
Adaptive Learning for Multi-Agent Navigation

Julio Godoy, Ioannis Karamouzas, Stephen J. Guy and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
Keller Hall 4-192, 200 Union St SE, Minneapolis, Minnesota 55455

{godoy, ioannis, sjguy, gini}@cs.umn.edu

ABSTRACT
When agents in a multi-robot system move, they need to
adapt their paths to account for potential collisions with
other agents and with static obstacles. Existing distributed
navigation methods compute motions that are optimal lo-
cally but do not account for the aggregate motions of all the
agents. When there are many agents that move in a crowded
space, the result is an inefficient global behavior. To address
this issue, we propose a new approach which leverages tech-
niques from machine learning and game theory. Agents us-
ing our approach dynamically adapt their motion depending
on local conditions in their current environment. We vali-
date our approach experimentally in a variety of scenarios
and with different numbers of agents. When compared to
other machine learning techniques, our approach produces
motions that are more efficient and make better use of the
space, allowing agents to reach their destinations faster.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

Keywords
multi-agent navigation; crowd simulation; on-line learning

1. INTRODUCTION
Real-time navigation of multiple agents is important in

many domains such as swarm robotics, pedestrian naviga-
tion, and traffic engineering. What makes multi-agent navi-
gation challenging is the fact that in many cases a centralized
planning system cannot be used and hence the agents have
to make local decisions to produce globally efficient motions.
Centralized system do not scale to large numbers of agents,
are unusable when communication is limited or non existing,
and are not robust to motion errors and failure.

If agents have to plan their motions in a decentralized
fashion, they need to deal with the conflicting constraints
that are induced by the other moving agents and the static
obstacles in the environment. To avoid collisions, an agent
needs to make decisions in a few milliseconds, which limits
its ability to do sophisticated planning.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: The 1-Exit scenario. Multiple agents have to exit
a room through a narrow doorway, leading to congestion.

Over the past twenty years, many decentralized techniques
for multi-agent navigation have been proposed. These range
from force-based approaches to more robust velocity-based
solutions, which provide formal guarantees on the collision-
freeness of the agents’ motion. Although these robust ap-
proaches generate locally efficient motions for each agent,
the overall behavior of the agents can be far from efficient;
actions that are locally optimal for one agent are not nec-
essarily optimal for the entire system of agents. Consider,
for example, the agents in Fig. 1 that try to exit a room
through a narrow doorway. When multiple agents com-
pete for the exit, congestion arises around the doorway that
causes long delays for the agents at the back and results in
a time-consuming and inefficient crowd motion.

One way to improve the global efficiency of the agents’ mo-
tion is to let each agent learn, through interaction with the
environment, what motion is best given its local conditions.
Unfortunately, many machine learning algorithms require
an offline training phase to achieve learning, or take a long
time before converging to an optimal policy. In addition,
the computational complexity of learning methods becomes
prohibitively high as the number of agents increases.

As such, our current work focuses on online learning meth-
ods that can be completely distributed and require no com-
munication among the agents. We incorporate online adap-
tation into a novel framework, the ALAN framework (Adap-
tive Learning for Agent Navigation), which formulates the
multi-agent navigation problem as a multi-armed bandit prob-
lem. The main challenge in these problems is to balance the
exploitation of the current best action with the exploration
of other actions that may later produce higher rewards [2].
We propose a context-aware action selection technique to

1577

achieve the desired balance in real-time multi-agent navi-
gation tasks. Our approach is inspired by the principles of
two widely used techniques, ε-greedy [25] and Upper Confi-
dence Bounds (UCB) [3] within the context of the ‘win-stay,
lose-shift ’ strategy from game theory [18].

This work makes four main contributions. First, we pro-
pose the ALAN framework, where the problem of time-
efficient multi-agent navigation is formulated as a multi-
armed bandit problem. Second, we show how action selec-
tion techniques can be adapted in an online fashion within
our framework. Third, we propose a new hybrid action selec-
tion technique, which uses tools from machine learning and
game theory and which is tailored to the highly dynamic
conditions agents encounter in online navigation. Fourth,
we experimentally validate our approach via simulations in
a variety of scenarios and show that it leads to more time-
efficient motions compared to pure greedy approaches, ε-
greedy or a variant of UCB.

2. RELATED WORK

2.1 Multi-Agent Navigation
Numerous models have been proposed to simulate indi-

viduals and groups of interacting agents. After the seminal
work of Reynolds on boids, many interesting crowd simula-
tion models have been introduced that account for groups
[4], cognitive and behavioral rules [23], and other factors
[21, 8]. An extensive literature also exists on computing a
collision-free motion for an agent among static and/or dy-
namic obstacles, including approaches that plan in a state-
time space [10], artificial potential fields [12] and layered
architecture techniques [5].

Closely related are social force methods that simulate agent
interactions using a mixture of psychophysical forces [9].
However, all these techniques are reactive and do not ac-
count for the velocities of the agents, leading to collisions es-
pecially in environments where agents move at high speeds.
To address this issue, geometrically-based algorithms have
been proposed [6], which compute collision-free velocities
for the agents using either sampling [11, 20] or optimiza-
tion techniques [28, 13]. In our work, we use the navigation
method proposed in [28] that is robust to different types of
environments by accounting for agents’ velocities.

