
Detecting and Correcting Model Anomalies in
Subspaces of Robot Planning Domains

Juan Pablo Mendoza
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, 15213

jpmendoza@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, 15213
mmv@cs.cmu.edu

Reid Simmons
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, 15213
reids@cs.cmu.edu

ABSTRACT
Making decisions based on accurate models enables robots
to exploit domain knowledge to act intelligently. However,
in many realistic domains, it is impossible to have globally
accurate models, as the world may exhibit modes of behav-
ior during deployment that were unforeseeable during model
building. This paper addresses the problem of adaptation in
domains in which robots have access to a model of the world
that is generally accurate, but which is inadequate in par-
ticular sets of similar situations –i.e., subspaces of the task
domain. Using optimization techniques to find parametric
approximations to these subspaces, our framework general-
izes from sparse observations to find and correct for statisti-
cal incongruences between expected and observed behavior.
We demonstrate this framework in a domain in which single
deployment adaptation is essential: a team of soccer robots
keeping the ball away from a previously unknown opponent.
Empirical results show that the framework improves model
accuracy and task performance over timescales comparable
to a single soccer game.

Categories and Subject Descriptors
I.2.9 [Robotics]

Keywords
Multi-robot systems; Robot planning and plan execution;
Single and multi-agent learning; Fault tolerance and resilience.

1. INTRODUCTION
Robots often use models of the effects of their actions to

make intelligent decisions. Unfortunately, in most realistic
environments, it is infeasible to have the perfect knowledge
and computational resources required to create globally ac-
curate models. In particular, several robotics applications
(e.g., space robots and robots in adversarial domains) re-
quire deployment in environments where thorough previous
testing is infeasible. Thus, while a generally accurate initial
model may be available, there may be situations in which
the world exhibits different behavior from that predicted by
the initial model.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Initial Model Real World Corrected Model

Figure 1: Robots with a generally accurate initial model
of their domain may experience during execution that their
model is inadequate in some specific subspaces. Our frame-
work finds these subspaces and creates a corrected model
that approximates them parametrically.

In this work, we address the problem of model correction
for domains in which these deviations from nominal behavior
occur in particular sets of similar situations, represented as
sets of subspaces of a state-action feature space of the robots.
The robot does not know before deployment whether such
anomalous subspaces exist, or their shape in such feature
space, and must therefore find the extent of these anomalies
and correct its models accordingly at execution time.

Furthermore, we are interested in domains in which per-
formance over a single robot deployment may be crucial.
Our approach thus needs to correct models online during
execution, and generalize from the potentially sparse obser-
vations that happen during one deployment. With these
goals in mind, we present an approach that incrementally
finds parametric approximations to anomalous subspaces as
the robot gathers new observations, and corrects the model
accordingly. A sketch of this process is shown in Figure 1.

As a motivating domain, and for empirical demonstration,
we apply our framework to a modified version of the Keep-
away problem [18] in which a team of robots must keep the
ball away from opponent robots by passing it to each other,
as shown in Figure 1. In particular, we focus on the deci-

1587

sion that the robot currently holding the ball must make: it
needs to choose where to pass next such that its team will
remain in possession of the ball. The Keepaway problem has
the key properties that we wish our framework to address:

Generally accurate model: Our robots have accurate
models of the motion of the ball and of their own ball
interception capabilities. The opponent’s motion pro-
files can be easily measured, so it is possible to create
a rough model of how they can intercept the ball (e.g.,
assume they use the same algorithms as our robots).

Anomalous subspaces: While our robots have a general
model of how opponents intercept the ball, each op-
ponent the team encounters is likely to demonstrate
various unexpected skills in particular situations, or to
behave suboptimally in others (according to our def-
inition of optimality). We want our robots to detect
such deviations and adapt to maximize performance.

Performance in a single deployment: In robot soccer
games, robots often play a single game against each
previously unknown opponent. Therefore, in this do-
main, as in many other prominent ones (e.g., space
robots, hostile environment robots), good performance
in a single deployment is crucial.

The key idea of our work is that single deployment adapta-
tion in such domains can be achieved by (1) searching for the
subspaces of the domain in which observations deviate signif-
icantly from the model, and then (2) correcting the planning
model in those subspaces using the observations experienced
in them. Using a framework that integrates anomalous sub-
space detection as a means to monitor execution of plans
[13], this paper introduces the following contributions: (1)
a mathematical framework and algorithm for detection of
multiple anomalous subspaces, (2) a mathematical frame-
work and algorithm for planning model correction based on
such detections, and (3) empirical evidence demonstrating
that this method can enable improvement in model predic-
tion and task performance in a realistic robot deployment.

2. RELATED WORK
Our work is closely related to previous work on robot

execution monitoring [15]: the problem of detecting fail-
ures during execution, diagnosing the reasons for these fail-
ures, and recovering from them. Expectation-based execu-
tion monitoring [4, 6] is particularly relevant to our work.
Expectation-based monitors detect failures in execution by
comparing expectations generated by the planner to observa-
tions received during execution. While we are also interested
in comparing planner-generated expectations to execution-
generated observations to detect anomalies, our work differs
in that it focuses on monitoring stochastic expectations and
finding subtle anomalies from collections of observations,
rather than detecting failure from a single observation. Fur-
thermore, we focus less on diagnosing the reason for failure,
and more on adapting the model to improve performance
based on experience.

