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ABSTRACT
We provide the first formalization of self-interested multiagent plan-
ning using expectation-maximization (EM). Our formalization in
the context of infinite-horizon and finitely-nested interactive POMDP
(I-POMDP) is distinct from EM formulations for POMDPs and
other multiagent planning frameworks. Specific to I-POMDPs, we
exploit the graphical model structure and present a new approach
based on block-coordinate descent for further speed up.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimental
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1. PLANNING IN I-POMDP AS INFERENCE
We may represent the policy of agent i for the infinite-horizon

finitely-nested I-POMDP [1, 3] as a stochastic finite state con-
troller (FSC), defined as: πi = 〈Ni, Ti,Li,Vi〉 where Ni is the
set of nodes in the controller. Ti : Ni×Ai×Ωi×Ni → [0, 1] rep-
resents the node transition function; Li : Ni×Ai → [0, 1] denotes
agent i’s action distribution at each node; and an initial distribution
over the nodes is denoted by, Vi : Ni → [0, 1]. For convenience,

we group Vi, Ti and Li in f̂i. Define a controller at level l for

agent i as, πi,l = 〈Ni,l, f̂i,l〉, where Ni,l is the set of nodes in the

controller and f̂i,l groups remaining parameters of the controller
as mentioned before. Analogously to POMDPs [4], we formulate
planning in multiagent settings formalized by I-POMDPs as likeli-
hood maximization. The planning problem is modeled as a mixture
of DBNs of increasing time from T=0 onwards. Transition and ob-
servation functions of I-POMDPi,l parameterize the chance nodes

s and oi, respectively, Pr(rTi |aT
i , a

T
j , s

T )∝ Ri(s
T ,aT

i ,aT
j )−Rmax

Rmax−Rmin
.

The networks include nodes, ni,l, of agent i’s level-l FSC. There-

fore, functions in f̂i,l parameterize the network as well, which are
to be inferred. Additionally, the network includes the model nodes
– one for each other agent – that contain the candidate level 0

Appears in: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Bor-
dini, Elkind, Weiss, Yolum (eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

models of the agent. Each model node provides the expected distri-
bution over another agent’s actions. The straightforward approach
is to infer a likely FSC for each level 0 model. However, this ap-
proach does not scale to many models. Proposition 1 shows that the
dynamic Pr(at

j |st) is sufficient information for predictions.

PROPOSITION 1 (SUFFICIENCY). Distribution
∏T

t=0

∑
at
j∈Aj

Pr(at
j |st) across states, st, is sufficient predictive information about

other agent j to obtain the most likely policy of i.
Given Prop. 1, we seek to infer Pr(at

j |mt
j,0) for each (updated)

model of j at all time steps, which is denoted as φj,0. Other terms
in the computation of Pr(at

j |st) are known parameters of the level
0 DBN. The likelihood maximization for the level 0 DBN is:

φ∗
j,0 = argmax

φj,0

(1−γ)
∞∑

T=0

∑
mj,0∈MT

j,0

γTPr(rTj = 1|T,mj,0;φj,0)

As the trajectory consisting of states, models, actions and obser-
vations of the other agent is hidden at planning time, we may solve
the above likelihood maximization using EM.
E-step at level 0 The “data” in the level 0 DBN consists of the
initial belief over the state and models, b0i,1, and the observed re-
ward at T . Analogously to EM for POMDPs, this motivates for-
ward filtering-backward smoothing on a network with joint state,
(st,mt

j,0), for computing the log likelihood. The transition function
for the forward and backward steps is:

Pr(st,mt
j,0|st−1,mt−1

j,0 ) =
∑

at−1
j ,otj

φj,0(m
t−1
j,0 , at−1

j )

× Tmj (s
t−1, at−1

j , st) Pr(mt
j,0|mt−1

j,0 , at−1
j , otj)Omj (s

t, at−1
j , otj)

where mj in the subscripts is j’s model at t− 1. Forward filtering
gives the probability of the next state as follows:

αt(st,mt
j,0) =

∑
st−1,mt−1

j,0

Pr(st,mt
j,0|st−1,mt−1

j,0 ) αt−1(st−1,mt−1
j,0 )

where α0(s0,m0
j,0) is the initial belief of agent i.

The smoothing by which we obtain the joint probability of the
state and model at t− 1 from the distribution at t is:

βh(st−1,mt−1
j,0 ) =

∑
st,mt

j,0

Pr(st,mt
j,0|st−1,mt−1

j,0 ) βh−1(st,mt
j,0)

where h denotes the number of time steps until T (horizon), and
β0(sT ,mT

j,0) = EaT
j |mT

j,0
[Pr(rTj = 1|sT ,mT

j,0)].

Messages αt and βh give the probability of a state at some time
slice in the DBN. As we consider a mixture of BNs, we seek the
probabilities for all states in the mixture model. Subsequently, we
may compute the forward and backward messages at all states for
the entire mixture model in one sweep.
M-step at level 0 We obtain the updated φ′

j,0 from the full log
likelihood by separating the terms and maximizing it w.r.t. φ′

j,0:
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(a) 5-agent tiger: all methods
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(b) 2-agent ML: all methods
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(c) 5-agent tiger: I-EM-BCD, I-BPI
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(c) 2-agent ML: I-EM-BCD-Greedy, I-BPI

Figure 1: FSCs improve with time for I-POMDPi,1 in the (a) 5-agent tiger, and (b) 2-agent ML. I-EM-BCD converges significantly quicker than
I-BPI to similar-valued FSCs for (c) multiagent tiger, and (d) ML problems. All were run on Linux with Intel Xeon 2.6GHz CPUs and 32GB RAM.