2.2 Learning in Multi-Agent Settings
A popular framework for multi-agent learning problems

is Reinforcement Learning, where agents learn by interact-
ing with the environment to achieve a desired goal, while
the decision-making problem is modeled as an MDP [24].
However, solving these MDPs exactly implies learning in a
large state space, which requires a significant degree of explo-
ration to create an accurate model for each agent. To reduce
complexity, approaches have been proposed that focus on
the interactions of each agent with its nearby neighbors [29,
30]. To completely eliminate the state space complexity, the
learning problem can be formulated as a multi-armed bandit
problem, where the agents use the reward of each action to
make future decisions [24]. In multi-armed bandit problems,
the relation between exploiting the current best action and
exploring potentially better actions is critical [1, 15].

Extensive work has also been done on learning and adapt-
ing motion behavior of agents in crowded environments. Ex-
amples of desired learned behaviors include collision avoid-

ance, shortest path to destination, and specific group for-
mations [27, 16, 17]. However, these are offline approaches
where agents are expected to learn the MDP model through
repeated simulations. In online approaches, like ours, agents
have only partial knowledge of their environment and the
MDP model.

3. PROBLEM FORMULATION
In our problem setting, we assume we have a set A of n

independent agents i (1 ≤ i ≤ n), each with a unique start
position specified in R2. Each agent has to reach a specific
goal position, also specified in R2, as quickly as possible.
The environment for each agent i is defined as a 2D virtual
or physical space that includes all the remaining n−1 agents,
along with the set of static obstacles O.

Agents should move without colliding with each other and
with static objects in the environment. The motions have
to be planned in a decentralized fashion and in real-time.

Notation. We model each agent i as a disc with a fixed
radius ri, an initial position p0

i and a goal position gi. At
time instant t, agent i has position pt

i and moves with ve-
locity vt

i which is limited by maximum speed υmax
i . Fur-

thermore, agent i has a preferred velocity vpref
i (commonly

directed toward the agent’s goal gi with a magnitude equal
to υmax

i). We assume that an agent can sense the radii, po-
sitions and velocities of neighboring agents within a limited
fixed sensing range. For simplicity, we also assume that each
static obstacle Oj (1 ≤ j ≤ |O|) present in the environment
is modeled as a line segment.

Let Si be a trajectory for agent i, where a trajectory de-
notes a sequence of positions and velocities (pi, vi) of agent
i from its start to its goal position. We say that S is a fea-
sible set of trajectories if it contains exactly one trajectory
per agent and the trajectories are collision-free and respect
the agents’ kinematic constraints. More formally:

S = {Si, i = 1, . . . , n |

∀j ∈ [1, n], j 6= i : ‖pt
i − pt

j‖ > ri + rj

∧ ∀k ∈ [1, |O|] : dist(pt
i, Ok) > ri

∧ ‖vi‖ ≤ vmax
i }

(1)

where dist(pt
i, Ok) denotes the Euclidean distance between

agent i and obstacle k.
Our objective then is to find the set of feasible trajectories

for the agents that minimizes the arrival time of the last
agent. Let topt denote this minimum time, defined formally
as:

topt = min
S∈S

(maxTravelT ime(S)), (2)

where maxTravelT ime(S) is the travel time of the last
agent that reaches its goal and S is the collection of all fea-
sible sets of trajectories. Since the quality of a set of tra-
jectories S cannot be evaluated in an online manner while
the simulation is running, we assess it when all agents have
reached their goals, by computing the regret RS of S with
respect to the minimum travel time, topt:

RS = maxTravelT ime(S)− topt (3)

Unfortunately, the problem of computing topt in environ-
ments with multiple agents and static obstacles, even with a

1578

centralized planner and with complete information, is NP-
hard. Therefore, RS cannot be computed directly, except in
trivial cases. However, we can derive a lower bound of topt
by considering the time that it takes for the farthest agent
to traverse its shortest path to its goal.

Definition 1. We define R
′
S to be the difference between

maxTravelT ime(S) and the lower bound of the optimal travel
time:

R
′
S = maxTravelT ime(S)−max

i∈A

(
shortestPath(p0

i ,gi)

υmax
i

)
(4)

We note that the lower bound of R
′
S is zero. It also follows

that R
′
S is a strict upper bound of RS and, as consequence,

finding a set S that minimizes R
′
S also minimizes RS .

4. THE ALAN FRAMEWORK
In our problem formulation, as the agents navigate in-

dependently and without explicit communication with each
other, Eq. 4 has to be minimized in a decentralized man-
ner. In this setting, each agent has to compute a feasible
trajectory Si ∈ S. However, the agents do not know in ad-
vance which trajectories are feasible as they have only partial
observation of the environment (only their local neighbor-
hood), and cannot predict the future motion of other agents.
Therefore, instead of optimizing directly on the space of un-
known feasible trajectories, we find, at each time instant, a
velocity that respects the agent’s geometric and kinematic
constraints while ensuring its progress towards its goal in
an efficient manner. To achieve this, we follow a two-step
process. First, we plan the agents’ motion over known but
potentially colliding velocities vpref , and then project these
velocities to collision-free ones, vnew, for execution.

For the mapping of vpref to vnew we use the Optimal
Reciprocal Collision Avoidance (ORCA) navigation frame-
work. ORCA allows each agent to select an optimal collision-
free velocity by solving a low dimensional linear program
[28]. It takes as input a preferred velocity vpref for a given
agent and returns a new velocity vnew that is collision-free
and as close as possible to vpref . This way, we formulate the
global regret minimization problem (cf. Eq. 3) as a decen-
tralized optimization problem, and use reinforcement learn-
ing techniques to solve it.

