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ABSTRACT
Unmanned Aerial Vehicles (UAVs) are playing an increasing
role in gathering information about objects on the ground.
In particular, a key problem is to detect and classify ob-
jects from a sequence of camera images. However, existing
systems typically adopt an idealised model of sensor obser-
vations, by assuming they are independent, and take the
form of maximum likelihood predictions of an object’s class.
In contrast, real vision systems produce output that can be
highly correlated and corrupted by noise. Therefore, tra-
ditional approaches can lead to inaccurate or overconfident
results, which in turn lead to poor decisions about what to
observe next to improve these predictions.

To address these issues, we develop a Gaussian Process
based observation model that characterises the correlation
between classifier outputs as a function of UAV position. We
then use this to fuse classifier observations from a sequence
of images and to plan the UAV’s movements. In both real
and simulated target search scenarios, we show that this can
achieve a decrease in mean squared detection error of up to
66% relative to existing state-of-the-art methods.

Categories and Subject Descriptors
I.2.9 [Computing methodologies]: Artificial Intelligence—
Robotics

General Terms
Algorithms, Theory, Experimentation

Keywords
Active Sensing; Target Search; Unmanned Aerial Vehicles;
Gaussian Processes

1. INTRODUCTION
In many applications, such as environmental monitoring and
disaster response, an aerial view is invaluable for gathering
information about the situation on the ground. For exam-
ple, in disaster response, there is a need to know the loca-
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tion of civilians in need of rescue, and to assess the damage
to vital infrastructure to aid logistical planning. Until re-
cently, manned flight has been the only option for gathering
such information quickly from the air. However, with re-
cent advances in technology, small light-weight Unmanned
Aerial Vehicles (UAVs) are increasingly offering a viable al-
ternative, as they are relatively cheap to maintain; can fly
through areas too small or too harzardous for manned flight;
and potentially, can cover more ground by allowing a sin-
gle operator to control multiple platforms simultaneously.
However, current systems are labour intensive. Fatigue is
a common problem for UAV operators [19], and increased
autonomy has the potential to mitigate it by allowing the
UAV to decide for itself what to observe [10] to maximise
information gain.

Solving such active sensing problems typically requires
three components: (1) an observation (or measurement)
model ; (2) a predictive model, which predicts the target
state given sensor measurements; and (3) a planner to de-
cide what actions to take to maximise the informative value
of future observations. Unfortunately, the first of these com-
ponents is over simplified in many existing systems. This,
in turn, limits the ability of the other components in the
system to perform well in real-world environments. This is
particularly true in systems aimed at target search problems,
such as search and rescue, in which three assumptions are
prevalent [23, 27, 4, 24, 12]: (1) target detections take the
form of binary responses, indicating that a target is either
present or not present at some location; (2) the probability
of misdetection and false positives is a constant irrespective
of the relative pose between the target and the platform, or
the type of terrain; and (3) successive detections are condi-
tionally independent of one another given the target state.

However, these assumptions are rarely true in practice.
Real computer vision systems are not limited to binary re-
sponses, instead they provide rich information in the form
of class probabilities or scores, indicating how well an ob-
ject’s features match the target class; reliability depends on
the relative camera position; and observations are, by na-
ture, highly correlated, because an object’s appearance will
be similar between images taken close together in space and
time. As a result, the above assumptions can lead to in-
accurate or over confident results, especially when searching
for stationary targets that blend into their environment, and
whose appearance does not change significantly over time.

In contrast, the problem of fusing information from mul-
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tiple dependent measurements has been widely studied for
target localisation. In Simultaneous Localisation and Map-
ping (SLAM), arguably the closest problem to our one here,
a platform attempts to construct a map of features in the en-
vironment and use it, at the same time, to localise the plat-
form. The joint structure between all the features in the map
and the vehicle is vital for the success of the approach [11].
Therefore, the full covariance matrix (or suitable encoding
of it) must be maintained, and any algorithm which fuses
information from multiple observations must take the de-
pendency structure into account.

Here, however, our primary concern is not target localisa-
tion, but how such targets are detected in the first place. To
date, dependencies between target detections have only been
considered by Velez et al. [25]. However, their work is aimed
at problems in which objects are detected by chance while
on route to a primary goal destination. Moreover, although
they do account for correlations between previous target de-
tections, future detections are still treated as independent
for the purpose of planning (see Section 3.3). As such, their
work is not applicable to target search problems, in which a
UAV must actively seek out previously undetected targets,
taking into account the dependent nature of future obser-
vations. With this in mind, we propose a new approach
for target search, that accounts for correlations and depen-
dencies between both future and previously observed target
detections. By so doing, we make the following three con-
tributions to the state-of-the-art.

