Synchronous Games in the Situation Calculus

(Extended Abstract)

Giuseppe De Giacomo
DIAG, Sapienza
Universita di Roma
Roma, ltaly

ABSTRACT

We develop a situation calculus-based account of multi-player
synchronous games. These are represented as action theories
called situation calculus synchronous game structures (SCS-
(Ss) that involve a single action tick whose effects depend
on the combination of moves chosen by the players. Proper-
ties of games, e.g., winning conditions, playability, weak and
strong winnability, etc. can be expressed in a first-order vari-
ant of alternating-time mu-calculus. Computationally effec-
tive verification can be performed. SCSGSs can be viewed as
a variant of the Game Description Language (GDL) where
states are represented by first-order theories.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods.

Keywords

Logics for multi-agent systems; Verification of agent-based
systems; General game playing; Reasoning about action.

1. INTRODUCTION

Many types of problems can be viewed as games, e.g.,
contingent planning, service orchestration, etc. Logics for
reasoning about game settings has been an active area, with
Alternating-Time Temporal Logic (ATL) [1] a popular choice,
and model checking techniques have been used to verify
properties of games specified in ATL and to synthesize agent
strategies. However, such logics are usually propositional
and limited to finite domains. Moreover, the game set-
tings are usually specified using low-level automata-like lan-
guages. One exception is the Game Description Language
(GDL) [6] developed for the general game playing compe-
tition, which is based on logic programming. But, GDL is
intended to represent games with finite domains and its se-
mantics based on “negation as failure” is somewhat complex.

[4] proposes an expressive first-order (FO) logical frame-
work for specifying and reasoning about game-like problems
based on the situation calculus (SC)[7]. Game settings are
specified as a special kind of SC action theory. Legal moves

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright (C) 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Yves Lespérance
EECS
York University
Toronto, Canada

degiacomo@dis.uniromai.it lesperan@cse.yorku.ca

1675

Adrian R. Pearce
Dept. Comp. Sci. & Soft. Eng.
University of Melbourne
Melbourne, Victoria, Australia
adrianrp@unimelb.edu.au

can be specified declaratively, or procedurally in a variant
of the SC programming language Golog [7]. Complex tem-
poral properties of games can be expressed in a FO variant
of alternating-time p-calculus (WATL). Methods for verifi-
cation and synthesis based on fixpoint approximation and
regression are also proposed. But [4] assumes only one agent
may act in any state, i.e., it deals with turn-taking games.

Inspired by [4], we develop a SC-based specification and
verification framework that deals with multi-players syn-
chronous games, and is similar in spirit to GDL. Games
are represented as action theories of a special form, called
situation calculus synchronous game structures (SCSGSs),
in which we have a single action tick whose effects depend
on the combination of moves selected by the players. As in
[4] a FO-order variant of pATL [2] is used to specify and
verify properties of the game, including winning conditions,
playability, weak and strong winnability, etc.

2. SYNCHRONOUS GAME STRUCTURES

Here, we concentrate on games where there are n play-
ers/agents each of whom chooses a move at every time step.
All such moves are executed synchronously and determine
the next state of the game. At each time step, the state of
the game is fully observable by all agents, as are all past
moves. These assumptions are built into GDL [6]. To repre-
sent such multi-player synchronous games, we define a spe-
cial class of basic action theories [7], called situation calculus
synchronous game structures (SCSGSs), defined as follows.

Agents A SCSGS involves a finite set of n agents, and we
introduce a subsort Agents of Objects which includes these
finitely many agents Agi, ..., Agn, each denoted by a con-
stant, and for which unique names and doman closure hold.

Moves. We also introduce a second subsort Moves of Ob-
jects, representing the possible moves of the agents. These
come in finitely many types, represented by function sym-
bols M; (&), which are parametrized by objects Z. Given the
parameterization, each agent may have an infinite number
of possible moves at each time step. We have unique name
and domain closure axioms for these functions.

Actions. In SCSGSs, there is only one action type, tick(ma1,
...,Mmn), representing the execution of a joint move by all
the agents at a given time step. tick has n parameters, one
per agent, which are of sort Moves and corresponds to the
simultaneous choice of the move to perform by the n agents.

Legal moves. SCSGSs include a characterization of the
legal moves available to each agent in a given situation. This

is specified using a special predicate LegalM defined as:
LegalM(Agi, Mz(f), 8) = Dag,,m; (fa 5)

meaning that agent Ag; can legally do move M;(Z) in sit-
uation s iff ®ag, n, (F,s) holds. Technically, LegalM is an
abbreviation for ® a4, n, (%, s), which is a uniform formula
(i.e., a formula that only refers to a single situation s).

Precondition axioms. The precondition axiom for the ac-
tion tick is fixed and specified in terms of LegalM as follows:

Poss(tick(mi,...,my),s) = /\ LegalM (Agi, ms, s)

i=1,..., n

Thus action tick(ma1, ..., my) denoting the joint move of all
agents can be performed iff each selected move m; is a legal
move for agent Ag; in situation s. Since we only have one
action type tick, this is the only precondition axiom in Dpess.

