Verifying Conflicts Between Multiple Norms in Multi-agent
Systems

(Doctoral Consortium)

Eduardo Augusto Silvestre
Supervisor: Viviane Torres da Silva
Federal Fluminense University
Rua Passos da Patria 156, Bloco E, 24210-240
Niteréi - RJ, Brazil
eduardosilvestre@iftm.edu.br

ABSTRACT

In open multi-agent systems norms describe the behavior
that can be performed, that must be performed, and that
cannot be performed. One of the main challenges on de-
veloping normative systems is that norms may conflict with
each other. Norms are in conflict when the fulfillment of
one norm violates the other and vice-versa. Although there
are many approaches to check for conflicts among norms,
such approaches only analyze the norms in pairs. However,
there are conflicts that can only be detected when the con-
flict checker analyzes multiple norms together. In this work,
we present an algorithm able to check for conflicts between
multiple norms that overcomes the complexity of consider-
ing multiple norms by using filters that subdivide the norms
into small groups. The conflict checker executes over the
norms of each group what reduces the time for executing
the algorithm.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: {Distributed Artificial In-
telligence }{Multiagent systems}[normative conflicts]

General Terms

Algorithms, Performance, Languages

Keywords

Normative multi-agent systems, normative conflict

1. INTRODUCTION

The multi-agent systems (MAS) has been gaining greater
importance in research and practice in the development of
various applications in recent years. MAS are autonomous,
and heterogeneous societies that can work to achieve com-
mon or different goals [5]. In order to deal with the auton-
omy, the behavior of agents is governed by a set of norms
what regulate their actions [2]. The norms governing the
behavior of agents by defining permissions, obligations and

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May 4-8,
2015, Istanbul, Turkey.

Copyright (C) 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2013

prohibitions. In this context, it is worth mentioning the pos-
sibility of existing conflicts between norms. Conflicts occur
when norms regulating the same behavior are activated and
are inconsistent [4]. If two norms are in conflict, the agent
is unable to fulfil both norms. The fulfilment of one norm
violates the other, and vice-versa.

Although there are several works that deal with normative
conflicts, to the best of our knowledge, all those approaches
check for conflicts by analyzing the norms in pairs. How-
ever, there are conflicts that can only be detected when we
consider several norms together. For instance, let’s consider
a conflict that can only be detected if norms N1, N2 and N3
are analyzed together. N1 obliges agent A to dress white
shirt. N2 obliges agent A to dress black pants. N3 obliges
agent A to dress pants and shirt of the same color. There
are no conflicts between N1 and N2 and between N2 and
N3, but when the three norms are analyzed together we can
figure out the conflict.

Since several authors in literature have proved that the
analysis of multiple norms is a NP-complete problem [4], we
have developed an strategy to minimize the complexity of
such problem. Our conflict checker starts by filtering the set
of norms and grouping the norms in subsets of norms that
may be in conflict. The analysis of conflicts is in fact applied
to such subsets. The main contributions of this work are: (i)
a more expressive representation of norms; (ii) a normative
conflict checker algorithm able to check for conflicts between
multiple norms; and (iii) a Java application.

2. BACKGROUND

The norm definition is based on [3] but our representa-
tion is more complex and expressive. A norm n € N is a
tuple of the form {deoC, c, e, b, ic, dc} where d is a deon-
tic concept from the set {ob(obligation), pr(prohibition) or
pe(permission)}, ¢ € C' is the context where the norm is de-
fined, e € E is the entity whose behavior is being regulated,
b € B is the behavior being regulated, ic € C'd indicates the
condition that activates the norm and dc € Cd is the condi-
tion that deactivates the norm.

A behavior b is defined by the name of the action and, op-
tionally, an object where the action will be executed and a
list of parameters (together with their values) to execute
such action. We define behavior as tuple: {action, ob-
ject (paraml=valuel,... ,paramN=valueN)}, where we can
omit the object and its parameters and values; only the pa-



rameters and their values; or only the values. Such def-
inition, let’s us describe four different ways to represent
the behavior: (i) {action}; (ii) {action, object}; (iii) {ac-
tion, object (paraml,... paramN)}; and (iv) {action, object
(paraml=valuel,... ,paramN=valueN)}. In order to exem-
plify these four ways to describe a behavior, let’s consider
the following four prohibition norms: Na = forbids agent
A to dress, Nb = forbids agent A dress pants, Nc¢ = for-
bids agent A dress ironing shirt and Nd forbids agent A to
dress white shirt. The behavior of the norms can be rep-
resented as: (i) Na: {to dress}; (ii) Nb: {to dress, pants};
(iii) Nc: {to dress, pants(ironing)}; and (iv) Nd : {to dress,
pants(color=white) }.

3. CONFLICT CHECKER

Our conflict checker algorithm is divided in three steps.
First, all norms are transformed into permissions in order
to facilitate the analysis. Since all norms are permissions,
the analysis made by the conflict checker is very simple, it
checks if the norms intersects. T'wo or more norms intersects
if there is at least one possible situation where the agent is
able to fulfill all norms being analyzed.

