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ABSTRACT Key model assumptions of popular IRL methods are that the

expert’s stochastic transition function is completely known to the
ful for learning, from passive observations, the behaviors of mul- learner as in IRL for apprenticeship learning [1] and in Bayesian

tiple robots executing fixed trajectories and interacting with each IRL 4] Alterngtely, the transitio_n function is effectively dete”‘?'”'
other. In this paper, we relax a crucial assumption in IRL to make it '?’t'c and _thus is easily a_pprommated _fl_'om the observed trajec_to-
better suited for wider robotic applications: we allow the transition ,”ej [?% with thﬁ aissumptylo?. th;’iétrr?nslltlorjr;]andqmnkess Taj alim-
functions of other robots to be stochastic and do not assume that the'€d €ffect on tfe eg_rfrf]_erT Inal benavior. ﬁpr|c;r nowle ?e re-
transitionerror probabilities are known to the learner. Challenged qwrem_ent Is often difficult to sa'tlsfy I practice, for exampie, n
by occlusion where large portions of others’ state spaces are fully SCENarios that are not cooperative such as the patrolling applica-
i the supposed impotency of transition errors is a

hidden, we present a new approach that maps stochastic transitiond°"- Alternately_, ;
to distributions over features. strong assumption in the context of robots.

. . . We partially relax IRL's prior knowledge requirements and tread
Categoriesand Subject Descriptors a middle path: we limit to those settings where a mobile robot’s
1.2.9 [Robotics]: Workcell organization and planning stochastic transition function may be viewed as composed of a
General Terms deterministic core perturbed by transition error probabilities that

make it stochastic. Given a state-action pair, the learner knows the

Multi-robot inverse reinforcement learninm(RL) is broadly use-

Algorithms; Performance intended next state of each expert. However, the transition error

Keywords probabilities are unknown. Of course, the learner may learn the

] ) ] ) ) complete transition functions using supervised learning if it ob-

inverse reinforcement; machine learning; multi-robot systems serves the experts fully and long enough. But, partial occlusion and
a finite observation time motivate sophisticated methods.

1. INTRODUCTION Challenged by occlusion, we presemRL?+Int a novel method

We study an application setting involving two mobile robots in- based on the key insight that different transitions share underlying
dependently executing simple cyclic trajectories for perimeter pa- component features, and features associated with observed state-
trolling. Both robots’ patrolling motions are disturbed when they action pairs may transfer information to transitions in occluded por-
approach each other in narrow corridors leading to an interaction. tions. SubsequentlynIRL),+Int maps each state-action pair to a
A subject robot observes them fronhialdenvantage point that af-  feature subset. Thus, probability of success of an action in a state
fords partial observability of their trajectories only. It's task is to  resulting in the intended next state is the joint probability of success
penetrate the patrols and reach a goal location without being spot_of all features involved in that action. Our task reduces to finding
ted. Thus, its eventual actions do not impact the other robots. the probability of success of each feature from observations that do

Inverse reinforcement learning (IRL) [3, 5] is well suited as a Not inform each feature but instead pertairieature aggregates
starting point here because the task is to learn the preferences of
passively-observed experts from their state-action trajectories. pre-2. LEARNING OTHERS TRANSITIONS
viously, Bogert and Doshi [2] models each observed robot in the Lety: S x A — S map an observed robot's transition from
setting as guided by a policy from a Markov decision process (MDP) state,s, given actiona to a particular next state;. The function,
and utilizes IRL generalized for occlusion. However, the interac- ), gives the intended outcome of each action from each state. We
tions between the patrollers must be modeled as well. As these aremay view this as @eterministidransition function. Of course, ac-
sparse and scattered, the robots are modeled as playing a game aions may not always generate their intended outcomes leading to
each point of interaction. Consequently, this method labeled small errors in the corresponding transitions. Furthermore, parts of
mIRL"+Int generalizes IRL — so far limited to single-expert con- the robot’s trajectory may be occluded from the subject robot, and
texts — to multiple experts exhibiting sparse interactions and whose the robot may be guided by a policy. Both these factors make it
trajectories are partially occluded from the learner. unlikely that the learning robot will observe every action in ev-

ery state enough times to reliably compute the full transition func-
tion. Therefore, we focus on learning the probability of transition-
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Figure 1: (left) Hallways of a building patrolled by I (in blue) and J (in red) with the start location of L inside a room looking out of an open
door. The goal location is marked with an *X. (middle) L earned behavior accuracy of mIRL?,.+Int and Known R /1 for different occlusion ratesand
observing times. (right) Improving accuracy of learned behavior correlates almost linearly with successrate.

