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ABSTRACT
A key difficulty in Cooperative Coevolutionary Algorithms
(CCEAs) is the credit assignment problem[1]. One solution
to the credit assignment problem is the difference evaluation
function, which produces excellent results in many multia-
gent domains. However, to date, there has been no prescrip-
tive theoretical analysis deriving conditions under which dif-
ference evaluations improve the probability of selecting op-
timal actions. In this paper, we derive such conditions.
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1. DIFFERENCE EVALUATIONS
The difference evaluation function Di(z) is defined as [1]:

Di(z) = G(z)−G(z−i + ci)

where G(z) is the global evaluation function, G(z−i + ci) is
the global evaluation function without the effects of agent
i, and ci is the counterfactual term used to replace agent
i. Difference evaluations have desirable theoretical proper-
ties and have provided excellent empirical results [1], but no
prescriptive theory has been conducted to date.

2. EGT MODEL FOR CCEAS
The EGT-RD model for CCEAs is defined as in [2]:
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Where:

• ut,c
i : fitness of agent 1 taking action i at time t

• wt,c
j : fitness of agent 2 taking action j at time t

• xt
i: probability agent 1 takes action i at time t.

• yt
j : probability agent 2 takes action j at time t.

• xt+1,c
i : probability agent 1 takes action i at time t + 1

• yt+1,c
j : probability agent 2 takes action j at time t+ 1

For this analysis, we assume that: (A1) All elements of the
payoff matrix are non-negative; (A2) Not all elements in
the payoff matrix have the same value. A1 ensures that the
system remains invariant in the simplex. A2 is needed in
the proofs, but if this assumption does not hold we have a
trivial payoff matrix where every element has equal value.

3. DIFFERENCE PAYOFF MATRICES
We define agent-specific difference payoff matrices D1 and

D2 by applying the difference evaluation function to the
global payoff matrix C:
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The difference payoff matrices are implemented in the EGT
model in the fitness assignment stage.

We now derive the fitness for an agent using the difference
payoff matrices in terms of the global payoff matrix. The
fitness for the first agent taking the action i while using the
difference evaluation function at time t is:
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A similar derivation yields the normalized fitness for the
second agent taking action j and using the difference evalu-
ation at time t:
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4. DIFFERENCE EVALUATIONS THEORY
We define the joint expected system payoff at time t as:
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We now prove that in cases where the optimal action (corre-
sponding to the optimal Nash equilibrium) has a relatively
low expected payoff, difference evaluations result in superior
system performance compared to the global evaluation.

Theorem 1. If the fitness values for the best response ac-
tions i∗ and j∗ are less than the joint expected system payoff,
then difference evaluations result in higher probabilities of
selecting the best response actions as compared to the global
evaluation function.
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Proof. Starting with Equation 1, we have that:
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Noting that ut,c
i =

∑m
j=1 cijy

t
j , we have that:

n∑
i=1

ut,c
i xt

i > ut,c
i∗

We now multiply both sides of the inequality by a positive
constant A:

A

n∑
i=1

ut,c
i xt

i > Aut,c
i∗

Noting that
∑n

i=1 Axt
i = A, we have that:

A

n∑
i=1

ut,c
i xt

i > ut,c
i∗

n∑
i=1

Axt
i

We add ut,c
i∗
∑n

i=1 u
t,c
i xt

i − ut,c
i∗
∑n

i=1 u
t,c
i xt

i = 0 to the right
hand side of the inequality in order to allow factoring of
terms, yielding:
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We now focus on the term A from Equation 2. Recall that:
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We thus define A as:
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Note that A is strictly positive by assumptions A1 and A2
from Section 2. With this definition of A, we have that:
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Combining Equations 2 and 3 yields:
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Note that the terms in the inequality from Equation 4 are
equivalent to the coefficients in the population update rules
from the EGT model. We thus have:
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A similar derivation for the second agent yields:
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Thus, if the condition in Equation 1 holds, then difference
evaluations improve the probability of selecting the optimal
action. Equation 1 holding corresponds to the optimal Nash
equilibrium beingdeceptive, meaning that if one agent devi-
ates from this equilibrium then the system payoff is dramat-
ically increased. In these cases, extremely tight coordination
is required to reach the optimal Nash equilibrium, because
unless both agents select the best response action simultane-
ously, the system payoff will be low. In these difficult games,
we have shown that difference evaluations can improve sys-
tem performance.
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