Learning Framework. We propose a learning framework
that allows agents to plan over the space of preferred ve-
locities and dynamically adapt their motion to their local
conditions (Alg. 1). Allowing the agent to select from a
set of preferred velocities requires making a choice at every
simulation step in a continuous 2D space of preferred veloc-
ities. However, in an online learning setting, each agent is
limited in the number of samples to learn from; increasing
the number of choices tends to reduce performance by ei-
ther reducing the amount of samples per choice, leading to
a larger learning error, or by significantly increasing the time
needed for learning [26]. Therefore, in our learning frame-
work agents plan their motions over a discretized space of
a small number of preferred velocities. We also adapt a
stateless representation for our framework; since agents are
unlikely to encounter themselves again in a similar local sit-
uation while advancing towards their goals, a state-based
learning is not ideal. Online learning problems with a dis-

(1.5, 2.25)

(0.2, -0.5)

(1.4, 2.25)

Goal(0, 0)(-1.5, 2.25)

Figure 2: Example of reward values for different actions un-
der clear and congested local conditions. The reward Ra of
each action a is described by a goal-oriented and a politeness
component (Rgoal, Rpolite).

cretized set of actions and stateless representation can be
well formulated as a multi-armed bandit problem.

In a multi-armed bandit problem, an agent makes sequen-
tial decisions on a set of actions to maximize its expected
reward. In our domain, each action corresponds to a specific
vpref . This formulation is well-suited for stationary prob-
lems, as existing algorithms guarantee a logarithmic bound
on the regret. Although our problem is non-stationary in a
global sense, as the joint local conditions of all agents are
highly dynamic, individual agents can often undergo long
periods of stationary reward distributions. Therefore, by
learning the optimal motion in each of these stationary pe-
riods, we allow agents to adapt to different local conditions.
Ideally, in each one of these periods, each agent should select
a vpref that minimizes Eq. 3. However, we have argued that
this is not possible. Instead, we can aim at minimizing an
agent’s individual travel time by driving the agent towards
its goal, while taking into account its interaction with other
agents. We expect that considering these two factors in the
local motion of each agent will implicitly improve the global
motions of the agents.

Reward Function. We propose a reward function that
evaluates the quality of a selected vpref based on an agent’s
goal-oriented behavior and its effect on neighbor agents.
Specifically, the reward Ra for an agent performing action
a is a convex combination of a goal-oriented component and
a politeness component:

Ra = (1− γ) ∗ Rgoal
a + γ ∗ Rpolite

a (5)

where the parameter γ controls the influence of each com-
ponent in the total reward (0 ≤ γ ≤ 1).

The goal-oriented component Rgoal
a computes the scalar

product of the collision-free velocity vnew of the agent with
the normalized vector which points from the position p of
the agent to its goal g. This component promotes preferred
velocities that lead the agent as quickly as possible to its
goal. More formally:

Rgoal
a = vnew · g − p

‖g − p‖ (6)

The politeness component Rpolite
a compares the last cho-

sen preferred velocity with the resulting collision-free veloc-
ity. If the chosen preferred velocity leads to potential colli-
sions, a different velocity is returned by ORCA. If, instead,
the preferred velocity does not conflict with other agents’
motions, a similar collision-free velocity is computed. Hence,

1579

Algorithm 1: The ALAN framework for an agent

1: initialize simulation
2: initialize Ra for all the actions to their maximum

values
3: while not at the goal do
4: if UpdateAction(t) then
5: vpref ← ActionSelection
6: end if
7: vnew ← CollisionAvoidance(vpref)
8: pt ←pt−1 + vnew ·∆t
9: Rgoal

a ← GoalReward(a) (cf. Eq. 6)
10: Rpolite

a ← PoliteReward(a) (cf. Eq. 7)
11: Ra ← (1− γ) ∗ Rgoal

a + γ ∗ Rpolite
a

12: end while

the similarity between vnew and vpref indicates how polite
is the corresponding action, with respect to the motion of
the other agents. Polite actions reduce the constraints on
other agents’ motions, allowing them to move and therefore
advancing the global simulation state. Formally:

Rpolite
a = vnew · vpref (7)

If an agent only aims at maximizing Rgoal
a , its behavior

would be myopic and it would not consider the effects of
its actions on the other agents. On the other hand, if the
agent only tries to maximize Rpolite

a , it has no incentive to
move towards its goal, which means it might never reach it.
Therefore, an agent should aim at maximizing a combination
of both components. Different behaviors may be obtained
with different values of γ. In Section 7, we analyze the
performance of our approach while varying γ. Overall, we
found that γ = 0.5 provides an appropriate balance between
these two extremes.

Figure 2 shows an example of different local conditions an
agent may encounter. The reward values shown correspond
to (Rgoal, Rpolite) tuples of an example subset of discretized
vpref . Here, four of the five actions are not constrained and
consequently their rewards are higher. However, congestion
has formed on one side of the agent, which results in low re-
ward values for the left angled motion. In this case, the agent
will choose the straight goal-oriented action, as it maximizes
Ra (γ = 0.5). We could determine this optimal action a∗ by
directly computing the reward for each vpref and evaluat-
ing its resulting vnew (but without executing it). However,
this would require an agent to simulate, for each action, the
positions and velocities of its entire neighborhood and its
own until the next decision-making step, which is too com-
putationally expensive for a real-time approach. Instead,
by formulating the problem of finding a∗ as the problem
of balancing exploration with exploitation in a multi-armed
bandit problem, we can exploit action selection techniques
to address it.

