
Large Neighborhood Search with Quality Guarantees for
Distributed Constraint Optimization Problems∗

(Extended Abstract)
Ferdinando Fioretto†, Federico Campeotto†, Agostino Dovier‡,

Enrico Pontelli†, William Yeoh†
†Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
‡Department of Mathematics and Computer Science, University of Udine, 208 33100 Udine, IT

†{ffiorett,fcampeot,epontell,wyeoh}@cs.nmsu.edu ‡agostino.dovier@uniud.it

ABSTRACT
This paper proposes Distributed Large Neighborhood Search (D-
LNS), an incomplete DCOP algorithm that builds on the strengths
of centralized LNS. D-LNS: (i) is anytime; (ii) provides guaran-
tees on solution quality (upper and lower bounds); and (iii) can
learn online the best neighborhood to explore. Experimental results
show that D-LNS outperforms other incomplete DCOP algorithms
in random and scale-free network instances.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms; Experimentation

Keywords
DCOP; LNS; Local Search; Distributed Q-Learning

1. INTRODUCTION
In distributed constraint optimization problems (DCOPs), agents

coordinate their value assignments to maximize the sum of result-
ing constraint utilities. DCOPs have been used to model various
multi-agent coordination and resource allocation problems. Opti-
mally solving DCOPs is NP-hard, thus incomplete algorithms are
often necessary to solve large problems of interest. Good quality
assessment are essential for sub-optimal DCOP solutions. How-
ever, current incomplete DCOP approaches can provide arbitrar-
ily poor quality assessments. In this paper, we introduce the Dis-
tributed LNS (D-LNS) framework, which builds on the strengths of
Large Neighboring Search (LNS) to solve DCOPs. LNS is a cen-
tralized local search algorithm that is very effective in solving large
optimization problems. It alternates between two phases: a destroy
phase, which selects a subset of variables to freeze and assigns them

∗This research is partially supported by INdAM-GNCS 2015 and
NSF grant HRD-1345232. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. government.
Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

values from the previous iteration, and a repair phase, in which it
determines an improved solution by searching over the values of
non-frozen variables (i.e., a large neighborhood).

2. BACKGROUND
A DCOP is a tuple 〈A,D,F〉, where A = {xi}n1 is a set of

agents, D= {Di}n1 is a set of finite domains (i.e, xi ∈ Di), F =
{fi}e1 is the set of binary utility functions, where fi :Di1 ×Di2→
N ∪ {−∞}, A solution x is a value assignment for all agents. Its
utility F(x) is the sum of the utilities across all the applicable util-
ity functions in x. Given a DCOP P , GP = (A, EF) is the con-
straint graph of P , where {xi1 , xi2} ∈ EF iff ∃fi ∈ F . A DFS
pseudo-tree of GP is a spanning tree T = 〈A, ET 〉 of GP s.t. if
fi ∈ F , then xi1 , xi2 appear in the same branch of T . Edges ofGP

that are in (resp. out of)ET are called tree edges (resp. backedges).

3. DISTRIBUTED LNS
We introduce D-LNS, a distributed LNS framework to solve

DCOPs. Each agent executing D-LNS iterates through the destroy
and repair phases as in LNS until a termination condition occurs.

Destroy: This phase aims at destroying part of the current solution,
by freezing some agents (i.e., maintain their values from the pre-
vious iteration), and enabling the optimization over the non-frozen
agents (large neighborhood). D-LNS uses Distributed Q-Learning
to select a large neighborhood that enable the repair phase to find
good solutions quickly. Distributed Q-Learning is used to find
an optimal action-choice policy in multi-agent Markov Decision
Processes (MDPs). It works by learning an action-value function
Q : S×A→R, where S is a finite set of states and A is a finite set
of executable actions. An optimal policy π∗ :S→A can be decom-
posed into n component-policies π∗i :S→Ai with Ai being the set
of actions executable by agent xi and π∗(s)=(π∗1(s), . . . , π∗n(s)).
The distributed Q-learning for multi-agent deterministic MDPs is
described by the following iterative rule,