1. We present the first observation model for target search
to account for correlations between classifier scores,
both for previously observed target detections, and
for predicting the information value of future obser-
vations.

2. We show how, in a tractable way, this model can be
used to predict likely target locations, and provide a
measure of information value to guide active sensing
planners.

3. We demonstrate empirically that these features have
a significant beneficial impact on performance, when
used to select observations from a real dataset collected
from a camera-equipped UAV, and in a simulated tar-
get search scenario.

In the next section, we introduce a motivating scenario
to provide context for our work, along with our key mod-
elling assumptions. Following this, we describe the model
in detail and how it can be used for inference (Section 3);
show how it can be trained using a real-world dataset (Sec-
tion 4); evaluate its performance empirically against other
models representative of the state-of-the-art (Section 5); and
finally, we conclude and discuss future work in Section 6.

2. PROBLEM DEFINITION
We focus on finding an unknown number of static targets
within a bounded search region on the ground, using a camera-
equipped UAV. Although a human operator must specify
the search region, both target detection and decisions about
where to search are carried out autonomously by the UAV.
Observations made by the UAV are then used to update a
probability distribution in real-time, which both informs the
UAV’s search pattern, and highlights likely target locations
to the human operator for further investigation.

zt

G

Gt →

Figure 1: The UAV’s field of view, Gt, (shaded grey) de-
termined by projecting from the UAV’s current position,
zt ∈ Z, onto the search region, G.

We model the search region, G, as a two-dimensional occu-
pancy grid [27], in which each cell, g ∈ G may be either occu-
pied by a target or not. Denoting the unknown occupation of
cell g as δg, our goal is then to determine the probability that
each cell is occupied (δg = 1) or not (δg = 0), and to con-
tinually refine these probabilities given visual observations
made by the UAV. Although targets can occupy any set of
continuous points on the ground, partitioning these points
into a finite grid greatly simplifies the problem of maintain-
ing probability distributions over possible target locations,
and so is commonly adopted in the literature [27, 6, 4]. This
does not require that the ground is flat, nor does it restrict
the size of each grid cell. On the contrary, G can map onto
any two-dimensional manifold representing the topology of
the ground; and grid cells can be sufficiently small for a sin-
gle target to occupy multiple adjacent cells.1 The grid scale
may be selected to provide the required precision for any
given application. For example, in search and rescue, it is
clear that 1–2m2 grid cells should be sufficiently small to
accurately locate a missing person’s position.

To determine likely target locations as quickly and as ac-
curately as possible, the UAV must choose its own flight
path to maximise the information gained about target loca-
tions. Specifically, we assume that the UAV uses its onboard
camera to capture a series of images of the ground at regu-
lar time intervals along its flight path. For each image, we
assume that the UAV can determine its position, zt ∈ Z,
where Z ⊂ R3 is a predefined flight zone bounded from be-
low by the ground, and t ∈ Z+ is the time at which the
image was captured. Moreover, we assume that the UAV
can determine the set of grid cells, Gt ⊂ G, that are visible
in each image, by projecting the camera field of view onto
the ground, given its current position zt (see Figure 1).

In reality, neither Gt nor zt can be determined exactly
due to imperfect sensors and incomplete information about
the ground’s topography. However, we do not deal with this
type of uncertainty explicitly in this paper, because this can
be handled by existing techniques that can be readily incor-
porated into our model (see Section 6). Instead, we focus
on the probability that observed cells are occupied, given
the output of an onboard visual classifier. Specifically, for
each g ∈ Gt and for every t at which an image is captured,
we receive a score, stg ∈ R, from a classifier, indicating the
likelihood that g is occupied. For example, if the classifier is
Bayesian [2] then stg may be the probability that g is occu-

1As a result, we cannot directly determine the number of
targets from the number of occupied cells. However, our
focus is on locating rather than counting targets.
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pied, given its visual appearance from zt at time t; whereas,
if the classifier is a Support Vector Machine (SVM) [8], then
stg may be the distance between the cell’s visual features (as
input to the classifier) and the class decision boundary (see
Section 4).

