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ABSTRACT
The notion of bisimulation has been introduced as a powerful
way to abstract from details of systems in the formal veri-
fication community. When applying to multiagent systems,
classical bisimulations will allow one agent to make decisions
based on full histories of others. Thus, as a general concept,
classical bisimulations are unrealistically powerful for such
systems. In this paper, we define a coarser notion of bisimu-
lation under which an agent can only make realistic decisions
based on information available to it. Our bisimulation still
implies trace distribution equivalence of the systems, and
moreover, it allows a compositional abstraction framework
of reasoning about the systems.

Categories and Subject Descriptors
F.1.2 [Models of Computation]Parallelism and concur-
rency, Probabilistic computation

General Terms
Theory, Verification

Keywords
Bisimulation; multiagent systems; decentralized

1. INTRODUCTION
Compositional theories have become a foundation for mod-

eling and analyzing stochastic systems. In particular, the
notion of compositional minimization [8, 5, 6] approaches has
been introduced as a powerful way to abstract from details
of systems in the formal verification community [23, 15].

Probabilistic automata (PA), also known as Markov Deci-
sion Processes in the planning community, were proposed by
Segala in [29] as a compositional behavioral model, see Fig. 1
for some examples. Later, probabilistic automata were used
to describe probabilistic multiagent systems [11].

Bisimulation is an important technique to cope with the
infamous state-explosion problem in model checking [4]. Es-
sentially, it tells whether two given systems exhibit the same
behavior or should be distinguished. Intuitively, two sys-
tems are bisimilar if and only if each observable action of
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one of them can be simulated by the other by performing
the same action, and furthermore, the resultant systems are
again bisimilar. Ideally, a suitable notion of bisimulation for
probabilistic multiagent systems should satisfy the following
two natural requirements:

1. It should have an appropriate distinguishing power. If
two agents output a sequence of observable actions
with different probabilities, i.e., they are not trace
distribution equivalent, then one can easily distinguish
them by only observation (i.e., without interaction with
the system). Therefore, a bisimulation should preserve
trace distribution equivalence. On the other hand,
for the sake of state space reduction, the bisimulation
should be as coarse as possible, as coarser bisimulation
means fewer states in the quotient system, which in
turn means less effort in later verification and analysis.

2. It should be compositional, i.e., it is preserved by natu-
ral operators for constructing systems. As a multiagent
system is typically built from more than one compo-
nent agents, compositionality of bisimulation means
that once we show two agents are bisimilar, no observer
can distinguish them in any context. This is crucial in
performing minimization compositionally. Note that
trace distribution equivalence is not compositional.

Many variants of bisimulations have been proposed as pow-
erful ways for equating behaviorally equivalent states [29, 16,
19]. However, as illustrated by the following example, which
is inspired by [29, 17], these bisimulations are not suitable
for probabilistic multiagent systems, thus motivating our def-
inition of a coarser notion of distribution-based bisimulation
and compositionality under realistic schedulers.

Example 1. Consider a game with two players: Alice and
Bob. Alice tosses a fair coin, while Bob tries to guess the
result of the coin throw. If Bob guesses correctly, he wins;
otherwise Alice wins. Suppose Alice can choose from two
strategies to play the game: 1) She first informs Bob that
the game starts and then tosses the coin, or 2) She first
tosses the coin, keeps the result secret, and then asks Bob
to guess. Formally, these two strategies are described in
Fig. 1 (a) and (b), respectively, as probabilistic automata,
where i denotes the announcement that the game begins,
while h and t denote the coin tossing results “head” and “tail”,
respectively.

Obviously, as the only difference between Alice’s two s-
trategies is whether or not the coin tossing is made before
she announces the start of the game, which is unobservable
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Figure 1: s0 and µ represent two different strate-
gies of Alice in playing the coin tossing game and r0
denotes the guesser Bob.

for Bob, these strategies should work equally well for Al-
ice. However, we can show that s0 6∼ µ for any state-based
bisimulation ∼ defined as in, say [29]. To see this, note that
state-based bisimulation is defined over states and then lifted
to distributions. Thus, if s0 ∼ µ, then we must have both
s0 ∼ s5 and s0 ∼ s6, which is impossible.

The above argument motivates our first design decision to
define bisimulation directly on distributions. In our notion
of bisimulation, the distribution µ is regarded as a whole
when compared with s0. Thus we have both the transitions

s0
i−→ ν and µ

i−→ ν where ν = {s1 : 1
2
, s2 : 1

2
}, making them

bisimilar as expected.
To illustrate our second design decision, let us model the

behaviors of Bob as in Fig. 1 (c): once he gets to know
that Alice starts the game (by synchronizing with Alice
through action i), he guesses Alice’s coin tossing result by non-
deterministically choosing the action h or t. Now consider a
play of the game which is obtained by the parallel composition
of Alice and Bob. We use a CSP-style parallel composition,
where synchronization of corresponding actions of Alice and
Bob in the set A = {i, h, t} is enforced. If Bob wins (i.e., he
successfully synchronizes with Alice through either h or t),
he performs the action Suc to announce his success.

In view of our criterion (2) of an ideal bisimulation, we
would like the two systems s0 ‖A r0 and µ ‖A r0 to be
bisimilar. However, if a traditional way of defining compo-
sitionality is adopted, they are not bisimilar, even with the
weaken notions of distribution-based bisimulation defined
in this paper or [16, 19]. To see this, we depict the two
systems s0 ‖A r0 and µ ‖A r0 in Fig. 2. For s0 ‖A r0, the
probability of observing action Suc is exactly 0.5, no matter
how a scheduler resolves the non-deterministic choice (which
corresponds to how Bob guesses the outcome of the coin).
In contrast, for system µ ‖A r0, an (unrestricted, as in the
definition of classical bisimulations) scheduler can choose
the lower i action from state s5 ‖A r0 while the upper i
from state s6 ‖A r0. Obviously, this scheduler induces an
execution for which action Suc is observed with probability
1.

