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ABSTRACT
Sponsored search auctions (SSAs) have attracted much re-
search attention in recent years and different equilibrium
concepts have been studied to understand advertisers’ be-
haviors. However, the assumption that bidders are perfect-
ly rational in these studies is unrealistic in the real world.
In this work, we investigate the quantal response equilib-
rium (QRE) for SSAs. QRE is powerful in characterizing
the bounded rationality in the sense that it only assumes
that an advertiser chooses a better strategy with a larger
probability instead of choosing the best strategy determin-
istically. We propose a homotopy-based method to compute
the QRE of SSAs. We further show that there are many
nice properties of the SSAs compared with general normal
formal games, which can be used to improve the computa-
tional performance. Our experimental results indicate that
our algorithm outperforms the basic traversal method.
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1. INTRODUCTION
Sponsored search has become a major monetization means

for commercial search engines. Most of the time, there are
many more advertisers bidding for the query than the num-
ber of available ad slots. Hence, the search engines need
an auction mechanism to sell the ad slots. The most pop-
ular mechanism used by commercial search engines is the
Generalized Second Price (GSP) auction which has attract-
ed much research attention recently . Among those studies,
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equilibrium analysis is a hot topic to understand advertisers’
behaviors [2, 10]. A critical limitation of existing studies on
equilibrium analysis is that they assume the full rationality
of advertisers. In practice, an advertiser may be incapable
to estimate the bid strategies of his competitors and to take
the “best-response” action on that basis. In this paper, we,
for the first time, introduce the quantal response equilibrium
[6] into SSAs considering that it can deal with limited ratio-
nality situations and has presented very good performance
in general normal form games. QRE is a mixed strategy e-
quilibrium in which strategies with higher utilities are more
likely to be chosen than those with lower utilities, but the
best is not chosen with certainty due to the limited ratio-
nality of participants.

In our work, an efficient algorithm is proposed to com-
pute the QRE for SSAs. We show that this problem is
equivalent to finding a solution of a continuous non-linear
function. Basic Newton-type algorithms are usually local-
ly convergent and work well only when we could provide a
good starting point which is difficult to find in SSAs. To ad-
dress this problem, we introduce the homotopy principle [1],
which has been successfully used for equilibrium computa-
tion [9, 3]. Advantages of homotopy-based methods include
their numerical stability and potential to be globally conver-
gent. We noticed that Gambit [5] used the similar method
to compute the QRE for normal form games with homo-
geneous player precisions and logit quantal response [6, 9],
which are different from the settings in SSAs. We further
show that there are many nice properties of the SSAs which
can be used to refine the computational procedure.

2. GSP MECHANISM FOR SSAS
There are N bidders competing for K ad slots (N > K).

Let vi denote the private value of bidder i, which expresses
the maximum per-click price he is willing to pay. bi rep-
resents the bid submitted by i to participate in the auc-
tion. θik is the click-through-rate (CTR) of i’s ad when
placed at slot k, which is usually assumed to be the prod-
uct of the ad CTR αi and the slot CTR βk. In the GSP
mechanism, bidders are ranked in the descending order of
their ranking scores (αibi). Suppose advertisers are labeled
such that αibi ≥ αi+1bi+1, then the utility of bidder i is

ui = (vi − bi+1αi+1

αi
)αiβi, i = 1, 2, . . . ,K.
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3. COMPUTING QRE FOR SSAS
Bidder i’s expected utility is represented as ui(σ−i), where

σ−i is other bidders’ mixed strategy profile1. In the QRE
model, any bidder’s mixed strategy πi is a quantal response
to ui(σ−i) given his precision parameter λi. A profile σ is a
QRE if it satisfies the following set of equations:

σij = πij(σ−i|λi) (1)

for any bidder i and any pure strategy j. Computing a QRE
of SSAs is equivalent to finding a zero point of the nonlinear
functions

Fij(σ) = πij(σ−i|λi)− σij . (2)

If a good initial point which is close to a zero point of F
is available, we can directly apply Newton-style iteration
methods. However, we have little information about such a
good initial point. As pointed by Allgower and Georg [1],
Newton-style iteration methods often fail because poor start
points are very likely to be chosen. Hence we turn to the
homotopy method.

The basic idea of the homotopy is composed by two steps:
given a problem we want to solve, first, define a problem
G(σ) with a unique easily-computed solution and then build
a continuous transformation H with H(σ, 0) = G(σ) and
H(σ, 1) = F (σ); second, begin with the solution of G(σ)
and trace solutions of the associated problems H(σ, t), t ∈
[0, 1], until finally finding the solution of F (σ). The method
to trace the solutions is called predictor-corrector (PC) [1],
which begins with µ1 = (σ0, 0), the solution of H(σ, 0) =
G(σ), and then numerically generates a sequence of points
µi = (σ, t)i, i = 2, 3, . . . satisfying ‖H(µi)‖ ≤ ε for some
ε > 0 by the Euler predictor and Gauss-Newton corrector.

4. EFFICIENT COMPUTATION FOR SSAS
We need to compute the Jacobian matrix H ′ of H at each

predictor and corrector step when tracing the solutions with
PC method. Since the dimension of H could be large, the
efficiency of calculating H ′ will significantly affect the speed
of the homotopy method. We discuss how to efficiently cal-
culate H ′ by leveraging the properties of SSAs.

The elements in H ′ consist of the expected utilities of
bidders. The traditional traversal method (TM for short)
for computing the expected utility in normal form games is
exponential (O(MN )). Fortunately, the expected utilities in
SSAs with the GSP mechanism have many special properties
that could be utilized to reduce the computational complex-
ity. That is, a bidder’s utility only depends on how many
bidders’ ranking scores are greater and equal to him and on
the the maximal ranking score below him, but not on who
they are or exactly what their bids are. These properties
indicate that SSAs have considerable context-specific inde-
pendence structure and can be represented compactly by an
Action Graph Game with Function Nodes (AGGFN) [4, 8].
Thus we can reduce the complexity for computing a bidder’s
expected utility to O(KN3M). Besides, we find some meth-
ods to further avoid redundant calculation when computing
the elements of H ′. We call our improved method the IM.

5. EVALUATION
We make a comparison between the TM and the IM for

computing H ′ with games of different sizes (K = bN/2c).
1More details are included in the workshop paper [7]

we see from the figure that both of the two methods are effi-
cient and the improvement of IM is not apparent with small
games. However, the speed of TM slows down dramatically
with N increasing especially when M is large, e.g., by more
than 10000 times when M = 8. Moreover, there is also a
sharp degradation of TM’s performance as M grows with
large N ’s, but the efficiency of IM is not affected obviously.
These observations further confirm the improvement of IM.
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