Putting these together, we define an observation as a pair,
dtg = (stg, zt), and denote the set of all such observations of a
given cell, g, up to time t asDt

g = {drg|r ≤ t}. Given this, our
goal is to determine the posterior probability function (p.f.)
for the occupation of each cell, P (δg|Dt

g); and to choose
the UAV’s flight path so that the accuracy of this p.f. is
maximised. The next section describes this in detail.

3. MODELLING AND INFERENCE
In this section, we describe how to model the distribution of
the target locations given previously observed data, and use
this to guide observation selection. This requires three com-
ponents (see Section 1): the observation model, a predictive
model and a planner. We discuss each in turn.

3.1 Predictive Modelling
The predictive model computes the posterior probability
that each cell, g, is occupied. Using Bayes rule, this is cal-
culated according to (1) as follows.

P (δg|Dt
g) =

P (δg)P (Dt
g|δg)

P (Dt
g)

(1)

Here, P (Dt
g) is the normalising constant (i.e. the marginal

likelihood) required to ensure that
∑
δg∈{0,1} P (δg|Dt

g) = 1;

P (δg) is the prior probability that grid cell g is occupied;
and P (Dt

g|δg) is the data likelihood, which is provided by
the observation model described in Section 3.2.

To simplify this further, [6] not only assumes indepen-
dence between cells, but also assumes independence between
observations, and that instead of scores, we receive only the
maximum likelihood class for each observation. However,
there are two significant disadvantages to this approach.
First, by observing only the predicted class with a fixed
probability for false or missed detections, any differences
in the confidence of each observation are ignored. This as-
sumption is relaxed by some authors, including [23] and [12],
who allow the probability of correct classification to vary
with camera height. However, this still ignores other ef-
fects caused by visual appearance, such as target pose or
the amount of background clutter.

Second, assuming independence between observations can
lead to misleading and overconfident results (i.e. P (δg|Dt

g)
close to 0 or 1, when this should be less certain). This
is because each new observation is considered to be condi-
tionally independent. However, as discussed in Section 1,
images of the same scene taken at similar times or positions
are highly likely to have the same classifications and are not
conditionally independent. This is not the same as assuming
independence between cells (as we do here): although, in re-
ality, cells may be dependent (e.g. due to spatial correlations
in terrain) this information can be safely ignored, provided
there is not significant restriction on gathering information
about cells by observing them directly.2 In contrast, assum-
ing independence between observations implies that more in-
formation is available, rather than less, which is in general a

2Dependencies between cells can be modelled [13] and are
outside the scope of this paper.

much riskier strategy. One approach is to use suboptimal fu-
sion rules, such as Generalized Covariance Intersection [1] or
those based on Transferable Belief Models, Imprecise Proba-
bilities or Random Sets [3]. These approaches often assume
that no dependence information is available and, in conse-
quence, the posteriors can be very uniform. In this paper,
we seek a solution which can be used to model the joint data
likelihood. By doing so, Bayes rule can be applied directly
and rapid classification can be made.

3.2 Observation Modelling
We develop our observation model using a Gaussian Pro-
cess (GP) [20] over classifier scores. Unlike previous ap-
proaches, we can take into account differences in classifier
performance under different circumstances, and to model
correlations between observations, so avoiding overconfident
predictions due to inappropriate independence assumptions.
Specifically, for any given cell, g, we model the classifier
score, stg, as a GP dependent on the UAV’s position at the
time of observation:

stg = fδg (zt) + εδ (2)

fδg (zt) ∼ GP(µδg (zt),kδg (zt, zt)) (3)

εδ ∼ N (0, hδ) (4)

Here, fδg is a GP that captures the relationship between
classifier scores and camera position, while εδ is zero-mean
Gaussian noise, with variance, hδ, which captures any ad-
ditional variation between scores over time. These are de-
fined separately for each possible class δg = {0, 1}, since
(in general) we expect the classifier to respond differently
depending on whether a cell is occupied or not.

As with any GP, fδg is specified by a mean function, µδg ,
and a covariance function, kδg . µδg is defined as the ex-

pected score, E[stg|zt, δg], given the cell’s class and UAV’s
position. It accounts for any expected difference in classifier
performance dependent on camera position. As discussed
above, we would expect it to vary with altitude, although
it may also depend on horizontal position if we have any
prior knowledge about the classifier’s performance in differ-
ent parts of the environment, for example, due to different
types of terrain. Similarly, kδg , is the covariance function
between scores observed at any given pair of positions:

kδg (zr, zt) = E[(srg − µδg (zr))(s
t
g − µδg (zt))].