Model adaptation is an essential component of the prob-
lem we address. Several Reinforcement Learning (RL) algo-
rithms have addressed the problem of learning to perform
well in continuous environments that are not perfectly mod-
eled. Model-free RL approaches, such as Q-Learning [5] and

policy gradient descent [19], have been shown to achieve
great performance in various robotics domains without ex-
plicitly modeling the world. In fact, the Keepaway soccer
problem was first analyzed in the context of model-free RL
[18]. While this generality is appealing and necessary in sit-
uations where modeling is impractical, model-free learning
tends to be not very data-efficient and is not generalizable
to different tasks within the same environment [1]. Unlike
model-free approaches to adaptation, we seek to exploit do-
main knowledge to allow our robots to focus their learning
toward modifying their models in particular anomalous sub-
spaces, using few observations.

Model-based RL approaches learn, along with optimal
policies, a transition model for the Markov Decision Pro-
cess that describes their world [8]. The work presented here
is indeed an instance of Model-based RL: our robots update
their model of the world based on experience, and then cre-
ate plans based on the improved model. In this paper, we
focus on the problem of updating these models in domains in
which particular subspaces of the world are not well-modeled
initially. While previous work has addressed the problem of
learning situational-dependent models [7], our work focuses
on online learning by generalizing over potentially large sub-
spaces from sparse data, rather than building precise models
from abundant data.

Since our approach relies on the search for anomalous sub-
spaces of the domain, work in the field of anomaly detection
is closely related. Much of the work on anomaly detection
has focused on detecting single outlier observations [3], while
we are interested in finding anomalies in the distribution of
collections of observations. In that sense, our work is re-
lated to time-series anomaly detection [10, 9], but we focus
on data that is spatially related in some state-action feature
space, rather than in purely temporal relationships. Pre-
vious work has addressed the problem of detecting anoma-
lies in spatially related data [11, 14], and indeed some of
the statistics used in our work were inspired by this related
work. However, the algorithms used to find such anomalies
were designed for two or three-dimensional domains, and
do not scale well to real-time monitoring in higher dimen-
sions. Furthermore, the related spatial anomaly detection
work was not conducted in the field of robotics, making de-
tection their ultimate goal, rather than model correction for
task performance improvement.

3. EXPECTATION-BASED MONITOR
The goal of this work is to improve robot performance by

incorporating information acquired during execution back
into the planner model. To do this, we use an expectation-
based monitor [13], briefly described here for completeness.
In this monitor, the planner generates expectations about
the possibly non-immediate effects of taking an action a ∈ A
in state s ∈ S. These expectations are predictions about the
distribution of a random variable z whose outcome can be
observed during execution.

In the monitor for the Keepaway domain, given the state s
of the robots and ball, the planner decides where to pass the
ball (action a) based on its expectation about the probability
of success P (z = 1|s, a) = P (z|θ(s, a)) of each pass, as
determined by parameters θ(s, a).

During execution, the outcome of a pass can only be ob-
served once the world enters a state sz ∈ Sz in which the
pass has ended. At this point, the pass is observed to be a

1588

success (z = 1) if one of our robots has the ball, or a failure
(z = 0) if an opponent robot has the ball.

In general, then, the planner needs to give the execution
monitor expectations e consisting of the state s of the world
when the action was taken, the action a taken, and a set
of pairs containing the states Sz in which the outcome of a
can be observed, and the expected distribution parameters
θ of such observation: P = {sz,θ(s, a, sz)|sz ∈ Sz} An
expectation is thus defined as:

e(s, a) = (s ∈ S, a ∈ A,P ⊆ (S ×Θ)) . (1)

In our particular domain, P (z|θ(s, a, sz)) = P (z|θ(s, a)) =
P (z = 1|s, a). However, more generally, θ could be a func-
tion of the evaluation state sz ∈ Sz (c.f. [13]).

Given that the planner generates a list of expectations E,
Algorithm 1 describes the monitoring framework followed in
this paper, which runs every time step of execution.

Algorithm 1 Execution monitor procedure run every time
step t of execution, given the current world state st and the
list of pending expectations E generated by the planner

1: function Monitor(st, E)
2: for each e = (s, a,P) ∈ E do
3: if ∃ (sz,θ) ∈ P s.t. sz = st then
4: z ← Observe(s, a, st)
5: z′ ← (x (s, a) ,z,θ)
6: add z′ to observations Z.
7: remove e from E
8: end if
9: end for

10:
11: R← DMAPS(Z) . Find anomalies, Algorithm 2
12: UpdateModel(R) . Equation 23
13: end function

The monitor first determines whether there are pending
expectations that can be verified in the current state st: For
every expectation in E, the monitor checks whether st is an
element of the expectation evaluation states in P (line 3).
If so, then an observation is generated through the domain-
specific function Observe. In the Keepaway domain, when
the the pass ends, function Observe(s, a, sz) returns 1 if the
pass was successful, and 0 otherwise1.

Once an observation is generated, an augmented observa-
tion z′ = (x(s, a),z,θ) is created from it, consisting of a
feature vector x ∈ X of the state and action which led to z,
the observation z, and the expected distribution parameters
θ of z. The list of all such augmented observations is the
input given to the anomalous subspace detector (line 11),
which does the core work of the execution monitoring by
finding anomalous subspaces of the domain as described in
Section 4. Finally, the planning model is corrected based on
information from the detected anomalous subspaces R, as
described in Section 5.

