 

Results 

Karpouzis 

et al. [19] 

Various visual & 

acoustic features 

SAL, 4 subjects, 76 

passages 

Recurrent Network with 4 

class-outputs 

not reported Negative/positive/active/passive 

(discrete), 

67% recognition accuracy with 

vision, 73% with prosody, 82% 

after fusion 

Kim [21] Speech & 

physiological 

signals 

Private database, 3 

subjects, 343 

samples 

Modality-specific LDA-

based classification 

Integration of 

feature and 

model-level 

fusion 

4 Arousal-Valence quadrants 

(discrete), 

55% for feature fusion, 52% for 

decision fusion, 54% for hybrid 

fusion 

Nicolaou et 

al. [17] 

Facial expression, 

shoulder gesture, 

audio cues 

SAL, 4 subjects, 

30,000 visual and 

60,000 audio 

samples 

HMM and likelihood 

space via SVM 

Model-level 

fusion, 

likelihood 

space fusion 

Negative vs. positive valence 

(discrete), 91.76% by facial 

expressions, 94% by modal fusion 

Nicolaou et 

al. [22] 

Facial expression, 

shoulder gesture, 

audio cues 

SAL, 4 subjects, 

30,000 visual and 

60,000 audio 

samples 

SVR and BLSTM-NN Feature/model-

level, 

output-

associative 

fusion 

Valence and arousal (continuous), 

best results: RMSE=0.15 and 

CORR=0.796 for valence; 

RMSE=0.21 and CORR=0.642 for 

arousal 

Metallinou 

et al. [18] 

Body language 

and speech cues 

Private database, 16 

subjects, 100 

recordings 

LSTM and GMM-based 

prediction 

Feature-level 

fusion 

Valence, arousal and dominance 

(continuous), CORR=0.584, 0.056, 

0.337, respectively 

This work Facial and whole-

body expressions  

Private database, 11 

subjects, 40,000 

samples (frames) 

BPNN, SVR, and the 

proposed ensemble 

regression model 

Semi-feature 

level fusion 

Valence and arousal (continuous), 

MSE= 0.077 and CORR= 0.886 

for valence; 

MSE= 0.056 and CORR= 0.907 

for arousal 
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Figure 1 The proposed semi-feature level fusion framework

Short Term memory (LSTM) regression. Metallinou et al. [18] 

proposed a Gaussian Mixture Model-based approach to 

continuously predict levels of participants’ activation, valence and 

dominance during the course of affective dynamic interactions 

using body language and speech features. They also produced a 

statistical analysis of each single bodily feature in order to select a 

subset of de-correlated informative features for each affective 

dimension. Promising results were obtained for the tracking of the 

arousal and dominance dimensions. For a more clear comparison, 

in Table 1, we briefly summarize some state-of-the-art 

applications that employ multiple modalities to model and 

recognize affect in terms of affective dimensional space, together 

with our work presented in this paper. Although some earlier 

applications listed in Table 1 ([19], [21], [22]) applied a 

discretized classification scheme rather than a continuous 

dimensional space, we still include them as they are relevant to 

this study. 

In comparison to the existing work listed in Table 1, our research 

presents the first semi-feature level fusion framework in the 

literature that effectively combines users’ whole-body features 

and facial Action Unit intensities to improve regression 

performance for affective dimensions. By employing the GA 

based feature optimization and the proposed adaptive ensemble 

regression models, our system achieves the best performance in 

terms of both Mean Squared Error (MSE) and Pearson correlation 

coefficient (CORR) measurements. The overall system is 

developed based on a Microsoft Kinect platform. The detailed 

semi-feature level fusion methodology is presented in the 

following. 

3. Fusion Strategies for Facial and Bodily 

Modalities 
In this section, we firstly describe the facial and bodily expression 

features that have been extracted and employed. We subsequently 

detail the proposed semi-feature level fusion framework, followed 

by the automatic feature selection based on the GA optimization. 

