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ABSTRACT
This paper deals with fair optimization problems where sev-
eral agents are involved. In this setting, a solution is eval-
uated by a vector whose components are the utility of the
agents for this solution, and one looks for solutions that
fairly satisfy all the agents. Lorenz dominance has been
proposed in economics to refine the Pareto dominance by
taking into account satisfaction inequality among the agents.
The computation of Lorenz efficient solutions in multiagent
optimization is however challenging (it has been shown in-
tractable and NP-hard on certain problems). Nevertheless,
to our knowledge, very few works address this problem. We
propose thus in this work new methods to generate Lorenz
efficient solutions. More precisely, we consider the adapta-
tion of the well-known two-phase method proposed in biob-
jective optimization to the bi-agent optimization case, where
one wants to directly compute the Lorenz efficient solutions.
We study the efficiency of our method by applying it on the
bi-agent knapsack problem.

Categories and Subject Descriptors
F.2 [Theory of computation]: Analysis of algorithms
and problem complexity; J.4 [Social and Behavioral Sci-
ences]: Economics; G.1.6 [Numerical Analysis]: Opti-
mization—Integer programming

General Terms
Algorithms, Economics
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1. INTRODUCTION
In multiagent decision problems, where one wants to make

a decision with respect to the preferences of several agents,
the concept of fairness turns out to be a crucial concern.
This occurs for example when several agents (e.g. countries,
companies) share the exploitation of an earth observation
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satellite in order to reduce their cost [7]. When the prefer-
ences are cardinal, the agents express their preferences over
the alternatives through utility functions, each agent hav-
ing his/her own utility function to maximize. Therefore a
decision is evaluated by a vector of utilities where a com-
ponent represents the utility of an agent for this decision.
Since there is generally not a solution that is the most pre-
ferred for all the agents, one has to determine compromise
solutions that fairly satisfy all the agents. Pareto efficiency
(P -efficiency) enables to define a partial preorder over the
solutions based on the unanimity principle: if all the agents
prefer a solution x to a solution y, then solution y is con-
sidered as dominated by solution x. However some very
unfair solutions can be P -efficient. The Lorenz dominance
has been proposed in economics to refine the Pareto domi-
nance by taking into account satisfaction inequality among
the agents. Roughly speaking, the Lorenz dominance en-
ables to select all the P -efficient solutions that realized well-
balanced compromises between the utilities of the agents.
Endriss et al. [6] have proposed conditions under which
negotiation in a multiagent system will converge to an al-
location that is Lorenz efficient (L-efficient). Nevertheless,
a few works deals with the determination of the L-efficient
solutions (see [2, 5, 8]), which is generally a difficult problem
(NP-complete and intractable [5, 8]). The aim of this work is
to study the problem of multiagent fair optimization, where
one looks for the L-efficient solutions in a combinatorial op-
timization problem.

2. MULTIAGENT FAIR OPTIMIZATION

2.1 Lorenz dominance
We consider in this work that p utility functions have

to be maximized. The Lorenz dominance can be defined
through the construction of particular vectors, called gener-
alized Lorenz vectors.

Definition 1. For all y ∈ Rp, the generalized Lorenz
vector of y is the vector L(y) defined by:

L(y) = (y(1), y(1) + y(2), . . . , y(1) + y(2) + . . . + y(p))

where y(1) ≤ y(2) ≤ . . . ≤ y(p) represent the components
of y sorted by non-decreasing order.

Definition 2. The Lorenz dominance relation (L-domi-
nance for short) is defined for all y1, y2 ∈ Rp by:

y1 �L y2 ⇐⇒ [L(y1) �P L(y2)],

where �P denotes the Pareto dominance relation (y1 �P

y2 ⇐⇒ [∀k ∈ {1, . . . , p}, y1
k ≥ y2

k and y1 6= y2]).
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The space in which the generalized Lorenz vectors of a
solution are represented is called the Lorenz space. Within a
feasible set X , any element x1 is said to be L-efficient (resp.
P -efficient) when there is no x2 in X such that u(x2) �L

u(x1) (resp. u(x2) �P u(x1)).