In practice, lines 11 and 12 run on a separate thread from
the rest of execution and monitoring, because the control

1While the observables in the domain presented here are
Bernoulli variables, we accumulate these observations into
discrete bins in state-action space for higher computational
efficiency. These observations thus follow a Binomial distri-
bution. For ease and generality of implementation, we use
the normal approximation to binomial distributions.

loop of the robots needs to run at 60 Hz, while finding
anomalous subspaces can take over a second. This means
that any time the monitor runs, it uses the latest execution
data available at the time it begins. Similarly, the planner
uses the latest monitoring corrections available at the time
it begins the planning process.

4. ANOMALOUS SUBSPACE DETECTION
To detect multiple anomalous subspaces in which execu-

tion does not match expectations, we extend the FARO algo-
rithm [12], formulated for domains with at most one anoma-
lous subspace.

FARO can be used to find a subspace R of the state-action
feature space X in which measured observations deviate in a
statistically significant way from the expected distribution of
such observations. To do this, FARO uses standard nonlin-
ear optimization algorithms to find the parametric subspace
Rmax ⊆ X that maximizes an anomaly value anom(R,Z) of
the observations Z, where anom(R,Z) is a likelihood ratio:

anom(R,Z) =
P (Z|R is anomalous)

P (Z|R is normal)
(2)

More specifically, we assume that (a) observations are inde-
pendent of each other given the state-action that generates
each of them, and (b) observations generated by anoma-
lous execution are distributed according to parameters taken
from a (potentially infinite) set of parameter functions Θ̂:

anom(R,Z) = max
θ̂∈Θ̂

 ∏
(xi,zi,θi)∈Z

1(xi ∈ R)
P (zi|θ̂(xi))

P (zi|θi)

(3)

In this work, Θ̂ is the set of distributions that shift the mean
of the nominal distribution by some vector δ unknown a pri-
ori2. For brevity, since Z is constant throughout each step
of optimization, we often omit it from the list of function
arguments (e.g., we write anom(R,Z) as anom(R)).

The formulation of Equation 3 does not trivially generalize
to domains with multiple anomalies. Section 4.1 addresses
this issue, describing why the generalization is not trivial,
and proposing an alternate formulation of the problem which
includes multiple anomalous subspaces. Section 4.2 grounds
this formulation into an algorithm for Detection of Multiple
Anomalous Parametric Subspaces (DMAPS).

4.1 Detection of multiple anomalies
A natural (but ultimately insufficient) first idea on how to

extend the formulation of Equation 2 to domains with mul-
tiple anomalies would be to simply maximize an analogous
function Anom′ (R) over sets R of subspaces:

Anom′(R) ≡
∏
R∈R

P (Z|R is anomalous)

P (Z|R is normal)
(4)

This formulation is inadequate for two reasons: (1) over-
lap among subspaces needs to be properly addressed to avoid
double counting of observations, and (2) we want our formu-
lation to favor simpler hypotheses over more complex ones
that try to explain the same observations. For example, us-
ing Anom′(R) as the cost function, a hypothesis R with n

2The relevance of this case is described in previous work [12];
the ideas generalize to other sets of potential anomalies.

1589

anomalous subspaces, each with one observation, would be
considered as anomalous as a simpler hypothesis with one
anomalous subspace with those n observations.

To address the issue of double counting, we state the fol-
lowing natural assumption about our problem:

Assumption 1. During execution, each observation in Z
is produced by exactly one behavioral mode of the world. This
mode could either be the nominal modeled behavior, or one
of the unmodeled modes of the world.

In practice, what this assumption implies is that a single ob-
servation cannot contribute to the anomaly value anom(R)
of more than one subspace at a time during maximization.

The issue of favoring simpler hypotheses follows naturally
from a proposed formulation of the optimization problem
that accounts for prior probabilities over regions: instead of
finding the set of subspaces that that maximizes Anom′(R),
we search for the set Rmax that maximizes the following
function Anom(R):

Anom(R) ≡ P (∀R ∈ R. R is anomalous|Z)

P (∀R ∈ R. R is normal|Z)
. (5)

Furthermore, we state a second assumption on the problem:

Assumption 2. For any two subspaces Ri ⊆ X and Rj ⊆
X , “Ri is an anomalous subspace” is conditionally indepen-
dent from “Rj is an anomalous subspace”, given the list of
observations Z.

In domains in which Z is the only source of information
about the presence of anomalous subspaces, this assumption
holds naturally. However, it is possible to think of domains
in which this assumption does not hold: for example, a do-
main in which the robots knew in advance that there exist
exactly n anomalous subspaces. Addressing these domains
is beyond the scope of this paper.

The proposed formulation of Equation 5, along with As-
sumption 2, lead to a more desirable optimization cost func-
tion, which naturally favors simpler hypotheses, as shown
by Theorem 1 below:

Theorem 1. Given Assumption 2, the set Rmax of sub-
spaces that maximizes Anom(R) is also the set that maxi-
mizes the simpler function

F (R) ≡

[∑
R∈R

log(anom(R))

]
−
∑
R∈R

λ(R), (6)

with λ(R) = log
(

P (R is normal)
P (R is anomalous)

)
.

Proof. Given the assumption above, the probabilities of
two different regions being anomalous, given the data, are
independent of each other. We can therefore rewrite Equa-
tion 5 as

Anom(R) =
∏
R∈R

P (R is anomalous|Z)

P (R is normal|Z)

=
∏
R∈R

P (Z|R is anomalous)P (R is anomalous)

P (Z|R is normal)P (R is normal)

=

[∏
R∈R

anom (R)

][∏
R∈R

e−λ(R)

]
. (7)

Since log(Anom(R)) is a monotonically increasing function
of Anom(R), we maximize log(Anom(R)) instead of Anom(R):

arg max
R⊆2X

[Anom(R)] = arg max
R⊆2X

[log(Anom(R))]

= arg max
R⊆2X

[[∑
R∈R

log(anom(R))

]
−
∑
R∈R

λ(R)

]
= arg max
R⊆2X

[F (R)] (8)

Corollary 1. In a domain in which the prior probability
of subspace R being anomalous is uniform for all R ⊆ X ,
F (R) reduces to

F (R) =

[∑
R∈R

log(anom(R))

]
− |R|λ, (9)

where λ is a constant.