Learning Episode. Algorithm 1 shows an overview of our
ALAN framework that adopts the traditional sensing-acting
cycle in the context of a navigation task. In each cycle,
each agent acquires information about the positions and
velocities of other nearby agents and obstacles, and then
decides how to move. In particular, an action selection
method outputs a vpref (line 5) which is given as input to the
collision-avoidance framework. After determining potential
collisions, this component outputs a new collision-free veloc-

ity vnew (line 7) which is used to update the position of the
agent for the next simulation timestep (line 8). When a new
vpref needs to be chosen, the agent determines the quality
of the previous action taken by computing its reward value
(lines 9-11). This value is then given as input to the action
selection mechanism, which selects a new vpref and the cycle
repeats until the agent reaches its goal.

In our implementation, we update the positions of the
agents every ∆t = 0.025 s. To avoid synchronization ar-
tifacts, agents are given a small random delay in how fre-
quently they can update their vpref (with new vpref decisions
computed every 0.1 s on average, line 4). This delay also
gives ORCA a few timesteps to incorporate sudden velocity
changes before the actions are evaluated.

5. ACTION SELECTION
The dilemma of exploitation versus exploration, that is,

choosing the highest-valued action or trying other possibly
better actions, is common in sequential decision making un-
der uncertainty. It is particularly important in online learn-
ing, where excessive exploration might produce suboptimal
motions, while too little exploration might prevent quick
adaptation to local changes.

In our problem setting, agents need to explore with enough
frequency to detect the changes in the reward distributions,
so that they can update their reward estimates with the new
values in every period. This means that the amount of in-
formation that an agent should remember, related to the
previous rewards, should be carefully limited. Therefore, we
use two widely used action selection techniques to estimate
the optimal action a∗ through exploration and exploitation
in non-stationary domains: a memory-less ε-greedy, and a
version of Upper Confidence Bounds with short-term mem-
ory (similar to [7]).

The ε-greedy approach [25] selects the highest valued ac-
tion with probability (1-ε), and a random action with prob-
ability ε, ε ∈ [0, 1]. We choose a memory-less implementa-
tion where every new sampled value of an action replaces
its previous value. Consequently, by not averaging the new
sampled values with older ones, one sample of the optimal
action is sufficient to identify it as optimal and exploit it.

Well known results of the optimality of ε-greedy control
carry naturally to our domain. More importantly:

Theorem 1. ε-greedy is expected to find and exploit a new
optimal action a∗ if, on average, the reward distribution

changes, at least, every |Actions|
ε timesteps, where Actions

denote the set of discretized vpref .

Proof: Assume that the optimal action a∗ 6= max(Ra),
∀a ∈ Actions. ε-greedy is expected to choose a random
action, on average, every ε−1 timesteps. Since an agent has
to choose between |Actions| actions, each one is expected

to be selected every |Actions|
ε timesteps. After this time, a∗

will be exploited, on average, every (1− ε)−1 timesteps.

Therefore, as long as the reward distribution remains sta-

tionary for a period longer than |Actions|
ε timesteps, ε-greedy

is expected to learn the new reward distribution and opti-
mize accordingly. However, the performance of ε-greedy de-
pends heavily on the value of ε used and must be manually

1580

tuned for different navigation tasks. Furthermore, the ran-
dom exploration of ε-greedy can only take advantage of the
reward distribution of the optimal action.

Another widely used action selection technique, UCB, sam-
ples the actions proportionally to the upper-bound of the es-
timated value of their rewards [3]. However, UCB assumes
that the distributions of the rewards do not change over
time, an assumption that does not apply to our domain.
To address this issue and allow UCB to adapt to chang-
ing local conditions, we consider a moving time window (of
T timesteps) instead of the entire history of rewards when
computing the UCB estimates. We call our modified imple-
mentation wUCB:

wUCB(a) = Ra +

√
2 ln(ν)

νa
, (8)

where Ra corresponds to the average reward of action a,
νa denotes the number of times action a has been chosen
and ν the total number of actions’ decisions made so far by
the agent, all with respect to the moving window. At each
timestep, wUCB selects the action a with the maximum
value of wUCB(a) across all actions. With the time window,
wUCB(a) is able to adapt to changes in the distribution of
the rewards and exploit the optimal action faster.

Theorem 2. wUCB is guaranteed to identify and exploit
the optimal action a∗ of any reward distribution in at most
T timesteps, where T is the size of the time window and
T > |Actions|.

Proof: Assume a worst case scenario where the agent sam-
pled action a at time t and obtained the lowest reward value
of all actions denoted as Rmin. Assume further that at time
t + 1 the distribution of rewards changes so that action a
becomes a∗, that is, the optimal action. a∗ will be sampled
again when wUCB(a∗) = max(wUCB(a))∀a ∈ Actions.
As the value of Ra (c.f. Eq. 8) does not change while action
a is not selected, this will only occur when at two different

times, t and t
′
, the following equation is satisfied:

√
2 ln(ν)

νa∗(t
′)
−

√
2 ln(ν)

νa∗(t)
≥ max(wUCB(a))−wUCB(a∗) (9)

As the rewards of the actions are bounded by Eq. 5, the
right side of the inequality in Eq. 9 will always have a fi-
nite value. However, ν is bounded by T, the size of the

time window. If T < (t
′
− t), then wUCB(a∗) will become

∞ when νa∗ = 0, and hence it will be selected, as long as
T > |Actions|. In this case, wUCB(a∗) = Ra∗ , and hence
a∗ will be regarded as the optimal action and exploited ac-
cordingly.

