
Selected Methods of Model Checking using SAT and
SMT-solvers ∗

(Doctoral Consortium)
Agnieszka M. Zbrzezny

Supervisor: Bożena Woźna-Szcześniak
IMCS, Jan Długosz University. Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland.

agnieszka.zbrzezny@ajd.czest.pl

ABSTRACT
The objectives of this research are to further investigate
the foundations for novel SMT and SAT-based bounded
model checking (BMC) algorithms for real-time and multi-
agent systems. A major part of the research will involve
the development of SMT-based BMC methods for standard
Kripke structures, extended Kripke structures, and for dif-
ferent kinds of interpreted systems for different kinds of tem-
poral languages, each of which will be augmented to in-
clude the standard epistemic and deontic operators. The
algorithms will be implemented into several modules of the
model checker VerICS (http://verics.ipipan.waw.pl/).

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking

Keywords
Bounded model checking, SMT, SAT, Temporal Logic, PhD
thesis extended abstract

1. INTRODUCTION
Model checking [2] provides algorithmic means of deter-

mining whether an abstract model M - representing, for
example, a hardware or software project - satisfies a for-
mal specification expressed as a temporal logic formula F .
Moreover, if the property does not hold, the method iden-
tifies a counterexample execution that shows the source of
the problem.

Model checking problem has been proposed independently
by Quielle and Sifakis [7], and by Clarke and Emerson [5] as
a method for automatic and algorithmic verification of finite
state concurrent systems, and impressive strides have been
made on this problem over the past thirty years. Model
checking of real-time [1] and multi-agent systems [6] is a

∗The study is co-funded by the European Union, European
Social Fund. Project PO KL “Information technologies: Re-
search and their interdisciplinary applications”, Agreement
UDA-POKL.04.01.01-00-051/10-00.

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May 4–8,
2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

very active field for both theoretical research and practical
applications.

The practical applicability of model checking in real-time,
and multi-agent settings has required the development of
sophisticated means of coping with what is known as the
state explosion problem. It means that the number of model
states grows exponentially in the size of the system represen-
tation. To avoid this problem a number of state reduction
techniques and symbolic model checking approaches have
been developed.

Automated verification of real-time systems (RTS) and
multi-agent systems (MAS), performed by the analysis of
their models is a very important subject of research. This
is highly motivated by an increasing demand to verify safety
critical systems, i.e., time-dependent systems, failure of
which could cause dramatic consequences for both people
and hardware. MAS are open, distributed software sys-
tems, in which the individual processes, or agents are ra-
tional and autonomous entities engaged in social activities
such as communication, coordination, negotiation, coopera-
tion, etc. These systems include robotic surgery machines,
nuclear reactor control systems, railway signalling, breaking
systems, air traffic control systems, flight planning systems,
rocket range launch safety systems, and many others. Hu-
mans already benefit a lot from a variety of RTS and MAS,
being often unaware of this. Model checking of RTS and
MAS is known to be a difficult problem and its practical
applicability is strongly limited by the state explosion prob-
lem. There is still a lack of efficient methods for RTS and
MAS. In view of this, there is an obvious need to develop
efficient SMT/SAT-based verification methods which could
be used in practice.

2. SAT AND SMT
SAT-based bounded model checking (BMC) [3] uses a re-

duction of the problem of truth of a modal formula in a
model (transition system) to the problem of satisfiability of
formulae of the classical propositional calculus, i.e. SAT-
problem. The reduction is achieved by a translation of the
transition relation and a translation of a given property to
formulae of classical propositional calculus. It should be
emphasised that for a given temporal logic, bounded model
checking is mainly used to disprove safety properties and to
prove liveness properties.

The SMT problem [4] is a generalisation of the SAT prob-
lem, where Boolean variables are replaced by predicates from
various background theories, such as linear, real, and integer

2021



arithmetic. SMT generalises SAT by adding equality rea-
soning, arithmetic, fixed-size bit-vectors, arrays, quantifiers,
and other useful first-order theories. Using SMT to express
different problems has important advantages over SAT. If
one uses SAT, then, for example, data must be encoded into
a Boolean representation: a bit-vector must be represented
as just its individual bits, for example. In contrast, an SMT
encoding can represent the bit-vector directly, and may be
able to reason more efficiently at the bit-vector level of ab-
straction, without resorting to bit-level reasoning (though
this may sometimes be necessary).

