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ABSTRACT

Over the last decade, methods for multiagent planning un-
der uncertainty have increased in scalability. However, many
methods assume value factorization or are not able to pro-
vide quality guarantees. We propose a novel family of in-
fluence-optimistic upper bounds on the optimal value for
problems with 100s of agents that do not exhibit value fac-
torization.
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1. INTRODUCTION
Recent years have seen the development of methods for

multiagent planning under uncertainty that scale to tens or
even hundreds of agents [7, 9, 2, 5, 11]. Many methods, how-
ever, provide approximate solutions without any guarantees
on quality, leaving the user to wonder how good the results
really are. Other methods provide guarantees, but only for
restricted sub-classes of problems. For instance, heuristic
search methods leverage structure in problems where the
value function can be additively factored into local compo-
nents (involving small subsets of agents) [7]. Unfortunately,
there currently is no known method of computing upper
bounds for problems that do not exhibit strict value factor-
ization, thereby precluding the leverage of heuristic search
techniques.
Our work addresses this problem by introducing influ-

ence-optimistic upper bounds (IO-UBs) for factored Dec-
POMDPs (fDec-POMDPs) that do not admit value factor-
ization. In particular, we consider problems (e.g., the Fire-

FightingGraph problem [5], illustrated in Fig. 1a) in which
the state is factored and the reward function is additively
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factored into local components, but the value function is not
due to the fact that the effect of actions of each agent can
propagate through the system (e.g., since fire can spread to
neighboring houses). Such locally-connected systems can be
found in applications as traffic control [11] or communication
networks [1, 3].

We derive bounds on very large fDec-POMDPs by sub-
dividing them in sub-problems (SPs), and by making opti-
mistic assumptions with respect to the influence [6] that will
be exerted by the rest of the system on each of these SPs.
In numerically evaluating our bounds, we demonstrate how,
for the first time ever, we can achieve a non-trivial guarantee
that the solution found by a heuristic method for problems
with hundreds of agents is close to optimal.

2. INFLUENCE OPTIMISTIC BOUNDS
The basic idea is to decompose an fDec-POMDP into a set

of sub-problems c ∈ C that contain a subset of agents, state
factors and local reward functions, as shown in Fig. 1c. In
particular, we apply a non-overlapping decomposition C (i.e.,
a partitioning) of the reward functions

{

Rl
}

of the original
factored Dec-POMDP into SPs c ∈ C, and compute an IO
upper bound V̂ IO

c for each c. Our global influence-optimistic
upper bound is then given by:

V̂
IO

,
∑

c∈C

V̂
IO

c .

In Fig. 1b we illustrate the construction of global upper
bounds V̂ for the 6-agent FFG problem. Shown are the
original problem (top row) and two possible decompositions
into SPs. The second row specifies a decomposition into
two SPs, while the third row uses three SPs. As illustrated,
our decomposition eliminates certain agents completely and
replaces them with idealized superhero-agents that provide
optimistic influences. For instance, in the second row, the
computation of V̂ IO

c for both SPs (c = 1,2) assumes that
agent 3 will always fight fire at c; in effect, our bounds as-
sume that agent 3 fights fire at both house 3 and house 4
simultaneously.

3. LOCAL BOUNDS
In order to compute local IO UBs V̂ IO

c for an SP c, we
introduce three techniques. All three make optimistic as-
sumptions with respect to the influences exerted on c by
the rest of the system: they assume that the highlighted
influence links in Fig. 1c will lead to the most favorable
transitions. The techniques differ in additional optimistic
assumptions that they make: IO-Q-MMDP assumes that
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(a) FireFightingGraph.

(b) Global upper bounds.
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(c) A 2-agent sub-problem
within 4-agent FFG.

(d) The global IO-Q-Dec-POMDP upper
bound on large FFG instances.

Figure 1: The FFG benchmark, its decompositions into sub-problems and results.

the SP is fully observable, IO-Q-MPOMDP assumes that
the agents can communicate freely, and IO-Q-Dec-POMDP
makes no additional assumptions. For more details, please
see [4].

4. RESULTS
We report on the ability to provide informative global up-

per bounds. For other experiments that compare the differ-
ent types of IO-UBs, investigate how they are affected by
the influence strength, and demonstrate their potential in
heuristic influence search [10], please see the long version of
this paper [4].
Figure 1d (left y-axis) plots the value of the tightest upper

bound we could find among different SP partitions (SP sizes
ranging from n = 2–5) to investigate the guarantees that it
can provide for transfer planning (TP) [5], which is one of
the methods capable of providing solutions for large factored
Dec-POMDPs. The value of TP, V TP , is determined using
10.000 simulations of the found joint policy leading to accu-
rate estimates. To put the results into context, we also show
the value of a random policy. Finally, we show (right y-axis
in Fig. 1d) what we call the empirical approximation factor

(EAF): EAF = max{ V̂
IO

V TP ,V
TP

V̂ IO
}, a number comparable to

the approximation factors of approximation algorithms [8].
As shown, the upper bound is relatively tight: the solu-

tions found by TP lie typically within an EAF of 1.4–1.7,
thus providing firm guarantees for solutions of factored Dec-
POMDPs with up to 700 agents. Moreover, we see that
the EAF stays roughly constant for the larger problem in-
stances indicating that relative guarantees do not degrade
as the number of agents increases. A similar approach for
the Aloha benchmark also indicates that IO-UBs can be
very tight [4]. In particular, we find EAFs ≤ 1.06 for up
to 250 agents, and for n = 50 agents we find an EAF of
1.00, essentially guaranteeing that the heuristic TP solution
is optimal.

5. CONCLUSIONS
Here, we have introduced the first general techniques for

computing upper bounds for large Dec-POMDPs that, de-
spite containing factored structure, do not exhibit value fac-
torization. We have demonstrated their usefulness in bound-

ing existing approximate methods on problems involving
100s of agents. This paper focused on the finite-horizon
case, but the principle of influence optimism can be applied
in infinite-horizon settings too. Our techniques can also
be modified to compute ‘pessimistic’ influence (i.e., lower)
bounds. In an extended version of this paper, we provide ev-
idence that the upper bounds may also be useful in improv-
ing the effectiveness of heuristic influence search, and discuss
further potential applications to multiagent planning [4].
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