To further explain why the traditional compositionality is
a too strong requirement for multiagent systems, let us have
a closer look at the scheduler that distinguishes s0 ‖A r0
and µ ‖A r0. The scheduler chooses different i actions
for Bob in states s5 ‖A r0 and s6 ‖A r0. In other words,

from Bob’s view, the resolution of his non-deterministic
choice of which transition to perform in state r0 is based
on the state Alice has reached by performing her internal
probabilistic choice, namely either state s5 or s6. As in the
context of multiagent systems, each agent runs autonomously
and is partially observable to other agents as well as the
environment, this is not a realistic scheduler. Specifically,
Bob would need to see the internal state of Alice (actually
the result of the coin throw) to make his decision. However,
no communication between Alice and Bob has happened at
this point in time, by which this information could have been
conveyed. Thus, when agents only share the information
they gain through explicit communication via observable
actions [22], this behavior is prohibited. Note that it was
also argued in [22] that in case all agents in a multiagent
system share information with each other, the system can be
transformed into an equivalent system with only one agent.

In this paper, we tackle this problem by restricting realistic
schedulers to those which are decentralized [17], meaning
that the scheduler can be decomposed into sub-schedulers of
component agents, and with partial information [10], mean-
ing that each sub-scheduler of component agents can only
make decisions based on its local information obtained so far.
The compositionality is then defined based on realistic sched-
ulers instead of general schedulers considered in previous
bisimulations. Both partial information and decentralized
schedulers have been coined as principal means to exclude
undesired or unrealistically powerful schedulers. We provide
a co-inductive definition for distribution-based bisimulation
which echoes these considerations on the automaton level,
thereby resulting in a very coarse, yet reasonable, notion of
equality for multiagent systems.

Summarizing, our contribution in this paper is a novel
notion of bisimulation tailored for distributed systems, in-
cluding multiagent systems, which

1. preserves observable behaviors, i.e., trace distribution
equivalence, under partial information schedulers;

2. is compositional with respect to parallel operator under
decentralized schedulers;

3. is proved to be the coarsest bisimulation relation satis-
fying the above two conditions.

Due to these results several things can be deduced directly, for
instance (bounded and unbounded) reachability properties
are preserved with respect to parallel composition by our
bisimulation relations.

Organization of the Paper.
Section 2 recalls some notations used in the paper. In Sec-

tion 3, a notion of distribution-based bisimulation is proposed
and discussed, and its properties under realistic schedulers
established in Section 4. Section 5 concludes the paper.

2. PRELIMINARIES
Let S be a finite set of states ranged over by r, s, . . .. A

distribution is a function µ : S → [0, 1] satisfying µ(S) =∑
s∈S µ(s) ≤ 1. If µ(S) = 1, it is called a full distribution,

otherwise it is a sub-distribution. Let Dist(S) denote the set
of distributions over S, ranged over by µ, ν, γ, . . .. Define
Supp(µ) = {s | µ(s) > 0} as the support set of µ. If µ(s) = 1,
then µ is called a Dirac distribution, written as δs. Let
|µ| = µ(S) denote the size of the distribution µ. Given

210



s0 ‖ r0

s2 ‖ r1

s1 ‖ r1 s3 ‖ r3 s3 ‖ r5

s2 ‖ r2

s1 ‖ r2

s4 ‖ r4 s4 ‖ r6

(a)

µ ‖ δr0

s6 ‖ r0

s5 ‖ r0

s1 ‖ r2

s2 ‖ r2

s2 ‖ r1

s4 ‖ r4 s4 ‖ r6

s1 ‖ r1 s3 ‖ r3 s3 ‖ r5

(b)

i

i

1
2

1
2

h Suc

1
2

1
2

t Suc

1
2

1
2

i

i h Suc

i

i

t Suc

Figure 2: Executions of s0 ‖A r0 and µ ‖A δr0 where
A is omitted.

a real number x ≥ 0, x · µ is the distribution such that
(x · µ)(s) = x · µ(s) for each s ∈ Supp(µ) if x · |µ| ≤ 1, while
µ = µ1+µ2 whenever µ(s) = µ1(s)+µ2(s) for each s ∈ S and
|µ| ≤ 1. We often write {s : µ(s) | s ∈ Supp(µ)} alternatively
for a distribution µ. For instance, {s1 : 0.4, s2 : 0.6} denotes
a distribution µ such that µ(s1) = 0.4 and µ(s2) = 0.6.

2.1 Probabilistic Automata
We consider multiagent systems with probabilistic behav-

iors. In this paper, each agent as well as the environment is
modeled as a probabilistic automaton [29].

Definition 1. A PA P is a tuple (S,Act ,−→, µ̄) where µ̄ ∈
Dist(S) is the initial distribution, S is a finite but non-empty
set of states, Act is a set of actions, and −→ ⊆ S × Act ×
Dist(S) is a finite set of probabilistic transitions.

Let α, β, γ, . . . range over the actions in Act . We write
s
α−→ µ if (s, α, µ) ∈−→. Let EA(s) = {α ∈ Act | ∃µ.s α−→ µ},

i.e., EA(s) is the set of actions enabled at state s. A path is a
finite or infinite alternative sequence π = s0, α0, s1, α1, s2 . . .
of states and actions, such that for each i ≥ 0 there exists a

distribution µ with si
αi−→ µ and µ(si+1) > 0. We introduce

some notations as follows:

• |π| , the length of π, i.e., the number of states on π,
provided π is finite,

• π↓, the last state of π, provided π is finite,

• π[i] = si with i ≥ 0, the (i+ 1)-th state on π if it exists,

• π[0..i] = s0, α0, s1, α1, . . . , si, the prefix of π ending at
state π[i],

Let Pathsω(P) ⊆ S×(Act×S)ω and Paths∗(P) ⊆ S×(Act×
S)∗ denote the sets containing all infinite and finite paths of
P respectively. Let Paths(P) = Pathsω(P) ∪ Paths∗(P). In
case P is clear from the context, we simply omit it. We also
let Paths(s) be the set containing all paths starting from
s ∈ S, similarly for Paths∗(s) and Pathsω(s).