For the work in this paper, we assume λ to be a constant
for all regions, although incorporating a non-uniform infor-
mative prior is a subject of interest for future work.

Notice that, in domains in which anomalies are less com-
mon than nominal behavior (i.e., λ(R) > 0), the cost func-
tion F (R) naturally favors simpler hypotheses with fewer
anomalous subspaces.

4.2 Anomalous Subspace Detection Algorithm
Optimizing function F (R) is a hard, non-convex problem.

Even the simpler problem of globally optimizing for a sin-
gle region is not tractable [12], which is why FARO uses an
iterative optimization approach. Here, we also use an iter-
ative local optimization approach for each candidate sub-
space. Furthermore, our algorithm takes a greedy approach
to optimize for multiple anomalies: anomalous subspaces are
optimized in sequence, in non-ascending order of their value
anom(R) prior to the call.

Algorithm 2 describes the sequential optimization process
of DMAPS. First, the algorithm adds a small candidate sub-
space around the most recent observation to R in line 3,
similarly to the FARO algorithm. This set of subspaces is
then sorted in non-increasing order of value anom(R) for se-
quential optimization. At this point, in line 8, the sequential
optimization over candidate subspaces begins.

For the optimization of each subspace R in line 10, we use
the Cross Entropy Method (CEM) for randomized optimiza-
tion [16]. After optimizing a subspace from R into R′, the
decision of whether to add this region to the final output set
is made in line 11. A subspace R′ is only added if it adds
value to the optimization cost function F .

The end result of the DMAPS algorithm is a set of regions
Rmax found to be most likely to be the set of unmodeled sub-
spaces of the domain. Note that this set is not a global opti-
mum of cost function F (R) for two reasons: First, the CEM
optimization of each subspace R ∈ R finds a locally opti-
mal solution, rather than a globally optimal one. Second,
the greedy sequential optimization over multiple anomalies
is not a globally optimal assignment either, and counter-
examples to its optimality can be found. In spite of this,
the detection of DMAPS, combined with the correction pre-
sented in Section 5 has shown to significantly improve per-
formance and prediction in realistic environments, as shown
in Section 7.

1590

Algorithm 2 DMAPS anomaly detector. Receives as input
a list of observations Z, and returns a set R of anomalous
regions found, along with their corresponding anomaly val-
ues.

1: function DMAPS(Z = [z′i|i = 0, . . . , t])
2: R← Previous most anomalous regions
3: R← R∪ ball(xt) . Ball around last obs.
4: R← Sort(R) . Descending order of anom(R)
5:
6: R← ∅ . Reset R and F (R)
7: F ← 0
8: for R ∈ R do
9: Optimize R into R′ such that

10: anom(R′,Z) ≥ anom(R,Z)
11: if log(anom(R′,Z)) ≥ λ(R′) then
12: R← R∪R′
13: F ← F + log(anom(R′,Z))− λ(R′)
14: end if
15: end for
16: return R
17: end function

5. ANOMALOUS SUBSPACE MODEL COR-
RECTION

Once the DMAPS detector has found a set of regions R
likely to be unmodeled subspaces of the world, this infor-
mation can be used to correct the planner’s world model.
This corresponds to line 12 in Algorithm 1. We thus seek
to compute a corrected model based on the nominal model3

given by θ0 and the set R of detected anomalous subspaces:

P (z|θ+) ≡ P (z|s, a,θ0,R) (10)

We assume that, when the robot performs action a in state
s, the world behaves according to its nominal behavior b0 or
one of the |R| behaviors bR detected by DMAPS. We denote
the set of plausible behaviors as B = {b0} ∪ {bR|R ∈ R}.
By the law of total probability, we obtain:

P (z|θ+) =
∑
bi∈B

[
P (z|bi, s, a,θ0,R)P (bi|s, a,θ0,R)

]
. (11)

It is clear then that the distribution of observations is a
mixture of the distributions produced by the different plau-
sible behaviors. We get a better idea of the parameters in-
volved in Equation 11 by defining αb(s, a,R) ≡ P (b|s, a,R)
and P (z|θb(s, a)) ≡ P (z|b, s, a):

P (z|θ+) =
∑
b∈B

[
αbP (z|θb)

]
(12)

Section 5.1 discusses the problem of estimating θb, while
Section 5.2 discusses the estimation of αb.

5.1 Estimating observation distributions
P (z|θb) describes the distribution of observations z given

that the world is in a particular behavior mode b. For nom-
inal execution, this is simply the model-given predicted dis-
tribution P (z|θ0(s, a)).

3For simplicity of explanation we drop the potential depen-
dence of θ0 on the measurement state sz; the theory and
algorithms apply equivalently in either case.