3.1 Facial Expression Features 
In this research, Microsoft Kinect has been used to extract initial 

raw facial features. Then we employ facial Action Unit [14] 

intensity estimators proposed in Zhang et al. [23] to measure the 

intensities of 16 diagnostic facial AUs, which are then used as 

input facial features in this research rather than using raw features 

(e.g. geometric or textural facial features). This is because AU 

intensity features are more compact and less redundant than raw 

facial features and can well reflect users’ emotional states [23]. 

These AU intensity estimators automatically select 16 motion-

based facial feature sets using minimal-redundancy-maximal-

relevance criterion based optimization and robustly estimate the 

intensities of 16 diagnostic AUs for each frame using SVRs. The 

16 derived AUs are AU1 (Inner Brow Raiser), AU2 (Outer Brow 

Raiser), AU4 (Brow Lowerer), AU5 (Upper Lid Raiser), AU6 

(Cheek Raiser), AU10 (Upper Lip Raiser), AU12 (Lip Corner 

Puller), AU13 (Cheek Puffer), AU15 (Lip Corner Depressor), 

AU17 (Chin Raiser), AU18 (Lip Puckerer), AU20 (Lip Stretcher), 

AU23 (Lip Tightner), AU24 (Lip Pressor), AU26 (Jaw Drop) and 

AU27 (Mouth Stretch). 

3.2 Bodily Expression Features 
Moreover, we also extract a total of 54 whole-body expression 

features, including both static posture (e.g. distances and angles) 

and dynamic motion (e.g. velocity, amplitude and acceleration) 

features. These features are calculated based on 20 key skeletal 

joints tracked by Microsoft Kinect and its Natural User Interface 

SDK [24] in a 3D geometric manner for each frame. These 

features range from lower-level features, such as the joint angles 

of elbow and knee, to more interpretable higher-level features, 

such as the lean angle of spine and the degree of body 

contraction/expansion. The bodily expression features extracted 

include the following types: 

 Body Expansion Index measures the degree of contraction 

and expansion of the body, in frontal, lateral and vertical 

directions, respectively. Figuratively speaking, it computes a 

3D bounding region, i.e., the minimum cuboid surrounding 

the entire body. 

 Euclidean Distance is the distance between two given 

skeletal joints. 

 Lean Angle indicates the geometric angle of spine leaning 

forward/backward. 
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 Instantaneous Velocity can be calculated by dividing the 

displacement of a given joint between the current and last 

frames by the time interval of the two frames. It is related to 

the kinetic energy of a motion. 

 Average Velocity states the averaged value of speed, and 

can be calculated by dividing the total motion trajectory 

length of a joint by the corresponding time interval. 

 Amplitude indicates the maximum Euclidean Distance 

among the positions of a given joint within a predetermined 

time interval. 

 Acceleration is the rate of change of velocity between the 

current and last frames. It is caused by the force applied to 

move the body part, and can be used to distinguish between 

smooth and sudden motions. 

3.3 Semi-Feature Level Fusion 
As illustrated in Figure 1, the proposed semi-feature level fusion 

is realized by concatenating the derived AU intensities and the 

extracted bodily features into a new feature vector which is 

subsequently employed as inputs to affective dimensional 

regressors for both arousal and valence. A feature normalization 

procedure is also performed, in which each attribute is linearly 

scaled to the range of [0, +1]. We subsequently conduct a GA-

based automatic feature selection to identify the most optimal 

discriminative feature subset for each affective dimension. 

Finally, we employ the adaptive ensemble regression models, 

together with two other benchmark single Backpropagation 

Neural Networks (BPNNs) and SVRs for the prediction of users’ 

continuous affective dimensions. 

Our motivation is threefold. Firstly, there is strong psychological 

evidence (e.g. [13], [25]) indicating that the bodily expressions 

could be a better indicator of the arousal dimension, whereas 

some facial actions convey rich information of the valence 

dimension (e.g. the occurrence of AU15 (Lip Corner Depressor) 

usually indicates a ‘sad’ emotion, whereas AU12 (Lip Corner 

Puller) normally occurs with ‘happiness’). Thus, their 

combination is able to contribute more complementary 

information for dimensional affect prediction.  