We experimentally found out that using wUCB or ε-greedy
as the action selection method in our learning framework
(Alg. 1) to estimate the optimal action a∗ improves the
overall time-efficiency of the agents’ motions (see Fig. 4 for
details). Although this formulation helps agents to keep
learning when the environment changes, the constant explo-
ration mechanism (fixed ε or fixed T) represents the assump-
tion that all stationary periods have at least a fixed length

(T for wUCB or |Actions|
ε for ε-greedy). However, there is

no guarantee for such assumption to hold in all navigation
tasks. An agent can go through longer periods of time where

no exploration is required (e.g., an unconstrained path to
goal), followed by shorter periods of highly constrained mo-
tion, where exploration must be done to find an efficient
path. Although choosing large values of ε or small values
of T may help identify more changes in the reward distri-
butions, it comes with the price of excessive trashing due
to unnecessary exploration. If, instead, the value of ε were
to be adjusted online based on local conditions, a more re-
fined exploration-exploitation process could produce more
efficient motions. Therefore, in the following section, we
propose to dynamically adapt the exploration mechanism to
the local conditions of the agent by using a learning strategy
used in the game theoretic domain.

6. CONTEXT-AWARE LEARNING
We propose a new context-aware action selection tech-

nique that is suited to the highly non-stationary conditions
that agents encounter in our problem domain. Our approach
takes advantage of the two action selection techniques, ε-
greedy and wUCB, introduced in Section 5, and of the ‘win-
stay, lose-shift ’ learning strategy from game theory, enabling
each agent to adapt the amount of exploration it has to per-
form.

Win-stay-lose-shift. The ‘win-stay, lose-shift ’ strategy
was originally proposed as a strategy for improving the ac-
tion selection performance in multi-armed bandit problems
[22]. It has been shown to promote cooperation in multi-
agent systems and other domains [18, 19]. It can be sim-
ply described as the strategy of maintaining one’s course of
action if such an action is ‘winning’, and modifying it oth-
erwise. The interpretation of a ‘winning’ situation varies
depending on the application domain, though it refers in
general to the interaction between agents. We propose to
use this strategy in the multi-agent navigation domain by
assuming that an agent is ‘winning’ if it is allowed to move
freely towards its goal without any constraint from its en-
vironment. Our course of action in this case is to keep the
goal-oriented velocity vgoal, without performing unnecessary
exploration. Consequently, the agent is in a ‘losing’ situa-
tion if its goal-oriented motion is constrained, i.e., the agent
has to slow down or deviate from its direct path to the goal.
In this case, the agent should explore for potentially better
actions.

winning(vnew) =

{
1 if vnew = vgoal

0 otherwise

Context-aware Action Selection. Our context-aware ac-
tion selection technique uses ideas from ε-greedy and wUCB
to enhance the ability of the agents to adapt to their lo-
cal conditions, while exploiting the ‘win-stay, lose-shift ’ rule
to strategically adapt the amount of exploration that the
agents perform. Algorithm 2 summarizes our technique as
a part of our ALAN framework (Alg. 1, line 5).

Similar to ε-greedy, the parameter ε controls the prob-
ability of selecting the best current action or exploring a
different one. However, unlike ε-greedy, the exploration is
performed by choosing the wUCB-suggested action. In our
implementation, the value of ε is controlled by the ‘win-stay
lose-shift ’ strategy. The agent uses its previously chosen ac-
tion to determine whether it is in a ‘winning’ situation or
not. When the agent is ‘winning’, it sets ε to 0 (line 6) to
fully exploit the goal-oriented action. However, when this

1581

motion is constrained, the agent is encouraged to explore
different actions by gradually incrementing ε using steps of
size β (line 8). This increases the probability of selecting the
wUCB-suggested actions that have high wUCB estimates.
When the agent finds a new best action (other than the goal-
oriented one), it will exploit it with (1-ε) probability, while
keeping ε fixed. This prevents the algorithm from increas-
ing the exploration rate when it is not necessary. Finally,
the algorithm outputs a new action a, that is, a new vpref ,
which is passed to the collision-avoidance component of our
ALAN framework (Alg. 1, line 7).

Algorithm 2: Context-aware action selection

1: Input: ε ∈ [0, 1]
2: Output: a
3: a← action(t− 1)
4: if a = goal-oriented motion then
5: if winning(vnew) then
6: ε← 0
7: else
8: ε← ε+ β
9: end if

10: end if
11: randomly generate variable p ∈ [0, 1]
12: if p ≤ (1-ε) then
13: a← arg maxa(Ra)
14: else
15: a← arg maxa(wUCB(a))
16: end if

Similar to ε-greedy and wUCB, our context-aware ap-
proach is also bounded in the time it is guaranteed to exploit
the optimal action.

Theorem 3. The context-aware action selection is expected
to find and exploit the optimal solution in at most T × ε−1

timesteps.

Proof: We can divide the analysis in the two scenarios of
‘winning’ or ‘losing’ that an agent can encounter. If the
agent is ‘winning’ (ε = 0) it fully exploits the goal-oriented
motion. In this case, the goal-oriented motion is the optimal
action a∗, hence there is no need to explore for potentially
better ones. If instead, the agent is ‘losing’ (ε > 0), it ex-
ploits the estimated optimal action on average every (1−ε)−1

timesteps, while exploring on average every ε−1 timesteps.
From the wUCB convergence proof of Theorem 3, we derived
an upper bound of T timesteps for exploiting the optimal
action. However, actions suggested by wUCB are selected
with probability ε. Therefore, our context-aware approach
is expected to identify and exploit the optimal action a∗ at
most in T × ε−1 timesteps.