Due to non-deterministic choices in PAs, a probability mea-
sure cannot be defined directly. As usual, we shall introduce
the definition of schedulers to resolve the non-determinism.
Intuitively, a scheduler will decide which transition to choose
at each step, based on the history execution. Formally,

Definition 2. A scheduler is a function ξ : Paths∗ 7→
Dist(Act×Dist(S)) such that ξ(π)(α, µ) > 0 implies π↓ α−→ µ.
A scheduler ξ is deterministic if it returns only Dirac distri-
butions, that is, ξ(π)(α, µ) = 1 for some α and µ.

In the sequel we will write ξ(π) = α to denote the fact
that ξ only chooses transitions with the same label at each
step, i.e., for all π,

∑
µ∈Dist(S) ξ(π)(α, µ) = 1 for some α.

The cone of a finite path π, denoted Cπ, is the set of infinite
paths having π as their prefix, i.e., Cπ = {π′ ∈ Pathsω | π ≤
π′}, where π ≤ π′ iff π is a prefix of π′. Fixing a starting
state s and a scheduler ξ, the measure Prξ,s of a cone Cπ,
where π = s0, α0, s1, α1, . . . , sk, is defined inductively as:
Prξ,s(Cπ) = 0 if s 6= s0, Prξ,s(Cπ) = 1 if s = s0 and k = 0,
and otherwise, Prξ,s(Cπ) = Prξ,s(Cπ[0..k−1])× ∑

(sk−1,αk−1,µ)∈−→
ξ(π[0..k − 1])(αk−1, µ) · µ(sk)

 .

Let B be the smallest algebra that contains all the cones
and is closed under complement and countable unions. By
standard measure theory [18, 26], this algebra is a σ-algebra
and all its elements are measurable sets of paths. Moreover,
Prξ,s can be extended to a unique measure on B.

In this paper, a multiagent system is defined as a set of PAs
running in parallel. For this, we recall the parallel operator
for PAs [29].

Definition 3. Let Pi = (Si,Act ,−→i, µ̄i), i = 1, 2, be two
PAs and A ⊆ Act, then P1 ‖A P2 = (S,Act ,−→, µ̄) such that

1. S = {s1 ‖A s2 | (s1, s2) ∈ S1 × S2},

2. s1 ‖A s2
α−→ µ1 ‖A µ2 iff either α ∈ A and si

α−→i µi
for each i ∈ {1, 2}, or α /∈ A while si

α−→i µi and
µ3−i = δs3−i for some i ∈ {1, 2},

3. µ̄ = µ̄1 ‖A µ̄2,

where µ1 ‖A µ2 is a distribution over S such that (µ1 ‖A
µ2)(s1 ‖A s2) = µ1(s1) · µ2(s2).

Similar idea has been adopted in [11] to define the parallel
composition of multiple probabilistic agents represented as
Markov Chains (MCs) and the resulting composite system
is described by a Markov Decision Process (MDP). Our
definition of parallel operator generalizes the one in [11] in
the sense that PAs subsume MDPs, hence also MCs. Note
Definition 3 can be generalized to cases with more than two
PAs in parallel, i.e.,

‖A {Pi}0≤i≤n ≡ ( ‖A {Pi}1≤i≤n) ‖A P0.

Below gives a simple example showing how the parallel oper-
ator works.

Example 2. Let s0 and t0 be two states as in Fig. 3. Let
A = {α}. Intuitively, s0 ‖A t0 is a state obtained by running
states s0 and t0 in parallel while imposing synchronization
on the action α. By Definition 3, s0 ‖A t0 will have two

transitions: s0 ‖A t0
α−→ ν1 ≡ µ1 ‖A µ3 and s0 ‖A t0

β−→ ν2 ≡
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Figure 3: The parallel composition of s0 and t0 synchronizing on A = {α}.

µ2 ‖A δt0 , where the transition with label α corresponds to
the synchronization of s0 and t0 on α, while the transition
labelled by β is the transition executed by s0 spontaneously,
as t0 remains after the transition.

Definition 4. A probabilistic multiagent system (PMA)
M is a set of PAs, called local agents and one of which
may represent the environment, composed in parallel as ‖A
{Pi}0≤i≤n. States of M are referred as global states, while
states of local agents are called local states.

Local agents execute actions not in A independently with-
out synchronizing with others, while for actions in A, they
need to synchronize with each other, which can be seen as a
way to exchange information among all agents. It is easy to
see from Definition 3 that each PMA is also a PA.

Note that we can also define a PMA hierarchically to
model the case where some communication is only made
between a subset of local agents. For example, in the PMA
(P1 ‖A P2) ‖B P3, P1 and P2 may exchange information
through actions in A\B, while P1 or P2 may communicate
with P3 through B\A. Furthermore, information exchanged
through A ∩B becomes common knowledge shared among
all the three agents.

3. BISIMULATIONS FOR PMAS
In this section, we first recall the definition of distribution-

based bisimulation on probabilistic automata in [14, 12],
which we have argued that may distinguish too many states
in certain scenarios. We then propose a novel definition of
distribution-based bisimulation for probabilistic multiagent
systems.