Secondly, we focus on dimensional interpretation of affect, 

because in such an approach, even complex/blended emotional 

expressions and subtle emotion transitions can be captured and 

represented properly using a continuous scale of different 

dimensions, which could be too difficult to deal with through the 

categorical approach. 

Most importantly, although it remains largely unclear about how 

humans achieve effective fusion of multimodal affective signals 

for a final decision, recent literature ([10], [26]) was more 

supportive of an early stage fusion (e.g. feature-level fusion) 

rather than a late stage fusion (e.g. decision-level fusion), because 

the feature-level fusion is able to catch more information and 

relations of different modalities to inform affect interpretation. 

However, it is difficult to directly combine features from different 

modalities with various metrics, dimensionalities and temporal 

structures. Thus, we propose the semi-feature level fusion that 

appropriately integrates the derived AU intensities with bodily 

features for dimensional affective interpretation. 

4. The GA-based Feature Selection 
Although great effort spent on feature extraction process, the 70 

bimodal affective features (16 derived facial AU intensities + 54 

bodily features) are not necessarily of equal importance or quality. 

Some redundant or irrelevant features could result in inaccurate 

conclusion whereas a compact and optimal subset of features 

could benefit subsequent regression models by improving their 

generalization and interpretability. Thus, the GA-based automatic 

feature optimization is performed to identify the most optimal 

feature subsets for each affective dimension out of the entire set of 

70 features.  

 The GA is a biologically inspired optimization search method 

that mimics natural evolution. It is a promising alternative to 

conventional feature selection methods (e.g. [27], [28]). The most 

distinctive aspect of this algorithm is that it maintains a set of 

solutions (called individuals or chromosomes) in a population and 

employs a mechanism of selecting fitter chromosomes at each 

generation through genetic crossover and mutation operations 

based on the Darwinian principle of ‘survival of the fittest’. The 

GA stops when the number of iterations reaches a preset threshold 

or acceptable results are obtained. Algorithm 1 presents the 

pseudocode of the employed GA optimization. Figure 2 illustrates 

a cycle of the GA evolutionary process. 

Population Parents

Offspring
Evaluated 

offspring

Crossover

&

Mutation

Evaluate

Select 

Replacement

 

Figure 2 The evolutionary cycle of the GA 

For the feature selection problem, solutions (i.e. selected features) 

are represented in a string with n binary digits, with each binary 

digit representing each feature, and values 1 and 0 meaning 

selected and removed features respectively. For example, 

chromosome ‘10001001’ indicates the first, fifth and eighth 

features are selected. The GA starts with an initial population 

consisting of a number of d randomly generated solutions. In this 

research, the population size d is set to 30 according to original 

feature dimensions and computational complexity. We apply the 

following parameter setting to achieve a balance between the 

regression accuracy and the computational complexity: 

Algorithm 1 GA for Feature Selection 

1: initialize population P; 

2: repeat { 

3:             select two parents p1 and p2 from P; 

4:             offspring = crossover (p1; p2); 

5:             mutation(offspring); 

6:             replace(P, offspring); 

7:            } 

  until (stopping condition); 

9: } 
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Figure 3 An example of an ensemble learning mode 

 

control procedure: steady-state; 

population size = 30; 

crossover probability = 1.0; 

mutation probability = 0.03; 

maximum generations = 1000; 

These parameters are originated by the default setting of the GA 

algorithm with slight adjustment to fit into our application domain 

which has a comparatively small feature set (i.e. 70 features). 

5. Dimensional Affect Interpretation 
In this research, we employ three distinctive machine learning 

algorithms, i.e. the proposed adaptive ensemble regression models, 

single BPNNs and SVRs, for the regression of affective 

dimensions. The latter two are commonly used for continuous 

affect regression problems in the existing applications (e.g. [17], 

[29]-[32]), and their experimental results will be used as the 

benchmark for comparison. 