Theorems 1, 2 and 3 showcase the importance that values
of ε and T have on the ability of our approach to adapt
to changing local conditions. As part of our experimental
results, we analyzed the effect of different values for T in the
travel time of the agents, while the value of ε is dynamically
adjusted by our context-aware technique.

Goal

A B C

D

E
F

G

Figure 3: Simulated scenarios: (a) Congested, (b) Crossing,
(c) 2-Sides, (d)Perpendicular Crossing, (e) Intersection, (f)
Deadlock and (g) Blocks.

7. EXPERIMENTAL RESULTS
We implemented our ALAN framework in C++ and tested

its performance across a variety of simulation scenarios us-
ing pure greedy, ε-greedy, wUCB and our proposed context-
aware algorithm as action selection techniques. The pure
greedy approach corresponds to ORCA’s goal-oriented mo-
tion. In all our experiments, we set the maximum speed
υmax of each agent to 1.5 m/s and its radius r to 0.5 m.
Agents could sense other agents within a 5 m radius, and
obstacles within 1 m. The values of γ (Eq. 5) and T (for
context-aware) were empirically determined (see Section 7.2),
whereas a fixed value of 0.1 was used for β (Alg. 2). When-
ever ε-greedy and wUCB were used, we also experimentally
determined the best ε and T values respectively (typically
between 0.1 and 0.2 for ε and 50 for T).

Action Space. After an experimental evaluation, a set of
five velocity choices gave the best performance, as it pro-
vides the agent enough variety of behaviors while avoiding
spending too much time in exploration. Specifically, the ac-
tions defined correspond to: (1) moving straight towards the
goal, (2) left 45◦, (3) right 45◦, (4) backwards, all at a speed
of υmax, and (5) a complete stop.

Scenarios. Figures 1 and 3 summarize the different sim-
ulation scenarios (see http://motion.cs.umn.edu/r/ALAN/

for videos). These include:

• 1-Exit : 48 agents must travel through a large room,
exit the room through a small doorway, and then tra-
verse an open area to reach their goal (Fig. 1).
• 3-Exit : Similar to 1-Exit, but here the room has 3

exits.
• Congested : 32 agents are placed very close to the nar-

row exit of an open hallway and must escape the hall-
way through this exit (Fig. 3A).
• Crossing : A single agent interacts with a group of 10

agents moving in the opposite direction (Fig. 3B).
• 2-Sides: Similar to Congested, but with two groups of

20 agents, each on the opposite side of the narrow exit
(Fig. 3C).
• Perpendicular Crossing : Two agents have orthogonally

intersecting paths with a crowd of 24 agents (Fig. 3D).
• Intersection: Three agents cross paths while moving

towards their goals (Fig. 3E).

1582

0	

20	

40	

60	

80	

100	

120	

140	

Crossing	 Congested	 1-‐Exit	 3-‐Exit	 PerpCross	 Intersec:on	 Deadlock	 2-‐Sides	 Blocks	

R'
	

Greedy(ORCA)	

ε-‐greedy	

wUCB	

Context-‐aware	

N/A	 N/A	

Figure 4: Performance comparison between Greedy (ORCA), ε-greedy, wUCB and our context-aware approach. In all sce-

narios, the context-aware agents have the lowest R
′
. Reported numbers are the averages over 100 simulations.

• Deadlock : Ten agents start at opposite sides of a long,
narrow corridor. Only one agent can fit in the narrow
space (Fig. 3F).
• Blocks: Five agents need to avoid 3 static obstacles in

front of them to reach their goals (Fig. 3G).

Comparison Metrics. To measure the performance of

ALAN in each scenario, we evaluated R
′

(see Definition 1)
of the trajectories generated by each method. To analyze the
effect that exploration has on the different action selection
techniques within the ALAN framework, we also evaluated
each simulation in terms of the average agent acceleration.
For the evaluation of the individual parameters (T and γ) we
measured the arrival time of the last agent in a simulation,
denoted as maxTravelT ime.

7.1 Results
Figure 4 compares the performance of ALAN’s action se-
lection techniques and ORCA alone in all of the scenarios.
As can be inferred from the figure, our learning framework
improves the overall time-efficiency of the agents in all but
the Perpendicular Crossing scenario. Here, only our pro-
posed context-aware technique performs better than ORCA,
whereas ε-greedy and wUCB agents exhibit excessive explo-
ration that diminishes any advantage from learning the best
action. In fact, the context-aware technique consistently

minimizes R
′

across all scenarios and outperforms the other
approaches.

The only case where context-aware is not significantly
faster than wUCB is the Congested scenario. Here, the
agents start in a constrained configuration, hence they can-
not take advantage of the goal-oriented action until the very
last part of the simulation. In this scenario, implicit coordi-
nation (achieved by using the politeness component of the
reward function) is more important.

We can also observe from Figure 4 that the travel time
produced by our context-aware approach is close to the the-

oretically optimal value (R
′
≈ 0) in several scenarios (Cross-

ing, Perpendicular Crossing, Intersection and Blocks). As a
result, this means that our generated paths are (nearly) as
efficient as those that could have been computed by an op-
timal centralized planner.

