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ABSTRACT
Typical implementations of artificial intelligent agents sug-
gest that actions should be chosen in order to maximise
some reward function. This naturally complies the phi-
losophy behind rational choice theory. Yet, this heuristic
may not always provide long-term success to the considered
agents. In this paper, we stress the need to consider the
self-organised and frequency-dependent nature of the envi-
ronment, when designing agents that act in complex adap-
tive systems. We resort to the tools of evolutionary game
theory, combined with a paradigmatic scenario of a popu-
lation of self-regarding agents playing Ultimatum Game, to
describe the dynamical impact of individual mistakes on col-
lective behaviour. We resort to agent based simulations to
show that that seemingly disadvantageous and irrational er-
rors become the source of individual and collective long-term
success.
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1. INTRODUCTION
The goals of artificial agents are often formalised through

the notion of utility, and the capability to choose actions
intelligently is fulfilled through utility-maximisation heuris-
tics. Thereby, the framework of rational choice theory em-
bodies itself the notion of intelligence as rationality may con-
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veniently ground stylised models of human behaviour. When
empirical evidence shows that humans systematically devi-
ate from the rational model, explanations often suggest the
lack of information or computational power. Consequently,
the concept of bounded rationality relaxes the strongest as-
sumptions of the pure rational model [5, 4]. Either way, the
existence of seemingly irrational decisions is often reported
as disadvantageous.

In this paper, we present a paradigmatic scenario in which
irrational behaviour may be the source of long-term success,
if we consider a complex system composed by self-regarding
agents. We assume that the goals and strategies of agents
are formalised through the famous Ultimatum Game (UG)
[2]. The rules of this game are simple: two players interact
in two distinct roles. One is called the Proposer and the
other is denominated Responder. The game is composed by
two subgames, one played by each role. First, some amount
of a given resource, e.g. money, is conditionally endowed to
the Proposer, and this agent must then suggest a division
with the Responder. Secondly, the Responder will accept or
reject the offer. The agents divide the money as it was pro-
posed, if the Responder accepts. By rejecting, none of them
will get anything. The rational behaviour in UG can be de-
fined through the notion of subgame perfect equilibrium. If
one divides the UG in two stages, as suggested above, it is
possible to apply the method of backward induction. The
last agent to play is the Responder. Facing the decision
of rejecting (earn 0) or accepting (earn some money, even
if a really small quantity), this agent would rationally pre-
fer to Accept. Secure about this deterministic acceptance,
the Proposer will offer the minimum possible, maximising
his own share. Thereby, the sub-game perfect equilibrium
predicts offers close to the minimum by the Proposers and
unconditional acceptance by the Responders. Intriguingly
however, there is a myriad of studies that account for an ir-
rational behaviour by human beings when playing this game
[2, 1].

We model a finite population of adaptive agents that co-
evolve by imitating the best observed actions [6]. We focus
on the changes regarding the frequency of agents adopting
each strategy, over time. This process of social learning,
essentially analogous to the evolution of animal traits in a
population, enable us to use tools of Evolutionary Game
Theory (EGT), originally applied in the context of theoret-
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ical biology [3]. We compute the behavioural outcome in a
set of agent based simulations detailed in the next section.

2. AGENT BASED SIMULATIONS
We assume that agents may choose a continuity of strate-

gies. In the population of the Proposers, the strategy of
each agent is characterised by value p ∈ [0, 1], the offer being
proposed. In the population of Responders, each individual
action is defined by q ∈ [0, 1], the threshold of acceptance.
A proposal is accepted if p ≥ q. In this case, the Proposer
earns 1− p and the Responder earns p. If p < q both agents
earn 0. We employ a general procedure to simulate evolving
agents in the context of EGT. At each time step, a popula-
tion is randomly picked, from which two agents are chosen
(agents A and B). The fitness of each agent (fA and fB) is
calculated by averaging their returns when interacting with
all agent from the opposite population. Agent A will then
imitate agent B with a probability provided by a sigmoid

function – (1 + eβ(fA−fB))
−1

[6]. With a small probability
of µ, imitation will not take place and agent A updates the
own strategy to a randomly picked one, between 0 and 1.
In biology, this corresponds to a genetic mutation while, in
social learning and cultural evolution, this mimics the ran-
dom exploration of behaviours. A similar procedure may
be found, for instance, in reinforcement learning with the
so-called ε-greedy methods. The variable β in the equation
above is well-suited to control the selection strength, allow-
ing to manipulate the extent to which imitation depends on
the fitness difference. The same procedure takes place in the
opposite population. When 2Z steps of imitation occur, Z
in each population, we say that one generation has elapsed.
We evolve our system for 5000 generations, and we save the
average fitness and average strategy used, for each popula-
tion. Agents start with random strategies, sampled from a
uniform distribution between 0 and 1. We repeat the simula-
tion for 50 times, each time starting with random conditions.
The results presented (average fitness) correspond to a time
average over all generations and an ensemble average over
all repetitions. In all plays done by the Responders, a noise
factor, translating a systematic behavioural error, will be
added their base strategy. Thus, the real action employed
by Responders will correspond to q′, their base strategy (q),
plus U(−ε, ε), a random value between −ε and ε sampled
from a uniform distribution. Naturally, the values of q′ are
truncated to remain in the closed domain [0, 1].

3. RESULTS
We show that the fitness of the Responders will be max-

imised if they commit an execution error sampled from an
interval close to [−0.3, 0.3]. In Figure 1, we show how the
average fitness of Proposers (circles) and Responders (trian-
gles) is affected by changing the range of possible execution
errors (ε) committed by Responders. If the error increases,
Responders are endowed with increased fitness. The Pro-
posers are always harmed by the erroneous behaviour of Re-
sponders. The sub-game perfect equilibrium prediction poses
that Proposers will earn all the pot when they offer almost
nothing to the Responder, assuming an unconditional accep-
tance by this agent. Yet, if it is assumed that Responders
will commit execution errors, which, in the case of heighten
the threshold of acceptance may be seen as an irrational
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Figure 1: The effects of varying the span of error
(ε) committed by the Responders in the average fit-
ness of Proposers (circles) and average fitness of Re-
sponders (triangles), for µ = 0.001 (filled) and µ = 0.1
(empty). It is beneficial for the Responder to be-
have erroneously, to some extent. If Responders re-
ject irrationally some proposals, the Proposers have
to adapt and start to offer more, beneficing, in the
long run, the Responders; If Responders reject too
much, they will harm themselves and the population
of Proposers. As verified, these conclusions remain
valid for a wide range of mutation rates (µ). Other
parameters: Z = 100, β = 10.

behaviour, the Proposers necessarily have to adapt to have
their proposals accepted and earn some payoff. This adap-
tation leads to an increase of the offer, favouring the aver-
age fitness of the Responders. Additionally, we note that
if the Responders error unreasonably, both Proposers and
Responders will be impaired. Overall, we provide a minimal
model showing how erroneous (or irrational) moves can be
a rewarding option at the population level, while fostering
fairness in pairwise endeavours.
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