5.1 The Proposed Adaptive Ensemble 

Regression Model 
In this research, we propose an adaptive ensemble model for the 

regression of valence and arousal dimensions. As illustrated in 

Figure 3, ensemble learning refers to approaches that generate 

several base models that complement each other to make a 

prediction. Compared to traditional single model-based methods, 

ensembles have the advantages of improved robustness and 

increased prediction accuracy [33]. We employ two instantiations 

of the proposed adaptive ensemble regression model to effectively 

handle continuous affective dimension prediction tasks, with each 

ensemble model dedicated to each affective dimension (i.e. either 

valence or arousal). The proposed ensemble regression model is 

developed and modified based on an ensemble classifier for novel 

class detection proposed by [23]. For this proposed ensemble 

regression model, we employ SVRs as the base regressors and use 

a series of adaptive ensemble mechanisms for the model 

generation, so that it is able to deal with regression problems 

efficiently. For an exhaustive review of ensemble approaches, 

readers may refer to [34, 35]. 

The ensemble model generation starts with the weight 

initialization for the training dataset based on a multiple linear 

regression analysis against the ground truth. Then a subset of 

training clips with higher weights is selected from the original 

training set to train a base model. Although a variety of 

algorithms, such as Decision Trees and Neural Networks, could 

be used as the base regressor, in this research, we employ SVRs as 

the base regressor. The detailed introduction of the SVR is 

provided in Section 5.3. Subsequently, we calculate and assign a 

weight to the current base model based on its regression 

performance for the original training dataset. We also update the 

weights of the training clips with the aim of increasing the weights 

of those clips which have higher error rates and are more difficult 

to predict. Overall, the above procedures iterate three times, thus 

three weighted base regressors are generated for the building of 

the ensemble model (considering a balance between performance 

and computational complexity). The final ensemble regression 

result can be therefore obtained by calculating the weighted 

average of the outputs of the three base models. 

We have also employed two other single regression models, i.e. 

BPNN and SVR, for the prediction of affective dimensions, 

whose results are used as benchmark for comparison with those 

obtained by the ensemble regression models. The single 

regressors, BPNN and SVR, are introduced respectively in the 

following sections. 

5.2 Feedforward Neural Network 
As mentioned earlier, we employ single-hidden layer feedforward 

Neural Networks respectively for the regression of arousal and 

valence. In this research, we employ two BPNNs for the 

regression of the two affective dimensions respectively with each 

BPNN consisting of an input layer, a hidden layer, and an output 

layer, as shown in Figure 4. Each layer of the BPNN contains a 

number of nodes, which are interconnected with adjacent layers. 

Also, each node is a simple processing element that responds to 

the weighted inputs received from the preceding layer. 

The feedforward Neural Networks are trained by Backpropagation 

algorithm [36], which iteratively adjusts the weights between the 

nodes in response to the errors until some targeted minimal error 

is achieved between the actual and target output values. We apply 

the following parameter setting, so that it is able to best achieve a 

balance between accuracy, speed and generalization performance. 

learning rate = 0.2; 

 momentum value = 0.7; 

 termination error = 0.01; 

 number of the nodes in hidden layer = 10-50; 
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Figure 4 A sample topology of a single-hidden layer 

feedforward neural network 

5.3 Support Vector Regression 
We also employ single models such as SVRs for the regression of 

both valance and arousal dimensions in this research. As one of 

the most dominant kernel methods, Support Vector Machine 

(SVM) employs the convex optimization function which 

guarantees that the optimal solution will be found. The basic idea 

of SVR is to compute a linear regression function in a higher 

dimensional feature space where the lower dimensional inputs are 

mapped using a kernel function [37]. 

In this research, we apply non-linear radial basis function kernel 

(RBF) SVRs, because the RBF is able to effectively deal with 

nonlinear cases and has simpler hyperparameters compared to 

other nonlinear kernels (e.g. polynomial kernel). Please note that 

when the dimensions of features are very high (e.g. thousands), 

the RBF kernel may become unsuitable in comparison to a linear 

kernel. However, it is not the case in this application. 

We employ the established LibSVM Library [38] for the SVR 

implementation. A typical “grid search” procedure with cross-

validation is conducted to determine the optimal combination of 

the cost (C), gamma (g) and epsilon (ε) parameters [39]. More 

specifically, various combinations of parameter values (i.e. 

exponentially growing values: C = 2-10, 2-9, ..., 215; g = 2-15, 2-14, 

..., 210; ε = 2-10, 2-9, ..., 2-1) are conducted and the one with the 

lowest MSE is selected. The MSE evaluates the prediction results 

by taking into account the squared error of the predicted value 

from the ground truth. 