Let µ
α−→ µ′ iff there exists a transition s

α−→ µs for each
s ∈ Supp(µ) such that µ′ =

∑
s∈Supp(µ) µ(s) · µs. Given a

transition relation  ⊆ S × Act × Dist(S), we let s
α
 c µ

iff there exists a finite number of real numbers wi > 0 and
transitions s

α
 µi such that

∑
i wi = 1, and

∑
i wi · µi = µ.

We call  c combined transitions (of  ).

Definition 5. The distribution-based bisimulation defined
in [14, 12] is a symmetric relation R ⊆ Dist(S)× Dist(S)
such that µ R ν implies:

1. whenever µ
α−→c µ

′, there exists a ν
α−→c ν

′ such that
µ′ R ν′;

2. whenever µ ≡
∑

0≤i≤n pi · µi there exists a decomposi-

tion ν ≡
∑

0≤i≤n pi · νi such that µi R νi for each i,

where
∑

0≤i≤n pi = 1 with pi > 0 for each i.

We say that µ and ν are bisimilar, written as µ ∼ ν, iff there
exists such a bisimulation relation R with µ R ν. Moreover
s ∼ r iff δs ∼ δr.

Clause 1 is standard. Clause 2 says that no matter how
we split µ, there always exists a splitting of ν to simulate the
splitting of µ. Clause 2 in Definition 5 is, in fact, the cause
why this relation is unrealistically strong for scenarios as
those discussed in Example 1. The reason is that in order to
establish a bisimulation, every splitting of µ into distributions
must be matched by ν. This also includes splittings into
Dirac distributions. Intuitively, this means that still the
individual behavior of each single state in Supp(µ) must be
matched. In our scenarios, however, we want to focus on the
behavior of distributions over states and not their individual
supporting states. We will correct this in our definition of
distribution-based bisimulation later.

Definition 6. A distribution µ is transition consistent, writ-
ten as −→µ , if for any s1, s2 ∈ Supp(µ), EA(s1) = EA(s2).

Intuitively, a distribution is transition consistent if and
only if all states in its support have the same set of enabled
actions. When a distribution is transition consistent, then
µ

α−→ whenever there is a state s ∈ Supp(µ) with s
α−→.

This also means that when a distribution is not transition
consistent, there must be a transition that a certain state
in the support can perform but the distribution cannot. We
then say that this state is blocked from taking this transition.

We are now ready to define our notion of distribution-
based bisimulation in this paper, which serves as the basis
for the decentralized bisimulation we are going to introduce
in Section 4. To simplify notation, we simply call our bisim-
ulation distribution-based bisimulation, which should not be
confused with Definition 5.

Definition 7. A symmetric relation R ⊆ Dist(S)×Dist(S)
is a distribution-based bisimulation iff µ R ν implies:

1. whenever µ
α−→c µ

′, there exists a ν
α−→c ν

′ such that
µ′ R ν′;

2. if not −→µ , then there exists µ ≡
∑

0≤i≤n pi · µi and

ν ≡
∑

0≤i≤n pi · νi such that −→µi and µi R νi for each

0 ≤ i ≤ n where
∑

0≤i≤n pi = 1 with pi > 0 for each i.

We say that µ and ν are distribution-based bisimilar, written
as µ ∼d ν, iff there exists a distribution-based bisimulation
R such that µ R ν. Moreover s ∼d r iff δs ∼d δr.

The main difference between ∼ and ∼d is that in Defini-
tion 5 we require for any split µ ≡

∑
0≤i≤n pi · µi of µ, there

exists ν ≡
∑

0≤i≤n pi · νi with µi R νi for each i, while in
Definition 7, we require to split µ only if it is not transition
consistent. We further require that in the splitting, each
distribution µi is transition consistent. We do not require
this for νi. It can be shown, however, that −→µi and µi R νi
implies −→νi . These conditions ensure that no states in the
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support of µ are blocked from executing certain transitions.
Clearly, if µ is already transition consistent, we do not need
to split µ further, since no transition of states in Supp(µ) is
blocked, thus the distribution transitions in clause 1 suffice
to capture every behavior.

Remark 1. Essentially, in Definition 7 we keep all states
with the same set of enabled actions together. This is similar
to the idea in [10], where all states with the same enabled
actions are non-distinguishable from the outside. Once a
distribution becomes transition consistent, we will not try
to split it anymore – but rather match the lifted transitions
according to the first clause.

The notion of consistent distributions defined in Defini-
tion 6 actually induces an equivalence relation R = {(s, t) ∈
S × S | EA(s) = EA(t)} over the state space, which is in
turn used in Definition 7 to guide the splitting of a distri-
bution. Therefore, our distribution-based bisimulation can
be seen as defined upon R. The main purpose of R is to
characterize indistinguishable states in a multiagent system,
which is also referred to as an epistemic accessibility relation
in [32] or an information function in [27]. The relation R
is the coarsest one for schedulers to be well defined in such
systems, since otherwise an action scheduled at one state may
not be enabled at all at another equivalent state. This is not
acceptable, particularly in the setting of planning [27] and
model checking with incomplete information [20], schedulers
transferring [7] and so on. However, nothing hampers the
usage of finer relations than R. By doing so, all results in
this paper are preserved, as long as we change the definition
of partial information scheduler accordingly, which we will
introduce soon. Furthermore, like in [32, 27], we can also de-
fine different levels of accessibility (or distinguishability) for
different agents such that two global states ‖A {si}0≤i≤n and
‖A {ti}0≤i≤n are not distinguishable to the i-th agent iff si

and ti are not distinguishable. To simplify the presentation,
we assume the same accessibility relation R to all agents in
the sequel.