Qk+1
i (s, zi) = max

{
Qk

i (s, zi),

Ri(s, zi) + λ max
z′i∈Ai

Qk
i (s′, z′i)

}
(1)

where Q1
i (s, zi) = 0, Ri : S × Ai→ R is a reward function of

agent xi that determines the reward of performing action zi in state
s, and s′ is the resulting state after executing action z′i in state s—
described by the transition function Ti : S × Ai→ S. We map
the problem of selecting the large neighborhood to a deterministic
multi-agent MDP, where: S is the set of all possible complete so-
lutions; for a state s, action zi of agent xi, and iteration k, Ai is

1835

|A| D-BLNS BMS KOPT2 KOPT3 D-Gibbs DBA
sim. time ρ ε sim. time ρ ε sim. time ρ ε sim. time ρ ε sim. time ε sim. time ε

10 11 1.03 1.01 211 1.05 1.29 44 4.33 1.06 57 3.50 1.03 13 1.17 7 1.51
25 14 1.42 1.00 595 1.83 1.28 231 9.33 1.25 438 7.25 1.18 87 1.43 29 3.85
50 29 1.59 1.00 861 2.20 1.34 709 17.6 1.44 1264 13.5 1.51 375 1.59 108 3.48

100 112 1.66 1.00 2074 2.21 1.28 3208 34.3 1.72 9113 26.0 1.92 1630 1.64 582 2.12
250 1405 1.63 1.00 18372 2.34 1.43 86675 42.2 1.68 – 23091 2.97 6533 3.22
500 12938 1.65 1.00 242236 2.75 1.63 – – 135366 1.67 54188 2.22

1000 133047 1.59 1.00 – – – 278300 1.60 –

Table 1: Experimental Results on Distributed RLFA Problems

the set {fr,¬fr}, as in freeze or not freeze; the reward computed at
iteration k is Ri(s, zi) =F(xk), with xk the complete solution in
such iteration; and Ti(s, zi) is the next solution found by the repair
algorithm. The goal is to find a mapping π∗i : S→Ai that deter-
mines the decision of the agent to freeze its variable or not based
on the complete solution in the previous iteration.

Repair: The goal of this phase is to find an improved solution by
searching over a large neighborhood. To do so, we introduce the
Distributed Bounded LNS (D-BLNS) algorithm, which attempts to
iteratively refine the DCOP solution bounds. In each iteration k, it
executes the following phases.

RELAXATION PHASE: Given a DCOP P , this phase computes two
relaxations1 of P , P̌ k and P̂ k, which are used to compute, re-
spectively, a lower and an upper bound on the optimal utility for
P . Let LNk be the set of large neighborhood agents in iteration
k. Both problem relaxations are solved using the same underlying
pseudo-tree structure T k = 〈LNk, ETk 〉, computed from the sub-
graph ofGP restricted to the nodes inLNk, i.e., 〈LNk, Ek〉where
Ek ={{x, y} | {x, y} ∈ EF ;x, y ∈ LNk}. In the relaxed DCOP
P̌ k, we wish to find a solution x̌k using2

x̌k = argmax
x

F̌k(x)

= argmax
x

∑
f∈E

Tk

f(xi,xj) +
∑

xi∈LNk,xj 6∈LNk

f(xi, x̌
k−1
j)

(2)

where x̌k−1
j is the value assigned to agent xj for problem P̌ k−1

in the previous iteration. The first summation is over all functions
listed as tree edges in T k, while the second is over all functions be-
tween a non-frozen agent and a frozen one. This solution is used to
compute lower bounds, during the bounding phase. In the problem
P̂ k, we wish to find a solution x̂k using

x̂k = argmax
x

F̂k(x) = argmax
x

∑
f∈F

f̂k(xi,xj) (3)

where f̂k(xi,xj) is defined as:

f̂k(xi,xj)=


max

di∈Di,dj∈Dj

f(di, dj) if Γk
f = ∅

max
{
f(xi,xj), max

k′∈Γk−1
f

f(x̂k′
i , x̂

k′
j)