2.2 New methods
As L-efficient solutions are also P -efficient, one could re-

sort to an approach that would consist in generating all the
P -efficient solutions and then keeping only the L-efficient
solutions. One of the most famous methods in multiobjec-
tive optimization is the two-phase method that enables to
efficiently generate the P -efficient solutions to a biobjective
problem (see e.g. [9]). It consists in generating first the
subset of P -efficient solutions that optimize a weighted sum
(i.e. supported P -efficient solutions), and second the other
P -efficient solutions. However, the number of L-efficient
solutions can be very small compared to the number of
P -efficient solutions. Furthermore, the generation of P -
efficient solutions is generally hard (see e.g. [1, 4]). For
these reasons, we propose new methods that directly deter-
mine the L-efficient solutions. More precisely we study the
adaptation of the two-phase method proposed in biobjective
optimization to the fair optimization framework when two
agents are involved.

Straight adaptation of the two-phase method. The
adaptation of the two-phase method to generate only the
L-efficient solutions thoroughly follows the original method,
but in the Lorenz space. In the first phase, all the supported
L-efficient solutions are generated. Actually, this amounts
to optimizing Ordered Weighted Averages (OWA) [10], with
decreasing positive weights, in the utility space. In the sec-
ond phase, all other L-efficient solutions are determined, by
exploring the search space defined by two consecutive L-
efficient solutions in the Lorenz space.

Supported P -efficient solutions based method. Even
if the straight adaptation of the two-phase method is theo-
retically interesting, the main drawback is in the first phase:
the OWA functions that have to be optimized are non-linear
and therefore even generating only the supported L-efficient
solutions will be computationally expensive. We propose
thus another method where the optimization of OWA func-
tions is avoided. One can show that one can identify in
the utility space the subset of supported P -efficient solu-
tions that are L-efficient. It enables us to generate those L-
efficient solutions by linear optimizations in the first phase.
In the second phase, all other L-efficient solutions are de-
termined, by exploring the search space defined by the L-
efficient solutions previously determined.

3. EXPERIMENTAL RESULTS
We have applied the method based on the supported P -

efficient solutions to the bi-agent knapsack problem. We
used the instances developed by Bazgan et al. [3] to solve the
multiobjective knapsack problem. The results are given for
random (no relation between the utilities) instances (Type
A, 100 items) and for instances with positive correlations
(Type B, 600 items) in Tables 1 and 2. The experiments have
been run on a Intel(R) Core(TM) i7-3820 CPU at 3.60GHz.
We compare the running times of the method based on the
supported P -efficient solutions (called SP) with the running
times of the method of Perny et al. [8] (called Rkg). We
report the number of the instance (from 0 to 9), the number

of P -efficient solutions (#P ) and L-efficient solutions (#L)
and the CPU times in seconds.

CPU(s)
# #P #L Rkg SP
0 125 6 1.98 1.40
1 184 8 22.43 2.63
2 171 6 5.76 1.43
3 198 18 / 2.49
4 112 6 0.92 0.45
5 136 5 0.17 0.16
6 135 12 117.28 0.78
7 155 49 / 979.5
8 163 4 0.34 0.24
9 98 7 6.70 0.44

Table 1: Type A

CPU(s)
# #P #L Rkg SP
0 66 22 / 4.56
1 71 17 / 2.13
2 111 26 / 7.76
3 88 21 / 12.32
4 49 20 / 8.16
5 82 24 / 7.05
6 56 25 / 15.71
7 74 23 / 69.56
8 97 2 3.52 0.70
9 49 20 / 3.13

Table 2: Type B

We see that the L-efficient solutions represent only a small
part of the P -efficient solutions. A sign ”/” means that the
method was not able to solve the instance within 20 minutes.
We can observe that the method SP is faster.
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