φ′
j,0(a

t
j ,m

t
j,0) ∝ φj,0(a

t
j ,m

t
j)

∑
st

Rmj (s
t, atj) α̂(s

t,mt
j,0)

+
∑

st,st+1,mt+1
j,0 ,ot+1

j

γ

1− γ
β̂(st+1,mt+1

j,0 ) α̂(st,mt
j,0)

× Tmj (s
t, atj , s

t+1) Pr(mt+1
j,0 |mt

j,0, a
t
j , o

t+1
j ) Omj (s

t+1, atj , o
t+1
j )

At strategy levels, l ≥ 1, we seek π∗
i,l which maximizes the

likelihood and it is iteratively obtained using EM.
E-step at level 1 In a multiagent setting, the hidden variables
additionally include what the other agent may observe and how
it acts over time. However, a key insight is that Proposition 1 al-
lows us to limit attention to the conditional distribution over other
agents’ actions given the state. In the T -step DBN mixture model,

observed evidence includes the reward, rTi , at the end and the initial
belief. We seek the likely distributions, Vi, Ti, and Li, across time
slices. We may again realize the full joint in the expectation using
a forward-backward algorithm on a hidden Markov model whose
state is (st, nt

i,l). The transition function of this model is,

Pr(st, nt
i,l|st−1, nt−1

i,l ) =
∑

at−1
i ,at−1

−i ,oti
Li(n

t−1
i,l , at−1

i ) Ti(nt−1
i,l ,

at−1
i , oti, n

t
i,l) Ti(s

t−1, at−1
i , at−1

−i , st) Oi(s
t, at−1

i , at−1
−i , oti)

The forward message, αt = Pr(st, nt
i,l), represents the probabil-

ity of being at some state of the DBN at time t:

αt(st, nt
i,l) =

∑
st−1,nt−1

i,l

Pr(st, nt
i,l|st−1, nt−1

i,l ) αt−1(st−1, nt−1
i,l )

where, α0(s0, n0
i,l) = Vi(n

0
i,l)b

0
i,l(s

0).
The backward message gives the probability of observing the

reward in the final T−1th time step given some state of the Markov

model, βt(st, nt
i,l) = Pr(rTi = 1|st, nt

i,l):

βh(st, nt
i,l) =

∑
st+1,nt+1

i,l

Pr(st+1, nt+1
i,l |st, nt

i,l) β
h−1(st+1, nt+1

i,l )

where, β0(sT , nT
i,l) =

∑
aT
i ,aT

−i
Pr(rTi = 1|sT , aT

i , a
T
−i) ×

Li(n
T
i,l, a

T
i )

∏
−i Pr(aT

−i|sT ), and 1 ≤ h ≤ T is the horizon.

Here, Pr(rTi = 1|sT , aT
i , a

T
−i) ∝ Ri(s

T , aT
i , a

T
−i).

M-step at level 1 We update the parameters, Li, Ti and Vi, of
πi,l to obtain π′

i,l based on the expectation in the E-step. In order
to update, Li, we partially differentiate the expected log likelihood
with respect to L′

i. L′
i on maximizing the log likelihood is:

L′
i(n

t
i,l, a

t
i) ∝ Li(n

t
i,l, a

t
i)

∑∞
T=0

∏
−i

∑
sT ,aT

−i

γT

1− γ

× Pr(rTi = 1|sT , aTi , aT−i) Pr(aT−i|sT ) α(sT , nT
i,l)

Node transition probabilities Ti and node distribution Vi for π′
i,l,

is updated analogously to Li.
Block-Coordinate Descent for Speed Up Block-coordinate de-
scent (BCD) [5] is an iterative scheme to gain faster non-asymptotic

rate of convergence in the context of large-scale N -dimensional op-
timization problems. In this scheme, within each iteration, a set of
variables referred to as coordinates are chosen and the objective
function is optimized with respect to one of the coordinate blocks
while the other coordinates are held fixed. We empirically show that
grouping the number of time slices, t, and horizon, h, in computing
α and β, respectively, at each level, into coordinate blocks of equal
size is beneficial. In other words, we decompose the mixture model
into blocks containing equal numbers of Bayesian networks.

2. EXPERIMENTS
Four variants of EM are evaluated as appropriate: the exact EM

inference-based planning (labeled as I-EM); replacing the exact M-
step with its greedy variant (I-EM-Greedy) [4]; iterating EM based
on coordinate blocks (I-EM-BCD) and coupled with a greedy M-
step (I-EM-BCD-Greedy). We use 2 problem domains: the nonco-
operative multiagent tiger problem [1] with a total of 5 agents and
50 models for each other agent. A larger noncooperative 2-agent
money laundering (ML) problem [2] forms the second domain.

In Fig. 1(a, b), we compare the variants on both problems. Each
method starts with a random seed, and the converged value is sig-
nificantly better than a random FSC for all methods and problems.
Increasing the sizes of FSCs gives better values in general but also
increases time; using FSCs of sizes 5 and 3 for the 2 domains re-
spectively demonstrated a good balance. I-EM-BCD consistently
improves on I-EM: the corresponding value improves by large steps
initially (fast non-asymptotic rate of convergence). We compare
the quickest of the I-EM variants with previous best algorithm, I-
BPI [3] (Figs. 1(c, d)), allowing the latter to escape local optima
as well by adding nodes. Observe that FSCs improved using I-EM-
BCD converges to values similar to those of I-BPI almost two or-
ders of magnitude faster. Beginning with 5 nodes, I-BPI adds 4
more nodes to obtain the same level of value as EM for the tiger
problem. For money laundering, I-EM-BCD-Greedy converges to
controllers whose value is at least 1.5 times better.
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