For the unmodeled behavior modes in each subspace R ∈
R, we assume for this paper that the form of the distribution
is the same as in nominal execution, but the parameters are
specific to each unmodeled behavior. Thus, in the absence
of prior knowledge about the distribution of anomalies, the
maximum likelihood estimate is used, as in Section 4:

θR ≡ arg max
θ̂∈Θ̂

 ∏
(xi,zi,θi)∈Z

1(xi ∈ R)
P (zi|θ̂(xi))

P (zi|θi)

 (13)

In particular, for the examples of this paper, we assume
Gaussian distributions and anomalies that shift the mean µ
of the distribution. In that case, the maximum likelihood
distribution for behavior bR is given by

P
(
z|θR(s, a)

)
= N (µ0(s, a) + δR,Σ0(s, a)) . (14)

Here, µ0 and Σ0 are the parameters predicted by the nomi-
nal model, and δR is the maximum likelihood shift in mean:

δR ≡

(∑
x∈R

Σ−1
i

)−1(∑
x∈R

Σ−1
i (zi − µi)

)
, (15)

where µi and Σi are the predicted mean and covariance,
respectively, of the distribution of zi.

5.2 Estimating active behavior distributions
Coefficients αb = P (b|s, a,R) describe the probability of

the world being in each behavior mode b (including nominal
behavior) given that the robot takes action a in state s.
First we note that, for nominal behavior this probability is
constrained to be

P (b0|s, a,R) = 1−
∑
R∈R

P (bR|s, a,R) , (16)

so we focus on computing the probability of other behaviors.
The activation probability of each unmodeled behavior bR

is given by:

P (bR|s, a,R) = P (bR|x(s, a) ∈ R)P (x(s, a) ∈ R) . (17)

That is, the activation of behavior mode bR depends both
on whether feature state x(s, a) ∈ X lies inside of subspace
R defining bR, and on our confidence that R is actually an
anomalous subspace with unmodeled behavior bR.

For the work in this paper, P (x(s, a) ∈ R) simply indi-
cates whether a state-action point belongs to subspace R:

P (x(s, a) ∈ R) = 1(x(s, a) ∈ R). (18)

In domains with noisy measurements of s, or with anoma-
lous subspaces with fuzzy boundaries, a softer definition of
“belonging” to subspace R could be more appropriate.

For the confidence that R is actually an anomalous sub-
space with behavior bR, it can be shown that

P (bR|x(s, a) ∈ R,Z) = P (R is anomalous|Z) (19)

Notice that P (R is anomalous|Z) is a monotonically increas-
ing function of anom(R), as defined in Equation 3. There
exists a function P : R → R such that P(anom(R)) =
P (R is anomalous|Z). This function can be estimated by
sampling: If it is possible to have access to state-action
samples distributed as those in Z and in the absence of
anomalies, an empirical estimate P̂ can be created from the

1591

empirical estimate of P (anom(R) > γ|R is nominal) [11]4.
Therefore, we estimate the desired confidence by:

P (bR|x(s, a) ∈ R,Z) = P̂(anom(R)) (20)

Coefficient αR is thus computed as:

αR(s, a,R) = 1 (x(s, a) ∈ R) P̂(anom(R)) (21)

5.3 Applying model corrections
Defining θb and αb for each plausible behavior fully defines

Equation 12. Using normal distributions as described in
Section 5.1 and αb as defined in Section 5.2, we get:

P (z|θ+) =

P (z|µ0,Σ0)

(
1−

∑
R∈R

[
1 (x(s, a) ∈ R) P̂(anom(R))

])
+

∑
Ri∈R

[
P (z|µ0 + δR,Σ0)1 (x(s, a) ∈ R) P̂(anom(R))

]
(22)

Given that x(s, a) can only be part of one anomalous sub-
space by Assumption 1, we get the final expression for the
distribution of observations:

P (z|θ+) =

P (z|µ0,Σ0)(1− P̂(anom(R)))+ if ∃R ∈ R s.t.

P (z|µ0 + δR,Σ0)P̂(anom(R)) x(s, a) ∈ R

P (z|µ0,Σ0) otherwise

(23)

From this expression, the planner can estimate different
statistics of the predicted distribution of z. For example,
the expected value of z can be easily derived as

E[z|R] =

 µ0 + δRP̂(anom(R)) if ∃R ∈ R s.t. x(s, a) ∈ R

µ0 otherwise

(24)

6. INTERCEPTION-KEEPAWAY DOMAIN
To demonstrate the framework presented here, we apply

it to a realistic robot sub-problem of robot soccer. The do-
main, which we denominate Interception-Keepaway, is strongly
inspired by the Keepaway domain introduced for 2D robot
soccer simulation [18].

6.1 Interception Keepaway domain definition
The keepaway domain is a sub-problem of autonomous

robot soccer that has become a benchmark problem in the
2D simulated robot league [17]. In this domain, a team of
n keepers tries to keep the soccer ball within a bounded 2D
region, and away from a team of m takers, who try to gain
possession of the ball. The task is divided into episodes, each
beginning with the robots and the ball in particular semi-
random positions on the field [17]. An episode ends when
the ball leaves the bounded region or it is held by one of the
takers for a significant period of time, at which point a new

4We do not have access to the exact distribution of Z before
execution, since the distribution is affected by model correc-

tions made online. Here, we approximate P̂ from the distri-
bution of the undisturbed model. In domains with higher

computing power or softer efficiency constraints, P̂ could be
computed online each time a new set R is discovered.

episode begins. Robots are rewarded for each time step an
episode persists.

To the best of our knowledge, Keepaway has not been
introduced to a real robot domain before. This is a prob-
lem that presents several challenges, such as the complex
dynamics and noise of the real world. Most important for
our purposes, however, is the problem of adapting through-
out a single game. Unlike simulation, real robots cannot
run millions of trials to approach an optimal policy. Run-
ning real robot trials takes human effort, causes wear on
the robots (changing their dynamics in the process), and
cannot be sped up. Robots thus need to adapt online and
from sparse observations, especially to perform well against
unknown opponents in realistic timescales.