Example 3. Back to Example 1, we are going to show that
in Fig. 1, δs0 ∼d µ. Let R = {(δs0 , µ), (µ, δs0)} ∪ ID where
ID is the identity relation. It is easy to show that R is a
distribution-based bisimulation. The key point is that both
δs0 and {s5 : 0.5, s6 : 0.5} are transition consistent, thus we
do not need to split them any further. Conversely, we can
show that R is not a bisimulation in the settings of [14, 12].
According to clause 1 of Definition 5, we require that for any
split of {s5 : 0.5, s6 : 0.5}, there must exist a matching split
of δs0 , which cannot be established. For instance the split
{s5 : 0.5, s6 : 0.5} = 0.5 · δs5 + 0.5 · δs6 cannot be matched by
any split of δs0 .

The following example shows that the transition consisten-
cy condition of Definition 7 is necessary to avoid equating
states which should be distinguished.

Example 4. Suppose there are two states s0 and r0 such
that s0

α−→ s1 and r0
α−→ {r1 : 0.5, r2 : 0.5} where all of s1,

r1, and r2 have a transition to themselves with label α. In

addition, r1
β−→ r1 where α 6= β.

If clause 2 in Definition 7 was dropped, then we would
have s0 ∼d r0. To see this, let R be the symmetric clo-
sure of {(δs0 , δr0), (δs1 , {r1 : 0.5, r2 : 0.5})}. Note that the
distribution {r1 : 0.5, r2 : 0.5} can only perform an α transi-
tion and then return to itself (the β transition of r1 would be

blocked as it is disabled in r2). Thus R is a distribution-based
bisimulation, and s0 ∼d r0. However, s0 and r0 should be
distinguished, because r0 can reach state r1 which is able to
perform a β transition, while s0 cannot.

According to our Definition 7, however, as the distribution
{r1 : 0.5, r2 : 0.5} is not transition consistent, we should
split it further to a convex combination of δr1 and δr2 . Then
s0 6∼d r0 can be easily seen from the fact that δr1 cannot be
matched by any distribution from s1.

The following theorem shows that both ∼ and ∼d are
equivalence relations. Moreover ∼d is strictly coarser than
∼, which is straightforward from Definitions 5 and 7.

Theorem 1. 1. ∼ and ∼d are equivalence relations; 2.
∼ ⊆ ∼d.

4. OBSERVABLE BEHAVIOR AND COMPO-
SITION

We consider important properties of distribution-based
bisimulation in this section, namely preservation of trace
distributions equivalence, and compositionality. While these
properties do not hold if considering all schedulers, we es-
tablish them for the subclass of partial information decen-
tralized schedulers. Partial information schedulers SP have
been coined by De Alfaro [10], and decentralized schedulers
SD stem from D’Argenio and Giro [17]. Both have been pro-
posed to rule out unrealistic scheduling decisions such as the
ones discussed in Fig. 2. We echo these arguments to back
our claim that distribution-based bisimulation is a valuable
relation in the context of realistic scheduling, especially in
multiagent systems. To get started, we review some desirable
properties we are going to discuss.

We first introduce the notion of trace distribution equiv-
alence [28] adapted to our setting. Let ς ∈ Act∗ denote
a finite trace of a PA P consisting of an ordered sequence
of actions. Moreover, the cylinder Cς induced by ς is de-
fined by: Cς = ∪{Cπ | π ∈ Paths∗ ∧ trace(π) = ς} where
trace(π) = ε denotes an empty trace if |π| ≤ 1, and
trace(π) = trace(π′) ◦ α, where π = π′ ◦ (α, s′). The measur-
ability of Cς is straightforward from its definition since it is
a countable union of cylinders. Below we define a family of
equivalences, parametrized by certain classes of schedulers.

Definition 8. Let µ1 and µ2 be two distributions of a PA,
and S a set of schedulers. Then, µ1 ≡S µ2 iff for each
scheduler ξ1 ∈ S there exists a scheduler ξ2 ∈ S , such that∑

s∈Supp(µ1)

µ1(s) · Prξ1s (Cς) =
∑

s∈Supp(µ2)

µ2(s) · Prξ2s (Cς)

for each finite trace ς and vice versa. If S is the set of all
schedulers, we simply write ≡. We write s1 ≡S s2 iff
δs1 ≡S δs2 .

Below follow examples (and counterexamples) of trace
distribution equivalent states:

Example 5. Let s0 and µ be as in Fig. 1, then we have
δs0 ≡ µ, since the only trace distribution of δs0 and µ
is {ih : 1

2
, it : 1

2
}. In contrast, δs0 and ν in Fig. 4 are not

trace distribution equivalent, since there are two possible trace
distributions for δs0 : {β : 1} and {α : 1}, but for ν there
are four trace distributions: {α : 1}, {β : 1}, {α : 1

3
, β : 2

3
},

and {β : 1
3
, α : 2

3
}. The last two distributions are induced
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Figure 4: δs0 ∼d ν.

by schedulers of ν which choose transitions with different
labels at states s2 and s3, which cannot be simulated by any
scheduler of s0

1.

4.1 Realistic Schedulers
We now refine the very liberal Definition 2 where the set

of all schedulers was introduced. As discussed, this class
is too powerful for multiagent systems, since it includes
unrealistic schedules such as the one which distinguishes the
two automata in Fig. 2.

In the following we define two prominent sub-classes of
schedulers, where only limited information is employed for
scheduling. Recall EA(s) denotes the set of actions enabled
at s, which can be seen as the interface of s observable by
other agents. We generalize the function EA to paths as fol-
lows: EA(π) = EA(s) if π = s, and EA(π) = EA(π′)αEA(s),
where π = π′ ◦ (α, s). Other agents can only observe actions
performed by s and its ancestors as well as their interfaces.
We are now ready to define the partial information sched-
ulers [10] as follows:

Definition 9. A scheduler ξ is a partial information sched-
uler of s if for any π1, π2 ∈ Paths∗(s), EA(π1) = EA(π2)
implies ξ(π1) = α and ξ(π2) = α for some α. We say ξ is
a partial information scheduler of a PMA iff it is a partial
information scheduler for all states in the PMA.