6. Experiments, Evaluations and Discussions 
In this section, we firstly present the data prepared for system 

evaluation. The experimental results are discussed subsequently. 

6.1 Data Collection and Annotation 
In this research, eleven participants, five female and six male, 

ranging from 25 to 40 years old, were recruited for our affective 

facial and bodily expression data collection. All of them were 

asked to take a brief training, which allowed them to get more 

familiar and comfortable with the Kinect sensor and laboratory 

conditions to enable more natural performance. In order to avoid 

stereotypical and strongly acted expressions, we employed more 

diverse and interactive methods to arouse emotional responses of 

participants, such as viewing tragic/comedic movie clips, telling 

jokes, and making improvised performances with each other, 

instead of directly guiding them to perform specific emotional 

bodily expressions. A total of 85 clips containing various 

emotional expressions was recorded (including both skeletal 

tracking data from the depth sensor and color video data from the 

RGB camera). The time length of each clip varies between 10 and 

20 seconds (i.e. between approximate 300 and 600 frames per 

clip). Each clip starts from a neutral state and includes one or a 

few emotional expressions with bodily and facial displays.  

In order to establish reliable ground truth for each affective 

dimension for system evaluation, we recruited five annotators to 

perform frame-by-frame affective dimension annotation for each 

clip, most of whom had essential experience in affective 

annotation tasks. The range of valence/arousal ratings is from -1 

(the most negative/inactive) to +1 (the most positive/active). We 

apply the following three steps to establish the ground truth: 

 We calculate the CORR for each pair of annotations, and 

then filter out the pair(s) with the CORR lower than a cutoff 

threshold; 

 We calculate the mean value of each annotation, and then 

filter out the pair(s) with the difference of the mean values 

greater than a cutoff threshold; 

 The rest of the annotations are selected to compute the 

ground truth for the corresponding clip by taking the 

average of them. If there is no annotation left (i.e. all the 

five annotations are filtered out), that clip will be excluded 

from our corpora, as lacking of essential inter-annotator 

agreement to establish the ground truth. 

The cutoff thresholds for the CORR and the mean value 

difference are respectively set to 0.4 (a standard for moderate 

correlations in statistics) and 0.5, empirically. In this way, we 

select 58 and 60 valid emotion clips with acceptable inter-

annotator agreement and well-founded ground truth for valence 

and arousal, respectively. The system evaluation is presented in 

the following. 

6.2 Experimental Results 
All experiments are conducted following a leave-one-subject-out 

cross-validation scheme, i.e. the data of ten subjects are used for 

training and the remaining one for testing, and each subject is 

tested in turn. The final result is an average over these rounds. As 

mentioned earlier, the merged feature vector consists of the 

derived AU intensities and the extracted bodily features. 

In Table 2, we present the experimental results of applying the 

single BPNNs, SVRs, and ensemble regression models with SVRs 

as the base regressors for the regression of arousal and valence 

dimensions using the merged features automatically selected 

based on the GA optimization. To evaluate the effectiveness of the 

proposed semi-feature level fusion framework for continuous 

affect regression, we also conduct experiment with solely bodily 

features. 
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Table 2 Experimental results of the proposed semi-feature level fusion using single BPNNs and SVRs, 

and the proposed ensemble model  

 Modality 
Number of selected 

features 

BPNNs SVRs Ensemble (SVRs) 