Table 1 reports the average acceleration of the agents
for each method in four of our scenarios. As can be seen
from the table, ORCA agents have the lowest acceleration.
This is attributed to the selection of a static goal-oriented

Scenario
Method Crossing 1-Exit PerpCross Intersection

Greedy (ORCA) 0.013 0.004 0.008 0.021
ε-greedy 1.19 0.159 0.35 8.23
wUCB 1.73 0.22 0.53 8.08

Context-aware 0.045 0.052 0.047 1.18

Table 1: Average acceleration per agent, in ms−2.

vpref that leads to locally efficient motions at the expense of
large travel times. In contrast, ε-greedy and wUCB agents
are characterized by significantly higher acceleration than
ORCA. Due to the unnecessary exploration, these agents
very often choose different actions between consecutive learn-
ing cycles which results in an oscillatory behavior. By in-
corporating the ‘win-stay lose-shift ’ rule, our context-aware
technique does not suffer from such issues, with its agents
exhibiting low accelerations. Taking also into consideration
their fast travel times, context-aware agents are ideal for
time-efficient navigation.

Goal reachability. The diversity of motions exhibited by
agents using our ALAN framework allows them to reach
their goals, even when pure greedy motion fails to. This
can be observed in the Blocks and Deadlock scenarios. In
Blocks (Fig. 3G), pure greedy motion causes some agents to
get stuck behind the static obstacles and can never reach
their goals without using a roadmap [14]. Agents using
ALAN learn that sideways motions are better and reach
their goals by avoiding the obstacles. In particular, context-
aware agents reach the goal faster than only using wUCB or
ε-greedy (see Figure 4). In Deadlock, (Fig. 3F), agents face a
deadlock situation inside the corridor, which ORCA cannot
solve. Instead, context-aware agents are able to backtrack
and quickly reach to their goals.

Scalability. To analyze the performance of our approach
as the number of agents increases, we varied the number of
agents in the 3-Exit and 1-Exit scenarios (Figure 5). We
can observe that our context-aware approach maintains a
near-linear growth in travel time, while greedy agents show
a super-linear growth. In fact, the difference in scalability
increases as more agents are added into the system. With
our approach, each added agent introduces only a fixed bur-
den to the travel time, as it does not slow down the motion

1583

0	

200	

400	

600	

800	

1000	

0	 50	 100	 150	 200	

R'
	

#	 Agents	

Greedy	 (ORCA)	

Context-‐aware	

(a)

0	

100	

200	

300	

0	 50	 100	 150	 200	

R'
	

#	 Agents	

Greedy	 (ORCA)	

Context-‐aware	

(b)

Figure 5: Scalability of Greedy (ORCA) and context-aware
in the (a) 1-Exit and (b) 3-Exit scenarios

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

m
ax
Tr
av
el
Ti
m
e(
se
c)

	

γ	

Congested	

PerpCrossing	

Deadlock	

2-‐Sides	

Figure 6: Performance of context-aware agents, with differ-
ent values of γ.

of all other agents. With the greedy approach, extra agents
introduce more constraints to the system, which significantly
slows down the global motion of the crowd.

7.2 Sensitivity Analysis
Behavior parameter γ. We evaluated how the balance
between the goal-oriented and politeness components of our
reward function (Eq. 5), controlled by the parameter γ, af-
fects the performance of our context-aware approach. We
varied γ from 0 to 1 in four scenarios and report the re-
sults in Figure 6. We can observe that evaluating actions
by either pure goal-oriented or polite motion (γ = 0 or
γ = 1) can reduce performance. Pure goal-based evalua-
tion forces agents to choose motions that are constrained by
the environment. On the other hand, evaluation based only
on the politeness component promotes the selection of less
constrained motions, which may take agents far from their
goals. Hence, as can be seen from Figure 6, equally weight-
ing both goal-oriented and polite behaviors consistently pro-
duces more efficient motion. For example, in situations with
many conflicting constraints, such as in the Deadlock and
2-Sides scenarios, agents benefit from the fact that some of
them choose polite motions, as it allows other agents to fol-
low goal-oriented paths. Based on this analysis, in all of our
experiments we set γ = 0.5.

Time Window. Figure 7 shows how different sizes of the
time window T used in the wUCB component of our algo-

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	 50	 100	 150	 200	

m
ax
Tr
av
el
Ti
m
e(
se
c)

	

T	 (Time	 Window)	

Congested	

PerpCrossing	

Deadlock	

2-‐Sides	

Figure 7: Travel time for context-aware agents with different
sizes of time window T, for the wUCB component.

rithm affect the performance in four scenarios. As can be
seen from the figure, having no memory at all (T= 5) forces
the agent to keep learning potential new values for the ac-
tions, which clearly affects the performance. On the other
hand, keeping long histories of rewards has only a moderate
negative effect on the performance, and reflects the extra
time that it takes for agents to learn new reward distribu-
tions. Large time window sizes also increase the memory
requirements for our approach. We can see that the best
performance is achieved with a time window of sizes between
T= 30 and T= 70. Therefore, for all our experiments, we
set T= 50.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced ALAN, an adaptive learn-

ing framework for agent navigation. ALAN formulates the
problem of time-efficient decentralized navigation of multi-
ple agents as a multi-armed bandit problem, where the ac-
tion space corresponds to a set of preferred velocities. In our
framework, agents evaluate their actions through a reward
function that encourages goal-oriented motion and polite be-
havior. By exploiting action selection techniques, ALAN
agents dynamically adapt to changing local conditions and
find new optimal actions. To balance the exploration ver-
sus exploitation tradeoff and further improve the navigation
efficiency of the agents, we also proposed a context-aware ac-
tion selection technique that blends in a probabilistic man-
ner the selection of the best known action with wUCB. Our
technique promotes exploration only when it is necessary
by adapting the ‘win-stay lose-shift ’ learning strategy from
game theory. We experimentally validated its performance
across a variety of scenarios and demonstrated that it sig-
nificantly reduces the travel time of the agents, as compared
to other action selection techniques.