We denote the set of all partial information schedulers
by SP . Intuitively a partial information scheduler can only
distinguish states via different enabled actions. It therefore
excludes the possibility to schedule differently only because
of different state identities. This fits well to a behavior-
oriented rather than state-oriented view, as it is typical for
multiagent systems. Consequently, for two different paths
π1 and π2 with EA(π1) = EA(π2), namely π1 and π2 are
not distinguishable, a partial information scheduler chooses
transitions labelled with the same action for both π1 and π2.

In order to exclude unrealistic schedulers when composing
agents in parallel, another important sub-class of schedulers
called decentralized schedulers has been introduced [17]. The
idea is to assume that an agent running in parallel to other
agents needs to make its local scheduling decisions in isolation,
and thus can use only information about other agents that
has been communicated to them beforehand. For instance
the guesser Bob in Fig. 1 cannot base his local scheduling
decision on the tossing outcome at the moment when his
guess is to be scheduled. This fits perfectly in the setting of

1For simplicity, we only consider deterministic schedulers
here. A similar example can be constructed for general
schedulers.

multiagent systems, as in such systems, each agent performs
actions spontaneously and only interacts with other agents
and the environment when necessary.

To formalize this locality idea, we first need to define the
projection of a path to the path of its component agents. Let
s = ‖A {si | 0 ≤ i ≤ n} be a global state which is composed
of n + 1 local states with n ≥ 1 in parallel such that all
the local states synchronize on actions in A. Let π be a
path starting from s, then the i-projection of π, denoted by
[π]i, is defined as follows: [π]i = [s]i if π = s; otherwise if
π = π′ ◦ (α, s′),

[π]i =

{
[π′]i ◦ (α, [s′]i) α ∈ A ∨ (α 6∈ A ∧ [π′ ↓]i

α−→ [s′]i)

[π′]i α 6∈ A ∧ (∃j 6= i.[π′ ↓]j
α−→ [s′]j)

where [s]i = si with 0 ≤ i ≤ n. Intuitively, given a path π of a
state s, the i-projection of π is the path that only keeps track
of the execution of the i-th agent of s during its execution.
Also note any scheduler ξ of s can be decomposed into n+ 2
functions: a global scheduler ξg : Paths∗×{0, . . . , n} 7→ {0, 1}
and n+1 local schedulers {ξi}0≤i≤n such that for any π with
π↓=‖A {si | 0 ≤ i ≤ n}, ξ(π)(α, ‖A {µi}0≤i≤n) =

Π0≤i≤n[ξg(π, i) · ξi(π)(α, µi) + (1− ξg(π, i)) · Eq(δsi , µi)],

where Eq(δsi , µi) returns 1 if δsi = µi and 0 otherwise.
Intuitively, the global scheduler ξg chooses the agents which
will participate in the next transition, while ξi guides the
execution of si in case the i-th agent is chosen by ξg. In
case the i-th agent is not chosen by the global scheduler, it
will remain without changing its state. Below defines the
decentralized schedulers:

Definition 10. A scheduler ξ is decentralized for s =‖A
{si | 0 ≤ i ≤ n} iff its corresponding global scheduler ξg and
local schedulers {ξi}0≤i≤n satisfy: for any π, π′ ∈ Paths∗

and 0 ≤ i ≤ n, [π]i = [π′]i implies ξg(π, i) = ξg(π
′, i) and

ξi(π) = ξi(π
′). A decentralized scheduler for a PMA is a

scheduler decentralized for all states in PMA.

We denote the set of all decentralized schedulers by SD. In
case n = 1, decentralized schedulers degenerate to ordinary
schedulers defined in Definition 2. According to Definition 10,
a scheduler ξ is decentralized, if ξ cannot distinguish different
paths starting from s, provided the projections of these paths
to each agent coincide. Note that the scheduler inducing the
unrealistic execution in Fig. 2 is not decentralized, since the
decision of r0 depends on the execution history of µ, i.e., at
state s5, r0 will choose the left transition, and it will choose
the right transition while at state s6. By restricting to the
set of decentralized schedulers, we can avoid the unrealistic
execution of µ ‖A δr0 depicted in Fig. 2.

4.2 Properties of ∼d
In this section we show properties of distribution-based

bisimulation under realistic schedulers. We first introduce
some notations: A transition from s to ν with label α
is induced by a scheduler ξ, written as s

α−→ξ µ, iff µ ≡∑
µ′∈Dist(S) ξ(s)(α, µ

′) · µ′. Accordingly, we write µ
α−→ξ ν to

denote that µ can evolve into ν by performing a transition
with label α under the guidance of ξ, where s

α−→ξ νs for each
s ∈ Supp(µ) and ν ≡

∑
s∈Supp(µ) µ(s) · νs. Intuitively, given

a distribution µ, for each s ∈ Supp(µ) we use s as the history
information for ξ to guide the execution — the so called
memoryless schedulers which suffices to define bisimulations,
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since it is the only priori information we have known so far.
Based on the notations introduced above, we can modify
Definition 7 with schedulers being considered explicitly.

Let S be a set of schedulers. We denote µ
α−→S µ

′ if µ
α−→ξ µ

′

for some ξ ∈ S .

Definition 11. A symmetric relation R ⊆ Dist(S)×Dist(S)
is a distribution-based bisimulation with respect to a given
set of schedulers S iff µ R ν implies:

1. whenever µ
α−→S µ′, there exists ν

α−→S ν′ such that
µ′ R ν′;

2. if not −→µ , then there exists µ ≡
∑

0≤i≤n pi · µi and

ν ≡
∑

0≤i≤n pi · νi such that −→µi and µi R νi for each

0 ≤ i ≤ n where
∑

0≤i≤n pi = 1 with pi > 0 for each i.