Again, this may depend on the cell’s class, and captures
the expected similarity between observations of a given cell
from different positions. Although this may take a variety
of forms, we adopt the commonly used squared exponential
function [20], which captures the intuition that the covari-
ance between observed scores stg and srg will tend to increase
as the distance between their corresponding camera posi-
tions decreases:

kδ(zr, zt) = σδ exp

[
−1

2
(zt − zr)

TL−1
δ (zt − zr)

]
, (5)

where σδ is the magnitude, which determines the maximum
covariance between scores observed at different times; and
Lδ is a diagonal length scale matrix, which determines how
quickly the covariance decreases with distance along each
dimension of zt. Together with the mean function and noise
variance, hδ, these parameters can be selected to best fit the
performance of an actual classifier (see Section 4).
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According to this specification, the joint data likelihood
for a given cell is then defined as a joint normal distribution
as follows.

P (Dt
g|δg = δ) = N

(
Stg
∣∣µδ(Ztg), hδI +Kδ(Z

t
g)
)

(6)

where the mean and covariance are specified as

µδ(Z
t
g) =

 µδ(z
r
g)

...
µδ(z

t
g)

 (7)

Kδ(Z
t
g) =

 kδ(z
r
g, z

r
g) · · · kδ(z

r
g, z

t
g)

...
. . .

...
kδ(z

t
g, z

r
g) · · · kδ(z

t
g, z

t
g)

 (8)

By substituting (6) into (1), we are thus able to calculate
the posterior probability that any given grid cell is occu-
pied, without assuming independence between observations.
In the following sections, we demonstrate that this not only
leads to more accurate results compared to existing tech-
niques, but also enables better decisions about what to ob-
serve next to further improve predictions.

3.3 Measuring Information Value
At this point, we now have a complete model for predicting
likely target locations given previous observations. How-
ever, to actively search for targets, we need to measure how
much different candidate observations will improve predic-
tions about target locations. We do not focus on how can-
didate observations are proposed. For this, we assume that
some suitable planner is available [21, 22, 5], which can pro-
pose observations to be collected along potential flight paths.
Instead, we provide a measure, based on our model, so that
a planner can choose between candidate paths. Existing ap-
proaches generally focus on maximising the probability of
detection [12, 24], which incentivises the UAV to observe
cells with high probability of occupation, even if we are sure
these are occupied. However, we seek to minimise the over-
all uncertainty in the presence and location of targets. This
is directly measured by mutual information [15].

We define the path planning problem as follows. First, we
denote the set of all previous observations for all grid cells
up to time t as D−t = {drg|g ∈ G, r ≤ t}, and the set of
all future observations up to some finite planning horizon
t′ as D+t = {drg|g ∈ G, t < r ≤ t′}. Our objective is to
choose a flight path that maximises the mutual information
between the future observations, D+t, and the unknown cell
occupations, ∆ = {δg|g ∈ G}, given the previous observa-
tions, D−t. Following [18], this is defined as the expected
reduction in entropy for ∆ after observing D+t,

I(∆;D+t|D−t) = H(∆|D−t)−H(∆|D−t, D+t) (9)

Under our assumption that cell occupations are indepen-
dent, this can be decomposed in terms of individual cells
according to Equation (10), in which the conditional en-

tropies, H(δg|Dt
g) and H(δg|Dt′

g ), are calculated w.r.t. the
posterior distribution in Equation (1).

I(∆;D+t|D−t) =
∑
g∈G

H(δg|Dt
g)−H(δg|Dt′

g ) (10)

Importantly, this equation calculates the informative value
of a set of candidate observations as a whole, taking into

account the correlations between their, as yet, unobserved
values as a consequence of our model. In this respect, our
approach differs from that of Velez et al. [25]. Although their
model accounts for spatial correlations between previously
observed values, they estimate the information value of fu-
ture observations using an approximate technique based on
the Posterior Belief Distribution algorithm [14]. This tech-
nique uses a Kalman filter, based on the assumption that fu-
ture observations are independent, even though this is later
revealed to be false once they have been observed. As such,
planners using this technique will overestimate the value of
candidate trajectories, since each new observation is assume
to provide completely new information, uncorrelated with
any other future observations collected on route.