For the work in this paper, we use a modified version of the
Keepaway problem, which focuses on passing and preventing
interceptions. The modifications are the following:

Takers behavior: In Keepaway, 2 takers go to the ball, to
try to steal it from the keeper k0 currently holding it,
while the remaining (m− 2) block possible passes. In
our domain, takers focus on ball interception rather
than stealing a stationary ball: One taker positions it-
self between k0 and the most open keeper, at a small
distance from k0, while the remaining takers position
themselves between k0 and each of its most open team-
mates ki, at a small distance from ki. Keepers thus
have two types of pressure from the takers: close marks
on potential receivers and close marks on k0. When the
ball is in motion, the taker with the lowest interception
time will attempt to intercept it.

Performance measurement: Instead of rewarding the du-
ration of an episode, performance is measured by the

average completion rate of passes as n(success)
n(success)+n(failure)

.

This performance measure more directly focuses on the
problem of passing. For this paper, we define a suc-
cessful pass as one in which the ball touches a keeper
before it touches a taker or goes out of bounds, while a
failed pass is one in which the ball touches a taker be-
fore it touches a keeper or the ball goes out of bounds,
but other definitions are possible.

6.2 Model correction for Keepaway
We focus on the passer’s decision making problem. Each

time a keeper receives the ball, it must choose where to pass
next to maintain possession. The physical state of the world
s is a vector of size dim(s) = 6n+ 6m+ 4 containing the 2D
translational coordinates li and 1D rotational coordinates φi
of each robot, their first time derivatives vb, and the ball’s
2D location lb and velocity5. The actions available to the
robot are the legal velocities vb (|vb| ≤ 8m

s
) at which it can

kick the ball, discretized by magnitude and direction.
To employ the monitor described in this paper, we define

an expectation-generating planner, as described in Section 3.
We monitor the expected probability of success of passes,
P (z|s, a) = θ(s, a). These expectations are based on the
planner’s estimate of the time ti(li,vi, lb,vb) that each robot
i would need, starting at location li with velocity vi, to
intercept a moving ball starting at location lb with velocity

5For this paper, we have chosen to focus on ground passes,
thus the third dimension of the world is ignored; also missing
is the ball spin and the robots’ internal states.

1592

vb. Given such an estimate (e.g., [2]), the model computes
the keepers’ time to ball tk:

tk(lb,vb) = min
i∈keepers

ti(li,vi, lb,vb), (25)

and similarly tt for takers. The predicted probability of
success is given by:

P (z|s, a = vb) = Φ

(
tt(lb,vb)− tk(lb,vb)

σt

)
, (26)

Where Φ denotes the standard normal cumulative distribu-
tion, and σt is an uncertainty factor. That is, we model the
probability of success as being entirely dependent on which
robot has the shortest interception time, plus normal noise.

Having defined the robot’s prediction model, we now de-
fine the set of expectations E that get passed to the monitor
of Algorithm 1. For each pass, m reasons ei are created: one
predicting the interception probability of each taker. These
reasons can then be evaluated by the monitor in the follow-
ing conditions (sz ∈ P): If the pass is successful, then a
success observation z = 1 is generated for each of the m
reasons; If the pass is intercepted by taker i, then a single
failure observation z = 0 is generated for reason ei, and a
void, informationless observation is generated for the rest of
the reasons, as it is unknown whether any other taker would
have been able to intercept the pass. To complete the defi-
nition of prediction set P, we note that θ(s, a, sz) is given
by Equation 26 and is in this case independent of sz.

To conclude the definition of the monitor from Algorithm 1,
we must define a feature extraction function x(s, a) (see
line 5). For each expectation ei about taker robot i, we
extract a 5-dimensional feature vector:

xi(s, a) = (l′i,v
′
i, |vb|), (27)

where l′i and v′i are the location and velocity of robot i rel-
ative to the ball at the time the pass starts, rotated by the
direction of the pass. By excluding features of the keep-
ers, we implicitly assume that the only source of unmodeled
behavior is the taker robots.

Algorithm 1 is thus fully defined for Keepaway, and runs
each time a pass ends, providing corrections to the planner.

The planning model used here is a simple one, as the fo-
cus of this paper is performance improvement through exe-
cution monitoring, rather than optimal planning. We use a
greedy planner that chooses the action that maximizes the
expected immediate reward. In Keepaway, that means the
passing robot maximizes the expected probability of success
of its next pass, and does not plan for multiple passes in
the future. In practice, then, the planner always chooses
the action that maximizes Equation 24, where µ0 is given
by the expectation of Equation 26. Empirical evaluation of
this monitor is given in Section 7.

7. EXPERIMENTS AND RESULTS
To empirically demonstrate our model correction frame-

work, we implemented it on the CMDragons [2] team of
soccer robots, which follow the specifications of the Small
Size League of Robot Soccer. The algorithm was extensively
evaluated using a realistic PhysX-based simulator, which
employs the same interface to the AI as the real world does,
models the robots at the component level, and simulates
physics to high detail (e.g., it models the angular momen-
tum imparted on the ball when a robot touches it with its

spinning dribbling mechanism). Since we seek to improve
high-level robot decisions, rather than low-level controllers,
simulation is a particularly useful means of obtaining sta-
tistically significant results, which can then be corroborated
on the real robots.