3. BMC ALGORITHM
For a given modal logic ML the application of the BMC

method requires proving the theorem which provides the
basis for the verification of formulae of this logic in a given
model using finite prefixes of paths. A finite prefix of the
length k > 0 is called a k-paths. The aforementioned the-
orem says that a formula ϕ of a modal logic ML is true in
a transition system M if and only if there exists a natural
number k, such that the propositional formula (for SAT-
based BMC) or the quantifier-free first-order formula (for
SMT-BMC) [M, ϕ]k being a conjunction of a formula encod-
ing a finite set of k-paths of cardinality fk(ϕ) and a formula
being a translation of the formula ϕ, is satisfiable. The func-
tion fk, whose form depends on the particular modal logic,
sets a minimum number of k-paths sufficient, regardless of
the transition system, for the verification of the formula ϕ.

The aforementioned theorem justifies the correctness of
the standard BMC algorithm. Starting with k = 0, the
algorithm creates, for a given transition system M and a
given formula ϕ, a propositional formula [M, ϕ]k. Then the
formula [M, ϕ]k is converted to a satisfiability-equivalent
propositional formula in conjunctive normal form and for-
warded to a SAT-solver or it is converted to a quantifier-free
first-order formula and forwarded to a SMT-solver. If the
tested formula is unsatisfiable, then k is increased (usually
by 1) and the process is repeated.

The BMC algorithm terminates if either the formula
[M, ϕ]k turns out to be satisfiable for some k, or k becomes
greater than a certain, M-dependent threshold (e.g. the
number of states of M). Exceeding this threshold means
that the formula ϕ is not true in the transition system M.
On the other hand, satisfiability of [M, ϕ]k, for some k
means that the formula ϕ is true in the transition system
M. Moreover, the valuation found by the SAT-solver or
SMT-solver allows to determine a set of k-paths, which is a
witness for ϕ

Note that the BMC algorithm also terminates when, for
some k, the available resources (memory or time) are either
insufficient to generate the formula [M, ϕ]k or are insuffi-
cient for the SATor SMT-solver. In such a case, it means
that the BMC algorithm is not able to check whether the
property expressed by the formula ϕ holds in the transition
system M due to limited resources available.

4. METHODOLOGY
The main aim is to compare the existing SAT-based

bounded model checking algorithms for standard Kripke
structures, extended Kripke structures, and weighted inter-
preted systems with our new SMT-based bounded model
checking techniques for the same models.

Implementations The implementations are written in
C++ programming language.
Scenarios and benchmarks In the area of formal verifi-
cation it is customary to use scalable benchmarks in order
to demonstrate the effectiveness of verification tools. These
benchmarks are usually theoretical devices, used to compare
the efficiency of used algorithms. There exists a number of
such standard, typical benchmarks, e.g. several types of Mu-
tual Exclusion Protocol, Bit Transmission Problem, General
Pipeline Paradigm, etc. On the other hand, restricting only
to a few standard benchmarks makes it difficult to predict
the performance on real-life systems, which prompts for use
of the models originating from the practical applications.
We plan to use both the types of benchmarks.

5. CONCLUSIONS
We proposed, implemented, and experimentally evaluated

some SAT-based and SMT-based bounded model checking
approach i.e. for WECTLK interpreted over the weighted
interpreted systems, for RTECTL properties interpreted
over the simply-time systems and for ECTL* properties. We
have compared our SMT-based method with the correspond-
ing SAT-based method. The experimental results show that
the approaches are complementary. Also an observation of
experimental results leads to the conclusion that the SAT-
based BMC for uses less memory comparing to the SMT-
based BMC. This is a novel and interesting result, which
shows that the choice of the BMC method should depend
on the considered system.

REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking

for real-time systems. In Proceedings of the 5th Symp.
on Logic in Computer Science (LICS’90), pages
414–425. IEEE Computer Society, 1990.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[3] A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead
of BDDs. In Proceedings of the ACM/IEEE Design
Automation Conference (DAC’99), pages 317–320,
1999.

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh,
editors. Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite state concurrent
systems using temporal logic specifications: A practical
approach. In Conference Record of the Tenth Annual
ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 1983, pages
117–126. ACM Press, 1983.

[6] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[7] J. P. Quielle and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In
Proceedings of the 5th International Symp. on
Programming, volume 131 of LNCS, pages 337–351.
Springer-Verlag, 1981.

2022