In contrast, we calculate mutual information directly based
on our model, and in this way, account for correlations be-
tween both previous and future observations. Given this, we
can now measure the information value for any set of can-
didate observations, which can then be used by a planner
to select the the most informative trajectory for a UAV. In
the following sections, we apply and evaluate this in both
simulation, and with real data.

4. MODEL AND CLASSIFIER TRAINING
To put this theoretical framework into practice, we applied
it to a search and rescue scenario, using images collected
from a quadrotor UAV. This required the following three
steps.

Data Collection
A UAV fitted with a downward facing camera captured im-
ages of people in different poses in different types of wilder-
ness environments (peatland, rough pastoral land, and rocky
coastal areas) at 5 frames per second at altitudes between
1m and 40m (see Figure 2). We registered these images
to their corresponding camera and ground positions using
Visual Structure From Motion [28], which could estimate
the position of known landmarks within 5m. Using a grid
of 2 × 2 metre cells, this meant that observations of fixed
points could be wrongly spread across several adjacent cells.

Although this breaks our simplifying assumption that the
localisation of observed points on the ground can be estab-
lished perfectly, such inaccuracy is to be expected in real ap-
plications. Morever, as discussed previously, this can readily
be dealt with using existing techniques that can be easily in-
tegrated into our model. Nevertheless, as demonstrated in
Section 5, our model still outperforms existing approaches
despite being applied without any mechanism to deal explic-
itly with this uncertainty.

With this in mind, we classified any grid cell as occupied,
provided it contained the estimated centre position of any
person on the ground. The entire dataset of around 10,000
images was then randomly divided into three equally sized
subsets, with no overlapping images: one to train a classifier
to detect people, a second to train our observation model,
and a third for empirical evaluation (see Section 5.2).

Classifier Training
To detect targets on the ground, we used an SVM classi-
fier trained to detect people using Histograms of Oriented
Gradients (HOG) features. Although, our model is agnos-
tic to the choice of classifier, the combination of these two
techniques has demonstrated good performance for people
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Figure 2: Example images collected from quadrotor for
model training and evaluation: (top row) original images,
(middle row) negative cases used to train classifier, (bottom
row) positive cases used to train classifier.

detection in other domains [9], and so is representative of
the type of system that could be used in practice. To apply
this to our scenario, we trained the classifier using images
of people and general background (see Figure 2) extracted
from the classifier training set mentioned above, and used
this to generate classifier scores for all grid cells visible in
the remaining images.

Observation Model Training
To train our observation model, we first used the training
data to fit the mean function, µδ, to the mean classifier
scores observed for each class (cell occupied or not). In gen-
eral, this can be viewed as a regression problem, in which
we must estimate the score given the UAV’s altitude. For
example, this may be solved by fitting a separate Gaussian
Process to the training data, and using this to predict the
expected value of any potential observation as a function of
altitude. However, given the maximum safe altitude of our
UAV was 40m, we found no significant dependence between
altitude and classifier scores in our dataset. Although we
do not expect this to hold for higher altitudes, for our ex-
periments it was therefore sufficient to set µδ to the mean
score in the training set for each class (person present, or
not present).

Given these means, we then set the noise and covariance
parameters to their maximum likelihood values across the
training set. In particular, these values result in a signifi-
cant spatial correlation of up to 0.42 for observations taken
1 metre apart, and 0.14 at 5 metres apart. Incorporating
this correlation in the observation model is important, since
assuming zero correlation would result in overconfident re-
sults (see Section 3). In the next section, we demonstrate
this by comparing the empirical performance of our model
to others, representative of the state-of-the-art.

5. EMPIRICAL EVALUATION
For our initial experiments, we evaluated the performance in

two different scenarios: (1) a simulated on-line setting, and
(2) an off-line setting, using real data from the evaluation
set described in Section 4. In both cases, we measured per-
formance using the Mean Squared Detection Error (MSDE),
as it is standard in many estimation problems [7]. This is
calculated by estimating the probability of occupation of all
cells in G, and then calculating the MSDE between these
estimates, and each cell’s true class:

MSDE =
1

|G|
∑
g∈G

[
δg − P (δg = 1|Dt

g)
]2

(11)

For comparison, this was repeated for all experiments, us-
ing three different models. The first is correlated, which de-
notes our proposed model, taking into account correlations
between classifier scores. The second is independent, which
uses Näıve Bayes on the raw classifier scores. It is identical
to correlated, but assumes zero covariance (independence)
between scores. The final is class only, which also adopts a
Näıve Bayes approach, but only receives binary maximum
likelihood classifications for each observation, and is the pre-
vailing approach adopted in the existing literature (including
[12], [23], [6]).