}
otherwise

where Γk
f =
{
k′ | f ∈ ETk′ ∧ 1 ≤ k′ ≤ k

}
is the set of past itera-

tion indices for which the function f was a tree edge in the pseudo-
tree. Therefore, the utility of F̂ k(x̂k) is composed of two parts.
The first part involves all functions that have never been part of a
pseudo-tree up to the current iteration, and the second part involves
all the remaining functions. The utility of each function in the first
part is the maximal utility over all possible pairs of value combi-
nations of agents in the scope of that function, and the utility of
each function in the second part is the largest utility over all pairs
1I.e., defined on a relaxed version of the constraint graph GP .
2We identify each edge {x, y} of the tree with the constraint
f(x, y) that generated it.

of value combinations in previous solutions. This solution is used
to compute upper bounds (during the bounding phase).
SOLVING PHASE: Next, D-BLNS solves the relaxed DCOPs P̂ k

and P̌ k using the equations above. At a high-level, D-BLNS is an
inference-based algorithm, similar to DPOP [5]. Each agent start-
ing from the leaves of the pseudo-tree, projects itself out and sends
its projected utilities to its parent. These utilities are propagated up
the pseudo-tree until they reach the root. Once the root receives
utilities from each of its children, it selects the value that maxi-
mizes its utility and sends it down to its children, which repeat the
same process. These values are propagated down the pseudo-tree
until they reach the leaves, at which point the problem is solved.
BOUNDING PHASE: Finally, D-BLNS computes the lower and up-
per bounds based on the solutions x̌k and x̂k. A guaranteed ap-
proximation ratio for P is ρ=minkF̂

k(x̂k)

maxkF(x̌k)

4. EXPERIMENTAL RESULTS
We evaluate our D-LNS framework against state-of-the-art in-

complete DCOP algorithms with and without quality guarantees:
Bounded Max-Sum (BMS) [6], k-optimal algorithms (KOPT) [4],
Distributed Breakout Algorithm (DBA) [2], and Distributed Gibbs
(D-Gibbs) [3]. We conduct our experiments on distributed Ra-
dio Link Frequency Assignment (RLFA) problems [1] and report
the simulated runtime [7] averaged over 20 DCOP instances. We
model the constraint graphs as scale-free graphs, and vary |A| from
10 to 1000, and set |Di| = 10. Table 1 reports, for each algo-
rithm, the time needed to find the best solution, its approximation
ratio ρ, and the ratio of the best quality found versus its quality ε.
Best runtimes, approximation ratios, and quality ratios are shown
in bold. The results show D-BLNS can scale better to large prob-
lems than algorithms with quality guarantees (i.e., BMS, KOPT2,
and KOPT3). Additionally, it also finds better solutions (i.e., better
approximation ratios ρ and better quality ratios ε) than those of the
competing algorithms.

REFERENCES
[1] F. Fioretto, T. Le, W. Yeoh, E. Pontelli, and T. C. Son. Improving

DPOP with branch consistency for solving distributed constraint
optimization problems. In CP, pages 307–323, 2014.

[2] K. Hirayama and M. Yokoo. The distributed breakout algorithms.
Artificial Intelligence, 161(1–2):89–115, 2005.

[3] D. T. Nguyen, W. Yeoh, and H. C. Lau. Distributed Gibbs: A
memory-bounded sampling-based DCOP algorithm. In AAMAS, pages
167–174, 2013.

[4] J. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for
distributed constraint optimization problems. In IJCAI, pages
1446–1451, 2007.

[5] A. Petcu and B. Faltings. A scalable method for multiagent constraint
optimization. In IJCAI, pages 1413–1420, 2005.

[6] A. Rogers, A. Farinelli, R. Stranders, and N. Jennings. Bounded
approximate decentralised coordination via the max-sum algorithm.
Artificial Intelligence, 175(2):730–759, 2011.

[7] E. Sultanik, P. J. Modi, and W. C. Regli. On modeling multiagent task
scheduling as a distributed constraint optimization problem. In IJCAI,
pages 1531–1536, 2007.

1836

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150302115856
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150302115856
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