7.1 Evaluation Metrics
The first metric by which the model-correction framework

was evaluated is Task Performance (TP). The ultimate goal
of our monitor is to improve TP in environments with un-
modeled behaviors, which makes it a natural metric to eval-
uate our framework. TP was measured by the average pass
completion rate of a particular model θ as:

TP(θ) =
n(success|θ)

n(success|θ) + n(failure|θ)
. (28)

While TP is an intuitive evaluation metric, it is highly
dependent on the task at hand. For example, improving
TP by 1% in a task that originally had 50% success rate
is much less meaningful than improving TP in a task that
originally had 98% success rate. An evaluation metric that
more objectively measures model correction performance is
the Failure Reduction Rate (FRR) of the corrected model
θ+ with respect to the baseline model θ0:

FRR(θ+,θ0) = 1− 1− TP(θ+)

1− TP(θ0)
. (29)

FRR measures the expected percentage of failures that were
eliminated by correcting the model. A perfect learner, in
a task for which perfect performance is achievable, would
eventually reach FRR = 1.

A different metric used for evaluation is Model Prediction
Accuracy (MPA). While improvement in TP is the main
goal, it does not capture the full success or failure of the
framework. We are also interested in evaluating how well the
predictions made by the corrected model match the observa-
tions made during execution. Modeling the world accurately
is desirable, independently of TP, because it enables robots
to generalize to different tasks in the same domain. For
example, models acquired during Keepaway learning could
generalize to passing in the wider problem of full soccer.
MPA was measured by the average likelihood of observations
given the model used for prediction of that observation:

MPA(θ) =
1

|Z|
∑
z′∈Z

P (z|θ). (30)

For all of our performance metrics, and throughout our ex-
periments, we use as a baseline the original model θ0.

When analyzing results, we keep in mind the timescale
of the learning process in which we are most interested. A
game of robot soccer lasts 20 minutes (1200 seconds). Dur-
ing our keepaway tests, we measured that robots completed,
on average, around 0.45 passes per second. Therefore, the
upper limit number of passes they could perform in a game
is around 540. A considerable portion of that time will be
spent not passing (e.g., opponent possession, dead time be-
tween plays, shots on goal). However, this estimate lets our
timescale of interest lies in the order of 102 passes. The ex-
periments conducted here thus focused on such timescales.

7.2 Experimental Results
First, we conducted extensive simulation tests to deter-

mine in a statistically significant way the evolution of TP(θ+)

1593

and MPA(θ+) as the monitor acquires new observations.
Figure 2a shows a moving average (window size 50) mea-
surement of TP and FRR as a function of how many passes
the robots have performed, demonstrating an evident per-
formance improvement as the model is corrected with expe-
rience. The first noteworthy aspect of this result is that per-
formance quickly improves with the first few observations:
the first data point shows FRR ≈ 0.1; that is, averaging over
the first 50 observations, we see a 10% reduction in failures.
Furthermore, as new pass results are observed, performance
keeps improving, achieving a failure reduction of about 40%
within the first few hundred passes. Conducting less exten-
sive experiments on the real robots showed a similar trend,
shown in Figure 2b. Baseline and adaptation performance
were both higher in simulation than in the real robots, due
to the complications added by the real world.

0

0.5

1

T
a
s
k
 P

e
rf

o
rm

a
n
c
e

100 200 300
0

0.5

1

Observation number

F
a
il
u
re

 R
e
d
u
c
ti
o
n
 R

a
te

(a) Simulation

0

0.5

1

T
a
s
k
 P

e
rf

o
rm

a
n
c
e

10 20 30
0

0.5

1

Observation number

F
a
il
u
re

 R
e
d
u
c
ti
o
n
 R

a
te

(b) Real robots

Figure 2: Moving average of passing performance evaluation
as a function of number of passes performed. The shaded
area shows the 95% confidence margin; the dotted black
horizontal line indicates average baseline performance.

To evaluate MPA adequately, we ran experiments in which
the robots ignored model corrections suggested by the exe-
cution monitor. This allowed us to evaluate the predictive
performance of the monitor without the confounding factor
of altered robot behavior. We evaluate MPA exclusively for
points inside of detected regions, as this is where model im-
provement is expected to occur due to our monitor. For
points that lie outside of the detected regions, the model
(and thus MPA) remains unchanged by the monitor.

Figure 3a shows MPA(θ+) evaluation for simulation. With
model correction, observations show a significantly better fit
to the model than without correction. The ideal MPA = 1
is only achievable by distributions with 0 variance, which is
certainly not the case in our Keepaway domain. The real-
istic goal of the monitor is not to reach MPA = 1, but to
show significant improvement over the initial global model.
Figure 3b shows less extensive real-robot test results, which
show a similar trend as simulation.

These results support the efficacy of our framework for
short-term task performance and prediction accuracy im-
provement. Anecdotal evidence from this domain also sug-
gests a different benefit of our approach: detected subspaces

10 20 30 40
0

0.2

0.4

0.6

0.8

1

Observation number

M
o
d
e
l
P

re
d
ic

ti
o
n
 A

c
c
u
ra

c
y

(a) Simulation

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Observation number

M
o
d
e
l
P

re
d
ic

ti
o
n
 A

c
c
u
ra

c
y

(b) Real Robots

Figure 3: Moving average of prediction accuracy MPA(θ+),
as a function of observations inside of anomalous subspaces.
The shaded area shows the 95% confidence margin; the dot-
ted black horizontal line indicates average baseline MPA(θ0)

may have attached semantic meaning that may be benefi-
cial to system designers, or perhaps eventually to the robots
themselves. After conducting the experiments above, the
model designers found that the discovered anomalous sub-
spaces corresponded to flaws in the design of their simple
prediction model of Equation 26. Some anomalous sub-
spaces corresponded to inadequacies in the computation of
navigation times tk and tt, while others corresponded to in-
adequacies in the assumption that the probability of success
corresponds exclusively to a smoothly varying function of
tt − tk. While this paper does not focus on the problem of
assigning semantic meaning to discovered anomalous sub-
spaces, it is an area of interest for future research.