This uses a fixed confusion matrix, learned from the train-
ing data, to specify the likelihood of the observed class (tar-
get present or not present), given the true class. Based on
these assumptions, all three models use Bayes rule (1) to
fuse all available observations into a single probability of
target presence for each cell. In the following subsections,
we describe the results of these experiments in both on-line
and off-line settings.

5.1 On-line Selection in Simulation
In these experiments, the aim is to simulate an on-line ac-
tive sensing scenario in which a UAV must choose its flight
path to maximise the mutual information between the re-
sulting observations and the unknown target locations. For
this purpose, we simulated a 100×100 grid of which 10–200
cells were randomly selected to be occupied by a target in
each episode. When observed, each cell generates a classi-
fier score that is correlated with its previous observations
according to the same type of GP used in our observation
model. However, for the purpose of these experiments, the
mean score was fixed at -1 for unoccupied cells, and 1 for
occupied cells. The level of difficultly was then controlled
by varying the covariance parameters between each experi-
ment. As a result, the optimal decision boundary used for
the class only model was fixed at zero, while the probability
of a false detection was determined by the magnitude of the
score variance, relative to their mean.

To observe this grid, we simulated a UAV with a simple
myopic planner,3 which explores in a sweep search pattern,
observing 8 × 8 blocks of cells at a time. In each timestep,
the UAV can choose to either move onto the next block, or
observe the current block from possible altitudes of 1, 2, 4
or 8 metres. In each case, a change of altitude would bring
about a corresponding change in the field of view. Specifi-
cally, at 8 metres, the UAV could observe all 64 cells in the
current block simultaneously, while at low-altitudes, sub-
blocks of only 1 × 1, 2 × 2 or 4 × 4 cells could be observed
at once. This introduces a trade-off between flying high to
observe more cells at once, or flying low to observe fewer

3Other planners which could be used include [17, 5].
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Figure 3: UAV trajectories in the simulated scenarios, shown
as coloured dots at visited locations connected by dashed
lines. Notice that, relative to the other two approaches, the
correlated model covers more unique positions (at different
altitudes) to gain more information.
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Figure 4: MSDE in probability of target presence for simu-
lated active sensing scenario.

cells from a significantly different perspective, while keep-
ing them within the field of view. This is because choosing
observations from significantly different perspectives gener-
ally results in less correlated observations, that thus result
in high information gain — even though the field of view is
reduced at lower altitudes.

Figure 4 shows the results for these experiments in two
different cases, with error bars representing 95% confidence
intervals for the MSDE. In each case, the covariance length
scale was fixed4 at Lδ = I, while hδ and σδ were chosen to
fix the prior variance at 3.61. The difference is that for plot
(a) hδ = 0.361, resulting in a maximum correlation between
scores of 0.9; while for plot (b) hδ = 2.527, resulting in a
maximum correlation of 0.3. For plot (a) this means that
little new information can be gained from observing a cell
from the same position, as this would result in very similar
observations; whereas for plot (b) a significant amount of
information can be gained by repeated observation from the
same location.

The key effect is that both Näıve Bayes approaches per-
form poorly on highly correlated scores for two reasons: (1)
by assuming independence, they over estimate the informa-
tion content of each new observation; and (2) they fail to
realise the benefit of changing altitude to gain a different

4In other experiments, not shown here, we tried different
parameter values, but observed similar results.
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Figure 5: MSDE in probability of target presence predicted
for (a) hard cases, and (b) easy cases, selected from real
dataset.

perspective and thus less correlated observations. In order
to maximise their field of view, they instead adopt a sweep
search pattern at the maximum altitude (see Figure 3), only
dropping to a lower altitude when they can detect no sig-
nificant difference in mutual information. By accounting
for observed scores, the independent model is still able to
outperform the class only model. However, this advantage
disappears as the number of observations grows, due to over-
confidence in its results.

In contrast, the correlated model dominates in all cases,
since it correctly estimates the mutual information between
observations. Moreover, although it initially chooses to fly
high to maximise field of view, it subsequently reduces al-
titude, to gain additional information about each subblock
of cells, prioritising those with high class uncertainty. This
advantage is less profound when correlation between scores
is low, but even in these cases, it does no worse than the
other evaluated methods.