In order to apply the transformation, we assume that if an
agent is obliged to execute an action, it needs to be permit-
ted. Therefore, the transformation from an obligation norm
to a permission norm is direct. A prohibition is converted
into a permission by (i) negating the execution of the action
being prohibited, (ii) negating the execution of the action
over that object, (iii) negating the execution of the action
over that object with that parameters, or (iv) by inverting
the values of the parameters. The second step of our con-
flict checker is responsible to filter the norms by including
them into bags of similar norms. In order to do so, such
step uses 3 filters. The filters separate into bags the norms
that apply in the same context, regulate the same behavior,
and govern the same entity. After applying all filters, only
the norms stored in the same bag are the ones that may be
in conflict. Norms stored in different bags apply in different
contexts, regulate different behaviors or govern the behavior
of different entities. The analyzes of the conflict is executed
in the third step of the algorithm. The algorithm checks if
the norms in each bag are in conflict. It stars by checking
the norms by pairs of norms and then consider all possible
group of k-norms until k be equal to the number of norms in
the bag. At the end, the algorithm is checking for conflicts
between all the norms of the bag at the same time.

For instance, let’s consider the three norms described in
Section 1. Since norm N3 is a complex norm, we have splited
it in two norms: N3a (obliges agent A to dress pants of color
X) and N3b (obliges agent A to dress shirts of color X),
where X is a generic color. In the first step of the algorithm,
it transforms the three obligations into permissions. Then,
in the second step, the algorithm groups all norms in the
same bag since they are applied in the same context (we are
omitting the context for simplicity), govern the same entity
(agent A) and regulate the same behavior (to dress). In the
third and last step, it verifies that there is a conflict between
these three norm. The conflict exists because there is not
an intersection between the norms, i.e., agent A is unable to
dress a white shirt, a pant that is not white, and a shirt and
a pant of the same color.

The computation cost of the algorithm in the best case is
O(1). The best case occur when each bag stores exactly one

2014

norm, i.e., the norms apply in different contexts and regulate
different behavior of different entities, and, therefore, are
never in conflict. In such case, there is not a need to execute
the third step. The worst case occurs when all norms are
stored in one bag. It can happen if all norms apply in the
same context, govern the same entity and regulate the same
behavior. The cost of the algorithm in the worst case is
O(2"), where n is the number of norm. The cost of the
medium case, O(2*), where k is the number of norms in
the bigger bag, we are unable to calculate. Such evaluation
depends on the application domain, i.e., it depends on the
number of different contexts, entities and behaviors found
in the norms. Although it is not possible to calculate the
medium case, we strongly believe that the use of filters can
drastically reduce the cots of the conflict checker.

4. CONCLUSIONS AND FUTURE WORK

Despite significant research in the area, there are still
many challenges to be considered. We presented an ap-
proach able to checker for conflicts between multiple norms
that uses transformations and filters to minimize the com-
putational cost. We are in the process of implementing
the algorithm in Java, the fist version can be accessed in
http://goo.gl/t40Jk6. In order to evaluate our approach,
we need to apply it in real normative multi-agent systems.
It will be important to help us on estimating the cost of
executing the algorithm in real cases.

In this work, we have not considered conflicts between re-
lated norm, i.e., norms applied in different but related con-
text, to different but related entities that regulate different
but related behaviors [1]. The algorithm must consider infor-
mation about the domain while investigating the conflicts.
In addition, we also intend to our approach the resolution
of the conflicts among several norms.

REFERENCES

[1] V. da Silva and J. Zahn. Normative conflicts that
depend on the domain. In T. Balke, F. Dignum, M. B.
van Riemsdijk, and A. K. Chopra, editors,
Coordination, Organizations, Institutions, and Norms
in Agent Systems IX, Lecture Notes in Computer
Science, pages 311-326. Springer International
Publishing, 2014.

V. T. da Silva. From the specification to the
implementation of norms: an automatic approach to
generate rules from norms to govern the behavior of
agents. Autonomous Agents and Multi-Agent Systems,
17(1):113-155, 2008.

K. da Silva Figueiredo, V. T. da Silva, and

C. de O. Braga. Modeling norms in multi-agent systems
with normml. In Coordination, Organizations,
Institutions, and Norms in Agent Systems VI - COIN
2010 International Workshops, COINQAAMAS 2010,
Toronto, Canada, May 2010, COIN@MALLOW 2010,
Lyon, France, August 2010, Revised Selected Papers,
pages 39-57, 2010.

W. Vasconcelos, M. Kollingbaum, and T. Norman.
Normative conflict resolution in multi-agent systems.
volume 19, pages 124-152. Springer US, 2009.

M. Wooldridge. An Introduction to MultiAgent
Systems. Wiley Publishing, 2nd edition, 2009.