wholly assigned to a default error state. This approach requires that3. PERFORMANCE EVALUATION

Y is available to the learner (but not the probability with which We evaluatemIRL,+Int in the domain introduced by Bogert
(s, a) results). In order to learn robustly under occlusion, our ap- and Doshi [2] and discussed in Fig. IL utilizes the following in-
proach is based on the following key observation: If transition prob-  gependent binary feature random variables as paf cnd 77
abilities are a function of underlying component outcome probabil- Rotate left wheel at specified speed, used at all states and for all
ities, then the observed trajectory may inform associated compo- actions except turn lefRRotate right wheel at specified speed, used
nent probabilities. Subsequently, if some of these components aregt g)| states and for all actions except turn rigigvigation ability
shared with transitions in occluded states, then information is trans- that models the robot’s localization and plan following capabilities
ferred that facilitates obtaining occluded transition probabilities. iy the absence of motion errors, used at all states and for all actions
We begin by mapping each state-action to a subset of lower-level except stopFloor slip, used for all states and actior®(s, a) for

transition features. Lef;* = {r,..., 74} be the subset of inde- 1 and . involves the same binary feature functions as in Bogert
pendent features mapped to a state-action pgin), where each  and Doshi [2]. For comparison, we consider an approach, labeled
feature;r < 71, is a binary random variable whose statesmaand asKnown R/, that learns the transition function but knows the
7. Subsequently, define for a transitidg, a, ¥ (s, a)), reward functions of patrollers including how they interact with
acting accordingly. This approach acts asigper bound.
Ti(s,a,9(s,a)) = Pr(7i,m2, ., Tjgpa)) & HTEE?a Pr(r) Each robot in our simulations is BurtleBot equipped with a

) ) . Kinect. ROS’s default local motion planner is used for navigation.
The equation above casts the problem of inversely learning the gach robot localizes itself in a map using the adaptive MCL avail-
transition function as the problem of learning the distributions of gpje in ROSL is spotted if it is roughly within 6 cells of a patroller
the state-action featureslowever, the challenge is that we may  and the patroller faces it. We vary the starting locations of the pa-
not be able to pinpoint the performance of the various features {rqjiers across runs. We study the impactnofRL’+Int on L’s

in the observed trajectory; rather we obtaaggregated empiri- success ratén simulation. This is the proportion of runs in which
cal distributions.An obser\éed trajectory of IenTgtﬁ ISasequence [ reaches the goal state unspotted by a patroller. Another key met-
of state-action paird,(s, a)”, (s,a) ..., (s, ¢)" }, whereg s the ric is thelearned behavior accuracy, which is the proportion of all

null action. From this, we obtain the probabilities of transitioning  states at which the actions prescribed by the inversely learned pol-
to the intended state given the previous state and action, denotedcy of the patroller coincide with their actual actions. This metric
by q}“s’“’, as simply the proportion of times the intended state is permits focus on the learning mIRL , +Int.

observed as the next state in the trajectory. Notice that the proba- We begin by evaluating the learned behavior accuracy of

bility, q}"(s’”, obtained from an observed trajectory is equivalentto mIRL}+Int as a function of the degree of observability and ob-

T1(s,a,¥(s,a)). Consequently, serving time, in Fig. 1. The degree is the proportion of(ally)
, cells in the state space that are visibld.tats complement gives a
H ceso Pr(r) = ¢y (1) measure of the occlusioknown R provides an artificial upper
TEST

bound. Each data point is the average of 200 simulated runs. Ex-
While ¢3¢ tells us which features are assigned to each state-action pectedly, the accuracy oflRL+Int improves with both observ-
and Eq. 1 constrains the feature distributions, arrive at an ill- ability and time. Furthermore, behavior accuracy correlates posi-
posed problem where there could be many feature distributions sat- tively with success rate that reaches u®6 for mIRL)+Int.
isfying observed transition probabilities that serve as aggregates
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