CORR MSE CORR MSE CORR MSE 

Arousal 

Bodily 37 0.808 0.072 0.867 0.066 0.903 0.057 

Bimodal 39 

(27 bodily + 12 facial) 
0.882 0.068 0.89 0.059 0.907 0.056 

Valence 

Bodily 25 0.723 0.121 0.791 0.103 0.815 0.093 

Bimodal 
31 

(24 bodily + 7 facial) 
0.865 0.091 0.883 0.089 0.886 0.077 

First of all, as shown in Table 2, the fusion of facial and bodily 

modalities provides obvious performance enhancement for both 

arousal and valence dimensions. Especially for valence, 

integrating facial AU intensity information with bodily features 

appears to perform much better than solely using bodily features 

in terms of both MSE and CORR metrics. These results are also 

theoretically consistent with psychological research (e.g. [13], 

[25]) which hypothesizes that facial expressions communicate 

rich and explicit affective information of the valence dimension 

(e.g. happiness and sadness). Moreover, by using adaptive 

ensemble regression models, we achieve the best prediction 

performance for both of the arousal (CORR = 0.907, MSE = 

0.056) and valence (CORR = 0.886, MSE = 0.077) dimensions. 

These results demonstrate that the proposed semi-feature level 

fusion framework provides an effective solution for facial and 

bodily modality fusion, and the system achieves very impressive 

performance improvements. Moreover, Table 3 lists the most 

optimal combinations of features determined by the GA that 

generate the best results for both arousal and valence using the 

ensemble models. 

7. Conclusions 
There is recently a shift of focus from discrete and unimodal 

emotion recognition to continuous and multimodal recognition, as 

the latter is more flexible and reliable for the interpretation of 

spontaneous emotions in real-life scenarios. In this research, we 

proposed a semi-feature level fusion framework that effectively 

combines affective information from both the facial and bodily 

modalities to boost the performance of the dimensional affect 

recognition. The semi-feature level fusion is realized by 

concatenating the derived AU intensities and the discriminative 

bodily features into a merged feature vector which is subsequently 

optimized by the GA and then employed as inputs of the proposed 

ensemble model for the regression of both arousal and valence. To 

the best of our knowledge, this is the first attempt to combine AU 

intensities and whole-body features for automatic affect 

recognition, which overcomes the inherent shortcomings of 

conventional feature and decision-level fusion. 

Finally, we identify the following several potential directions for 

future work. First of all, although we have collected sufficient 

data for system evaluation, these data are all recorded under 

laboratory conditions. As pointed out by Kleinsmith & Bianchi-

Berthouze [40], a more naturalistic and extensive corpus with 

diverse subjects and challenging spontaneous affective 

expressions could better reflect the system performance in real-life 

scenarios. Besides, using an extensive database annotated in a 

richer affective space with a variety of affective dimensions, the 

proposed arousal-valence dimensional emotion recognition 

framework can be easily extended to include other additional 

dimensions, such as dominance and expectation. We can also  

Table 3 The most optimal feature combinations for ensembles 

selected by the GA optimization 

 Modality Features 

Arousal 

Bodily 

(27) 

Body Expansion Index (in X, Y, Z axes), 

Head Lean Angle, 

Body Lean Angle, 

Left/Right Elbows Joint Angle, 

Left/Right Knees Joint Angle, 

Distance between Left/Right Hands and 

Left/Right Shoulders (in X, Y, Z axes), 

Instantaneous Velocity of Hands, 

Instantaneous Velocity of Elbows, 

Amplitude of Hands, 

Acceleration of Hands, 

Acceleration of Elbows 

Facial 

(12) 

AU1, AU2, AU4, AU5, AU6, AU12, 

AU13, AU15, AU20, AU23, AU26, and 

AU27 

Valence 

Bodily 

(24) 

Body Expansion Index (in X, Y, Z axes), 

Head Lean Angle, 

Body Lean Angle, 

Left/Right Elbows Joint Angle, 

Left/Right Knees Joint Angle, 

Distance between Left/Right Hands and 

Left/Right Elbows (in X, Y, Z axes), 

Distance between Left/Right Hands and 

Left/Right Shoulders (in X, Y, Z axes), 

Instantaneous Velocity of Hands, 

Facial (7) 
AU1, AU2, AU4, AU6,  AU12, AU15, 

and AU23 
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further explore the correlations between those different affective 

dimensions for affect interpretation. Furthermore, literature 

indicates that, in some cases, the performance of ensembles could 

be potentially boosted by combining different types of base 

learning algorithms within one ensemble [34]. Thus, it shows 

potential to further improve the adaptive ensemble models by 

exploring such combinations of diverse base models. 
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