5.2 Off-line Selection of Real Data
Although the results above demonstrate the potential ben-
efits of our model for on-line active sensing problems, they
do not guarantee that the same benefits apply to problems
involving real data. For this reason, we also compared the
performance of all three models when applied to the real
data described in Section 4. However, since this data was
collected in advance, the UAV’s flight path was predeter-
mined and could not be changed. Instead, the goal in these
experiments was to make predictions by selecting observa-
tions (of grid cells) from within images captured along the
UAV’s flight path. To maximise information gain, this is
done by selecting individual observations in order of their
mutual information with each grid cell’s hidden occupation.
Although this is a slightly different problem, this scenario
may still occur in practice in cases in which the flight path
must be predetermined (e.g. due to legal constraints). In
such cases, selecting only the most informative observations
can still be an advantage, due to the significant computa-
tional cost of processing and classifying every part of every
image.

With this in mind, Figure 5 shows the results of these
experiments. In particular, part (a) shows the results for
hard cases, which we define as any cell for which any of
the three models predicted the wrong class as most likely
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at least once; while (b) shows the results for easy cases, for
which all three models always predicted the correct class
as most likely. This shows that, for easy cases, the choice
of model has little effect: on average, all three models have
near zero error with as few as 10 observations. However, our
model does take slightly longer to approach zero, because
we take a more conservative view on the amount of new
information provided by each observation. That is, although
all three models always report the correct class as most likely
in these cases, the correlated model places a slightly lower
probability on the correct class, because it avoids unrealistic
independence assumptions and thus requires more evidence
to report a given level of confidence in its predictions.

Although such easy cases makeup the majority of our
dataset (e.g. grass and other natural features that do not re-
semble a person) what matters more are the hard cases (e.g.
people in dense clutter, or linear features that could be mis-
taken for a person). In these cases, an accurate assessment
of uncertainty is essential for both deciding what to observe
next to improve predictions, and for highlighting areas of
uncertainty to the UAV’s operators. In this respect, the in-
dependent model generally performs better than class only.
Although not statistically significant, this is inline with the
simulated experiments, which do suggest some benefit in ob-
serving scores, rather than classes only. However, as before,
our model significantly outperforms both benchmarks, by
also taking into account correlations between these scores.
Unlike the independent benchmark, this avoids placing too
much weight in observations made from similar camera posi-
tions, which can otherwise lead to misleading and overcon-
fident results. As a result, our model is able to achieve a
decrease in MSDE for hard cases of up to 66% relative to
the independent and class only models.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have highlighted the importance of adopt-
ing realistic observation models in active sensing problems,
and in particular, target search applications using an au-
tonomous camera-equipped UAV. In such applications, pre-
vious authors have typically assumed that observations are
always independent, and take the form of binary classifica-
tions, specifying whether a target is present at a given loca-
tion or not. Unfortunately, neither of these assumptions are
true in practice: real vision systems often produce valuable
information in the form of scores, indicating the likelihood
that a target is present given a position’s visual appearance.
Moreover, such observations typically exhibit strong spatial
correlations, since viewing an object from the same camera
position will typically produce the same classification.

To address these limitations, we have presented a novel
observation model, that achieves up to 66% greater accu-
racy than existing approaches at detecting targets. This is
achieved by modelling spatial correlations between classifier
scores, which enables more accurate assessment of the infor-
mation value of each observation, and better decisions about
what to observe next to improve future predictions.

Although these results represent a significant first step,
there are three main aspects that we are yet to address.
First, although we have considered the affect of camera po-
sition, we have not explicitly considered the impact of other
factors, such as occlusions, moving targets and lighting con-
ditions. Second, by focusing on classifier uncertainty, we
have not addressed the additional impact of position uncer-

tainty w.r.t. both the camera and its field of view. Finally,
although we have demonstrated the benefits of our model
in both a simulated on-line setting, and an off-line setting
using data collected from a real UAV, we are yet to apply
the model to autonomous on-line path planning using a real
UAV. In future work, we plan to address these limitations,
by integrating our techniques with existing state-of-the-art
approaches for modelling positional uncertainty [16, 26]. We
then plan to use these techniques for active sensing with
multiple UAVs, working together in coordination to locate
targets on the ground.
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