8. CONCLUSION
This paper presented a framework for online robot adap-

tation in domains in which the robots have a generally ac-
curate model of the effects of their actions, but in which
there are particular sets of situations that do not conform to
the model. The framework achieves adaptation from sparse
observations by searching over parametric subspaces of the
domain to find those in which observed behavior does not
match expectations. After finding such subspaces, correc-
tions are applied to the model to improve future predictions.

A key assumption that enables our framework to adapt
from sparse observations is that anomalous behavior is re-
stricted to specific subspaces of a state-action feature space,
while the model is accurate in the rest of the domain. This
assumption enables the monitor to run focused optimiza-
tions over potentially anomalous subspaces.

The monitor presented here was deployed in a realistic
soccer-robot Keepaway domain, in which it significantly im-
proved performance and model accuracy within timescales
comparable to a single game of robot soccer. Furthermore,
the anomalous subspaces detected by the monitor revealed
to us flaws in the design of the interception model used by
our soccer team; this will enable the model designers to cor-
rect such flaws for future competitive games.

9. ACKNOWLEDGMENTS
This material is based on work partially supported by

the NSF Grant IIS-1012733, DARPA Grant FA87501220291,
and MURI subcontract 138803 of Award N00014-09-1-1031.
The presentation reflects only the views of the authors.

1594

REFERENCES
[1] C. G. Atkeson and J. C. Santamaria. A comparison of

direct and model-based reinforcement learning. In In
International Conference on Robotics and Automation,
1997.

[2] J. Biswas, J. P. Mendoza, D. Zhu, B. Choi, S. Klee,
and M. Veloso. Opponent-driven planning and
execution for pass, attack, and defense in a
multi-robot soccer team. In Proceedings of
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), January 2014.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys, pages
1–72, September 2009.

[4] R. J. Doyle, D. Atkinson, and R. Doshi. Generating
perception requests and expectations to verify the
execution of plans. In T. Kehler, editor, AAAI, pages
81–88. Morgan Kaufmann, 1986.

[5] C. Gaskett, D. Wettergreen, and A. Zelinsky.
Q-learning in continuous state and action spaces. In
Australian Joint Conference on Artificial Intelligence,
pages 417–428. Springer-Verlag, 1999.

[6] G. D. Giacomo, R. Reiter, and M. Soutchanski.
Execution monitoring of high-level robot programs. In
Principles of Knowledge Representation and
Reasoning, pages 453–465. Morgan Kaufmann, 1998.

[7] K. Z. Haigh and M. M. Veloso. Learning
situation-dependent costs: Improving planning from
probabilistic robot execution. In Proceedings of the
Second International Conference on Autonomous
Agents, AGENTS ’98, pages 231–238, New York, NY,
USA, 1998. ACM.

[8] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: a survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[9] E. Keogh and J. Lin. Hot sax: Efficiently finding the
most unusual time series subsequence. In ICDM, pages
226–233, 2005.

[10] E. Keogh, S. Lonardi, and B. Chiu. Finding surprising
patterns in a time series database in linear time and

space. Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, page 550, 2002.

[11] M. Kulldorff. A spatial scan statistic. Communications
in Statistics-Theory and methods, 1997.

[12] J. P. Mendoza, M. Veloso, and R. Simmons. Focused
optimization for online detection of anomalous
regions. In Proceedings of the International Conference
on Robotics and Automation (ICRA), Hong Kong,
China, June 2014.

[13] J. P. Mendoza, M. Veloso, and R. Simmons. Plan
execution monitoring through detection of unmet
expectations about action outcomes. In Proceedings of
the International Conference on Robotics and
Automation (ICRA) (to appear), Seattle, USA, May
2015.

[14] D. B. Neill. Fast subset scan for spatial pattern
detection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 74(2):337–360,
Mar. 2012.

[15] O. Pettersson. Execution monitoring in robotics: A

survey. Robotics and Autonomous Systems,
53(2):73–88, Nov. 2005.

[16] R. Rubinstein. The cross-entropy method for
combinatorial and continuous optimization.
Methodology and computing in applied probability,
1(2):127–190, 1999.

[17] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.
Keepaway soccer: From machine learning testbed to
benchmark. In I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, volume 4020, pages 93–105. Springer
Verlag, Berlin, 2006.

[18] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[19] R. S. Sutton, D. A. McAllester, S. P. Singh, and
Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation.
In NIPS, volume 99, pages 1057–1063, 1999.

1595

	Introduction
	Related Work
	Expectation-based Monitor
	Anomalous Subspace Detection
	Detection of multiple anomalies
	Anomalous Subspace Detection Algorithm

	Anomalous Subspace Model Correction
	Estimating observation distributions
	Estimating active behavior distributions
	Applying model corrections

	Interception-Keepaway domain
	Interception Keepaway domain definition
	Model correction for Keepaway

	Experiments and Results
	Evaluation Metrics
	Experimental Results

	Conclusion
	Acknowledgments