Looking forward, we are interested in developing meth-
ods to incorporate an even broader range of agent behaviors
without involving excessive exploration. Additionally, we
would like to explore our framework to simulate the motion
of human-like agents, which may need additional constraints
on their motion in order to look realistic.

Acknowledgment: Partial support is gratefully acknowl-
edged from NSF grant IIS-1208413.

1584

REFERENCES
[1] J.-Y. Audibert, R. Munos, and C. Szepesvári.

Exploration–exploitation tradeoff using variance
estimates in multi-armed bandits. Theoretical
Computer Science, 410(19):1876–1902, 2009.

[2] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2003.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002.

[4] O. Bayazit, J.-M. Lien, and N. Amato. Better group
behaviors in complex environments using global
roadmaps. In 8th International Conference on
Artificial life, pages 362–370, 2003.

[5] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, RA-2(1):14–23, Mar. 1986.

[6] P. Fiorini and Z. Shiller. Motion planning in dynamic
environments using Velocity Obstacles. International
Journal of Robotics Research, 17:760–772, 1998.

[7] A. Garivier and E. Moulines. On upper-confidence
bound policies for switching bandit problems. In
Algorithmic Learning Theory, pages 174–188.
Springer, 2011.

[8] S. Guy, S. Kim, M. Lin, and D. Manocha. Simulating
heterogeneous crowd behaviors using personality trait
theory. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 43–52, 2011.

[9] D. Helbing and P. Molnar. Social force model for
pedestrian dynamics. Physical review E, 51(5):4282,
1995.

[10] D. Hsu, R. Kindel, J. Latombe, and S. Rock.
Randomized kinodynamic motion planning with
moving obstacles. International Journal of Robotics
Research, 21(3):233–255, 2002.

[11] I. Karamouzas and M. Overmars. Simulating and
evaluating the local behavior of small pedestrian
groups. IEEE Transactions on Visualization and
Computer Graphics, 18(3):394–406, 2012.

[12] O. Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. International Journal
of Robotics Research, 5(1):90–98, 1986.

[13] S. Kim, S. J. Guy, W. Liu, R. W. Lau, M. C. Lin, and
D. Manocha. Predicting pedestrian trajectories using
velocity-space reasoning. In Algorithmic Foundations
of Robotics X, pages 609–623. Springer, 2013.

[14] S. M. LaValle. Planning algorithms. Cambridge
University Press, 2006.

[15] W. G. Macready and D. H. Wolpert. Bandit problems
and the exploration/exploitation tradeoff. IEEE
Transactions on Evolutionary Computation, 2(1):2–22,
1998.

[16] F. Martinez-Gil, M. Lozano, and F. Fernández.
Multi-agent reinforcement learning for simulating
pedestrian navigation. In Adaptive and Learning
Agents, pages 54–69. Springer, 2012.

[17] F. Martinez-Gil, M. Lozano, and F. Fernández.
MARL-Ped: A multi-agent reinforcement learning
based framework to simulate pedestrian groups.
Simulation Modelling Practice and Theory,
47:259–275, 2014.

[18] M. Nowak and K. Sigmund. A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the prisoner’s
dilemma game. Nature, 364(6432):56–58, 1993.

[19] M. A. Nowak. Five rules for the evolution of
cooperation. Science, 314(5805):1560–1563, 2006.

[20] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian. A
synthetic-vision based steering approach for crowd
simulation. In ACM Transactions on Graphics (TOG),
volume 29, page 123. ACM, 2010.

[21] N. Pelechano, J. Allbeck, and N. Badler. Controlling
individual agents in high-density crowd simulation. In
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 99–108, 2007.

[22] H. Robbins. Some aspects of the sequential design of
experiments. In Herbert Robbins Selected Papers,
pages 169–177. Springer, 1985.

[23] W. Shao and D. Terzopoulos. Autonomous
pedestrians. Graphical Models, 69(5-6):246–274, 2007.

[24] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44,
1988.

[25] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[26] M. Tokic. Adaptive ε-greedy exploration in
reinforcement learning based on value differences. In
KI 2010: Advances in Artificial Intelligence, pages
203–210. Springer, 2010.

[27] L. Torrey. Crowd simulation via multi-agent
reinforcement learning. In Artificial Intelligence and
Interactive Digital Entertainment, pages 89–94, 2010.

[28] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha.
Reciprocal n-body collision avoidance. In Robotics
Research: The 14th International Symposium ISRR,
volume 70 of Springer Tracts in Advanced Robotics,
pages 3–19. Springer-Verlag, 2011.

[29] C. Zhang and V. Lesser. Coordinated multi-agent
learning for decentralized pomdps. In 7th Annual
Workshop on Multiagent Sequential Decision-Making
Under Uncertainty (MSDM) at AAMAS, pages 72–78,
2012.

[30] C. Zhang and V. Lesser. Coordinating multi-agent
reinforcement learning with limited communication. In
12th International Conference on Autonomous Agents
and Multi-Agent Systems, pages 1101–1108, 2013.

1585