We write µ ∼dS ν, iff there exists a distribution-based bisimu-
lation R with respect to S such that µ R ν. Moreover s ∼dS r
iff δs ∼dS δr.

Definition 11 is almost the same as Definition 7 except
that we require every transition to be induced by a scheduler
in S . When S is taken to be the set of all possible schedulers,
these two definitions are equivalent. Furthermore, as we
shall prove later, partial information schedulers are already
enough to make them equivalent.

As mentioned before, distribution-based bisimulation has
a flavor similar to partial information schedulers in the sense
that, due to the transition consistency requirement, there is
no difference between states in the support of a distribution if
the same set of actions is enabled. Indeed, distribution-based
bisimulation and partial information schedulers are closely
related. The following theorem states that partial informa-
tion schedulers are enough to discriminate distribution-based
bisimulation with respect to arbitrary schedulers, and that
if restricting to partial information schedulers, distribution-
based bisimulation implies trace distribution equivalence.

Theorem 2. For any distributions µ1 and µ2, µ1 ∼d µ2 ⇐⇒
µ1 ∼dSP µ2; µ1 ∼dSP µ2 =⇒ µ1 ≡SP µ2.

Theorem 2 does not hold if we consider general schedulers:

Example 6. Let s0 and ν be as in Fig. 4. In Example 5 we
have shown that δs0 6≡ ν. It is also not hard to check that
δs0 ∼d ν. Therefore, if general schedulers were considered,
∼d does not always imply ≡.

However, we can show δs0 ≡SP ν. To see this, note that
the trace distributions {α : 1

3
, β : 2

3
} and {β : 1

3
, α : 2

3
}, which

witness δs0 6≡ ν, can only be produced by a scheduler which
chooses different transitions at states s2 and s3. As s2 and s3
have the same enabled actions, this scheduler is not a partial
information one, thus should be excluded when the relation
≡SP is considered.

For parallel composition, we need to restrict to decentral-
ized schedulers to establish compositionality, as indicated by
the following theorem:

Theorem 3. For any distributions µ1 and µ2,

µ1 ∼dSD µ2 =⇒ µ1 ‖A µ3 ∼dSD µ2 ‖A µ3

for any µ3 and A.

Below is an example showing why Theorem 3 does not
hold if general schedulers are considered.

Example 7. Let s0, µ, and r0 be as in Fig. 1. We have
shown in Example 3 that δs0 ∼d µ. However, if general
schedulers are considered, δs0 ‖A δr0 6∼d µ ‖A δr0 , as the
unrealistic execution of µ ‖A δr0 depicted in Fig. 2 cannot
be simulated by µ ‖A δr0 , no matter how the transitions of
δs0 ‖A δr0 are scheduled.

In contrast, when restricting to decentralized schedulers,
we can show that both s0 ‖A r0 and µ ‖A δr0 can reach states
s3 ‖A r5 and s4 ‖A r6 with probability 0.5 at most, since the
scheduler of µ ‖A δr0 , which induces the unrealistic execution
in Fig. 2 is not decentralized.

When restricting to the set of schedulers in S = SP ∩ SD,
∼dS will be called decentralized bisimulation. As we have
demonstrated, decentralized bisimulation is compositional
and implies trace distribution equivalence. Actually, we can
show that decentralized bisimulation is the coarsest congru-
ence preserving trace distribution equivalence, which in turn
can be seen as the symmetric version of trace distribution
precongruence defined in [24].

Theorem 4. Let S = SP ∩SD, then µ1 ∼dS µ2 iff µ1 ≡cS µ2

for any µ1 and µ2, where µ1 ≡cS µ2 iff µ1 ≡S µ2 and
µ1 ‖A µ3 ≡S µ2 ‖A µ3 for any µ3 and A.

4.3 Decision Algorithm
In this subsection we show that the problem of computing

distribution-based bisimulation relations is decidable. For
this, we first prove the linearity of ∼d.

Lemma 1. ∼d is (convex) linear, i.e., µ1 ∼d ν1 and
µ2 ∼d ν2 imply that for any p ∈ [0, 1],

(p · µ1 + (1− p) · µ2) ∼d (p · ν1 + (1− p) · ν2).

For systems with finite state space, we impose a fixed order
for states in S = (s1, . . . , sn) with n = |S| and identify a
distribution µ with a vector (µ(s1), . . . , µ(sn)). The algo-
rithm presented in [19] can be applied for our bisimulation
with some changes. The idea of the algorithm is to construc-
t an n ×m bisimulation matrix E such that µ ∼d ν iff
(µ− ν)E = 0, where 0 < m ≤ n. Intuitively, E contains all
linear constraints which should be satisfied for each variable
µ(si)− ν(si) with 1 ≤ i ≤ n for µ and ν being bisimilar. The
following lemma shows that such bisimulation matrix always
exists for ∼d.

Lemma 2 ([19]). For every linear bisimulation relation
R ⊆ Dist(S)×Dist(S), there exists a bisimulation matrix E
such that µ R ν iff (µ− ν)E = 0.

We only sketch the algorithm here, interested readers can
refer to [19] for details. Let P be a PA. For simplicity, we
assume that P is deterministic, namely, for each state s in
P and α ∈ Act , whenever s

α−→ µ1 and s
α−→ µ2, it holds

µ1 = µ2. In other words, all transitions of each state are
labelled differently. For each A ⊆ Act and α ∈ A, let PαA be
the matrix such that for all s, t ∈ S,

PαA(s, t) =

{
µ(t) EA(s) = A and s

α−→ µ

0 otherwise.

Note for deterministic PAs, PαA is uniquely determined for
any A ⊆ Act and α ∈ A.