Successor-state axioms. Then, we have successor-state
azxioms Dssa, specifying the effects and frame conditions of
the joint moves tick(mi,...,m,) on the fluents. Such ax-
ioms, as usual in basic action theories, are domain specific,
and characterize the game under consideration. Within such
axioms, the agent moves that occur as arguments of tick de-
termine how fluents change as a result of the joint move.

Initial situation description. Finally, the initial state of
the game is axiomatized in the initial situation description
Do as usual, in a domain specific way.
ExXAMPLE 1. Consider an iterated version of the game
Rock-Paper-Scissors. We can specify legal moves as follows:
LegalM (ag, play(k),s) = (ag = Ag1 V (ag = Ag2) A
(k = Rock V k = Paper \V k = Scissors)

We have a fluent WinCount keeping track of how many
rounds each agent has won, with the successor-state axiom:

WinCount(ag,i,do(a,s)) = ¢ V WinCount(ag, i, s) A —¢p

where ¢ = 3k, 1, j.a = tick(play(k), play(l)) A Beats(k,l) A
WinCount(ag, j,do(a,s)) Ni=j+1Ai<R

We can say an agent wins as soon as she has won R rounds.
Note that we get an infinite-domain version of the game if
we allow move play(k) to take any integer k as argument,
and define Beats(k,1), e.g., as (k —1) mod 3 = 1. 0

In the full paper [5], we show how one can also specify legal
agent moves procedurally in variant of the SC programming
language Golog [7]. Our SCSGSs amount to a variant of
GDL where states are represented by FO theories. In [5],
we show this by giving a translation of GDL specifications
into SCSGSs and showing its soundness and completeness.

3. VERIFICATION AND GOAL LANGUAGE

To express properties about SCSGSs, we introduce a logic,
inspired by (p) ATL [1], based on a FO variant of the p-
calculus [2] but that works on games, by suitably consider-
ing coalitions acting towards the realization of a temporally
extended goal. The key building block in this logic is the so-
called force-next operator, ((G))(OW, meaning that coalition
G can ensure that ¥ holds in the next situation. Informally,
(@) O ¥ holds in a situation if there exist moves for the
agents in coalition G such that for all moves by agents not
in G, ¥ holds in the situation resulting from such a joint
move. The syntax of our logic pL is as follows:

U o|Z| U ATy |20 | (G)) OV | pZ

1676

Here, ¢ is a (possibly open) situation-suppressed SC uniform
formula, Z is a predicate variable of a given arity, and u is
the least fixpoint construct from the p-calculus. We also use
the usual FOL abbreviations, [[G]] O ¥ = —((G)) O —7,
and vZ.¥(Z) = —uZ.~Y(Z), ie., the greatest fizpoint of
W (Z). The modal u-calculus [2] is one of the most expressive
temporal logic, generalizing of CTL" for instance.

EXAMPLE 2. Several key properties of games [6] can be
expressed: a) Playability, i.e., at every step which is not
terminal there exists a legal joint move: vZ.Terminal V
((ALL))O Z. b) Termination, i.e., there is a way of playing
the game that eventually leads to termination: puZ. Terminal
V((ALL)) O Z. c¢) Weak Winnability (by agent Ag), i.e.,
there is a way for agent Ag to win if the others cooperate:

wZ. Terminal A Goal(Ag,v) A
(Aagrzag Goal(Ag',v") Av' <w)) v ({(ALL)) O Z.

d) Strong Winnability (by agent Ag), i.e., there is a way for
agent Ag to win no matter what the others do:

nZ. Terminal A Goal(Ag,v) A
(Aryrap GoallAg',0) AV)V ({Ag}) O 2.

SC reasoning techniques can be used for verifying proper-
ties of games, to analyze them and develop better players.
These include sound but incomplete techniques that apply
to the general setting [4], which is undecidable, and sound
and complete techniques for the decidable “bounded fluent
extension” setting [3]. See the full paper for details.

4. CONCLUSION

We have defined a logical framework, SCSGSs, for repre-
senting synchronous games-like systems and verifying tem-
poral properties over them. GDL games can be represented
as SCSGSs. Our framework is truly first-order and can be
used to specify games/systems that involve infinite domains
and an infinite set of states. Furthermore, when the SCSGS
is “bounded”, verification of large classes of temporal formu-
las is decidable. Effective reasoners for our framework can be
implemented. A prototype verifier for SC game structures
that uses the iterated fixpoint approximation technique [4]
has been developed. In future work, we will generalize our
account to partially observable game settings.

REFERENCES

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. J. ACM, 49(5):672-713, 2002.

[2] J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook
of Modal Logic, volume 3, pages 721-756. Elsevier, 2007.

[3] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded
situation calculus action theories and decidable verification.
In Proc. KR, 2012.

[4] G. De Giacomo, Y. Lespérance, and A. R. Pearce. Situation
calculus based programs for representing and reasoning
about game structures. In Proc. KR, 2010.

[5] G. De Giacomo, Y. Lespérance, and A. R. Pearce.
Synchronous games in the situation calculus. Technical
report, La Sapienza Universita di Roma, 2015.

[6] M. R. Genesereth, N. Love, and B. Pell. General game
playing: Overview of the AAAI competition. AI Magazine,
26(2):62-72, 2005.

[7] R. Reiter. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