To construct a bisimulation matrix E for P, the algorithm
starts with a matrix with only one column 1, i.e., every

215



entry is 1. Then for each A ⊆ Act and α ∈ A, compute
EαA = PαAE and let E be the new matrix by adding columns in
EαA, but removing columns linearly dependent on the others.
This process continues until E is stable, i.e., no independent
column can be added. The algorithm terminates, since there
are at most n independent columns for n variables. For
deterministic PAs, the algorithm will terminate in polynomial
time [30, 13].

For PAs which are not deterministic, PαA may not be u-
nique for some A ⊆ Act and α ∈ A, since a state may have
more than one α-transitions and will induce uncountable
many choices due to combined transitions. Fortunately, it
was shown in [19] that it suffices to restrict to finitely many
transitions to compute E. However, this will cause an ex-
ponential blow-up in the worst case and it is still an open
problem whether polynomial algorithms exist for general
PAs.

4.4 Related Work and Discussion
In this subsection we review some related work. In the

classical setting of multiagent systems without probabilistic
behavior, the notion of bisimulation has been introduced
and studied intensively. For instance, [1] showed the rela-
tion between bisimulation and Alternating-time Temporal
Logic [3] (ATL) under different semantics. Similar work
has been done for epistemic logic [33]. In [2], bisimulation
was adopted as an abstraction technique when performing
epistemic model checking on dining cryptographers-based
protocols. Apart from being an abstraction technique, bisim-
ulation metrics (relaxed versions of bisimulations allowing
some probability perturbation) have been used to transfer
policies between Markov decision processes [25, 7]. The prob-
lem of planning [27] and model checking with incomplete
information [21, 20] have also been investigated.

As state-based bisimulations are too distinguishable in
certain scenarios, distribution-based bisimulation relation-
s have attracted much attention recently [13, 14, 16, 19].
The equivalence in [13] was defined upon reactive probabilis-
tic automata, i.e., PAs where each action has exactly one
corresponding transition at all states. To the best of our
knowledge, distribution-based bisimulation was first defined
upon general PAs in [14] to cascade internal executions. It
was shown that their definition of bisimulation is the coarsest
one which is compositional and preserves trace distribution
equivalence for general schedulers. However, their bisim-
ulation still distinguishes the automata in Fig. 1 (a) and
(b).

Later, two other variants of distribution-based bisimula-
tion were defined in [16, 19], which equate the automata in
Fig. 1 (a) and (b). However, they do not preserve observ-
able behaviors, namely, trace distribution equivalence, even
under the realistic classes of schedulers we will consider in
the sequel. To see this, we show why bisimulations defined
in [19] do not always imply trace distribution equivalence.
Similar arguments can be applied to bisimulations in [16].

Before giving the formal definition, we first recall some
notations. Let SA = {s ∈ S | EA(s) ∩ A 6= ∅} be the
set of states such that at least one of their transitions is

labelled by an action in A. Let µ(A) = µ(SA) and µ
A
↪→ µ′

iff µ(A) > 0 and µ′ = 1
µ(A)

∑
s∈Supp(µ)∩SA

µ(s) · µs, where

for each s ∈ Supp(µ) ∩ SA, s
α−→ µs for some α ∈ A. Note,

in µ
A
↪→ µ′, states in Supp(µ) may perform transitions with

µµ s2
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1
3

1
3

1
3

a

b
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t3

ν ν

1
3

1
3

1
3
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b

a
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c
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Figure 5: µ ∼HKK ν but µ 6≡SP ν.
different labels as long as they are in A. Below we recall
their definition of bisimulations [19, Def. 2], which will be
referred as HKK-bisimulation in the sequel.

Definition 12. A symmetric relation R ⊆ Dist(S)×Dist(S)
is an HKK-bisimulation iff µ R ν implies:

1. µ(A) = ν(A) for each A ⊆ Act,

2. whenever µ
A
↪→ µ′, there exists a transition ν

A
↪→ ν′ such

that µ′ R ν′.

We write µ ∼HKK ν, iff there exists an HKK-bisimulation
R such that µ R ν. Moreover s ∼HKK r iff δs ∼HKK δr.

Now we are ready to show that ∼HKK is not strictly coarser
than ≡SP . Let µ and ν be two distributions as in Fig. 5.
Let R = {(µ, ν), (ν, µ)} ∪ ID . By Definition 12, it is easy to
see that R is an HKK-bisimulation. Therefore µ ∼HKK ν.
However, µ 6≡SP ν. For instance, from µ we can obtain a
trace distribution { 1

3
: ac, 1

3
: bc, 1

3
: bd}, which cannot be

simulated by any scheduler of ν. Since all states in µ have
different enabled actions, the scheduler induced the trace
distribution is a partial information scheduler.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel and very coarse

bisimulation called distribution-based bisimulation for prob-
abilistic multiagent systems, which has interesting proper-
ties under two well-known subclasses of schedulers: it im-
plies trace distribution equivalence under partial information
schedulers, while it is compositional under decentralized
schedulers. Working in the intersection of both scheduler
classes ensures a restricted form of compositionality for a rea-
sonably coarse bisimulation, where the restriction excludes
undesired or unrealistically powerful schedulers.

As shown in [31], model checking ATL [3] against multia-
gent systems is EXPTIME-complete, when the systems are
represented by certain reactive languages, say “Simple Re-
active Modules Language” (SRML). Therefore, abstraction
and state space minimization are particularly important for
these systems. For future work we will explore algorithms
to compute our bisimulation in a symbolic and composi-
tional manner. Another direction of future research is to
investigate the relation between distribution-based bisim-
ulation and some popular logics in multiagent setting, for
instance probabilistic ATL [9]. The complexity of deciding
distribution-based bisimulations will also be interesting.
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