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ABSTRACT
The paper introduces a modal logical system for reasoning
about knowledge in which information available to agents
might be constrained by the available budget. Although the
system lacks an equivalent of the standard Negative Intro-
spection axiom from epistemic logic S5, it is proven to be
sound and complete with respect to an S5-like Kripke se-
mantics.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; F.4.1 [Mathematical Logic]: Modal Logic
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1. INTRODUCTION
There are many examples where large amount of data

might be potentially accessible to an agent, but the agent is
constrained by the available budget.

For instance, a recent ruling of the European Union Court
of Justice [12] and the proposed EU regulation on “right to
be forgotten”/“right to erasure” emphasize that this right is
not absolute. The related European Commission memo [3]
explicitly states that “... the right to be forgotten cannot
amount to a right to re-write or erase history. Neither must
the right to be forgotten take precedence over freedom of
expression or freedom of the media. The right to be forgot-
ten includes an explicit provision that ensures it does not
encroach on the freedom of expression and information.”

To balance individual privacy with freedom of media, these
regulations, for example, require online search engines to re-
move links to certain newspaper articles from its search re-
sults, but they do not require libraries to remove the news-
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papers from their archives. As a result, the regulations en-
force individual privacy not by completely eliminating access
to certain information, but, instead, by making such access
prohibitively time consuming or prohibitively expensive.

In this paper we study epistemic properties of budget-
constrained knowledge. Consider a more specific example of
such a situation based on Figure 1 that lists current criminal
background check fees in several states in the US [11, 15, 14,
13, 2, 10, 16].

State Fee (USD)
California 32
Florida 24
Hawaii 30
Iowa 15
Maryland 18
Pennsylvania 10
Virginia 15

Figure 1: Background Check Fees.

Let a hypothetical person John have criminal records in
Florida and Maryland, but not in any other state. Any agent
a who has at least 18 dollars has a chance to learn that John
has criminal records in one of the states. We formally denote
this as

218
a (“John has criminal records in one of the states.”).

At the same time, if agent a has at least 42 dollars, then
she could learn that John has at least two different criminal
records:

242
a (“John has at least two criminal records.”).

Furthermore, if agent a pays Florida and Maryland fees for
background check, then this agent not only knows that John
has at least two criminal records, but also learns that she
can find out about this by paying only 42 dollars:

242
a 242

a (“John has at least two criminal records.”).

Note that no agent is able to discover that John has two
criminal records with only 41 dollars:

¬241
a (“John has at least two criminal records.”).

The above statement is an example of a privacy claim about
John’s criminal records, that the “right to be forgotten” leg-
islation is designed to provide.

Of course, if John’s criminal records are different or if the
states decide to change background check fees, then some
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of the above statements might no longer be true. In this
paper we study properties of budget-constrained knowledge
that are universally true. An example of such properties
is the monotonicity principle: 25

aϕ → 27
aϕ. That is, more

money buys you at least as much information as less money
does. A more interesting example of such universal princi-
ple is the budget-constrained version of the standard modal
Distributivity axiom:

2ca(ϕ→ ψ)→ (2daϕ→ 2c+da ψ). (1)

In other words, if agent a can learn ϕ → ψ by spending at
most c and she can learn ϕ by spending at most d, then
she can learn ψ by spending at most c + d. The budget-
constrained versions of Truth axiom and Positive Introspec-
tion axiom from epistemic logic [4, 7] are also true:

2caϕ→ ϕ,

2caϕ→ 2ca2
c
aϕ. (2)

Negative Introspection. It is interesting to point out that
budget-constrained version of Negative Introspection axiom
from epistemic logic

¬2caϕ→ 2ca¬2caϕ. (3)

is not generally true. Indeed, suppose that another hypo-
thetical person, say Frank, has no criminal records in any
of the above states. Let statement ϕ be “Frank does have
criminal records in one of the above states”. Note that
¬2100

a ϕ is true because even for $100 agent a can not find
out something which simply is not true. At the same time,
2100
a ¬2100

a ϕ is false because the only way to learn ¬2100
a ϕ

is to obtain criminal records from all states, which can not
be done on $100 budget. Thus, statement (3), for c = 100,
is false.

The example above appears to rely on the fact that c > 0.
One might wonder if the Negative Introspection axiom is
true for zero-cost knowledge:

¬20
aϕ→ 20

a¬20
aϕ. (4)

The answer to this question is not trivial. Whether prop-
erty (4) is universally true depends on exact details of the
formal semantics definition. To illustrate the issue at hand,
consider famous Hilbert Grand Hotel that has infinitely many
rooms. Let us first assume that it costs one dollar to check
if any particular room is occupied or not and that currently
several rooms in this hotel are vacant. In this case any agent
a, if she is lucky enough, spends one dollar and happens to
check the room that is vacant. Then she learns that the
hotel has vacancies:

21
a(“The Grand Hotel has vacancies.”).

Now consider the case when the hotel is actually full and it
costs nothing to check if any particular room is occupied.
Note that in this situation statement

¬20
a(“The Grand Hotel has vacancies.”) (5)

is true, because agent a can not learn something which is
false. However, the only feasible way for any agent to learn
that statement (5) is true is to open all doors and to see
that the Grant Hotel has no vacancies. Let us consider the

question whether statement

20
a¬20

a(“The Grand Hotel has vacancies.”) (6)

is true. In other words, should we allow the agent to check
infinitely many rooms and to make certain conclusion only
after getting all the results? In this paper we assume that
any agent can take only finitely many actions before making
a logical conclusion. Thus, from our point of view, state-
ment (6) is false. Hence, implication

¬20
a(“The Grand Hotel has vacancies.”)→

20
a¬20

a(“The Grand Hotel has vacancies.”)

is false, which shows that Negative Introspection principle
is not always true even for zero-cost knowledge. We will
further analyze this example after we give formal semantics
of our logical system.

Multiagent Case. The logical system proposed in this pa-
per supports reasoning about budget-constrained knowledge
in multiagent systems. For example, the state of Virginia has
lower background check fee if the request is for the purpose
of volunteering for a non-profit organization. The current fee
in this case is only eight dollars instead of fifteen [16]. Sup-
pose that John is simultaneously applying for an internship
with a for-profit organization (agent a) and for volunteering
for a non-profit organization (agent b). Thus,

¬210
a (“John has no criminal records in Virginia”)

and

210
b (“John has no criminal records in Virginia”).

If agent a pays 15 dollars, then she learns that John has
no criminal records in Virginia. Once she knows that this
statement is true, she would also know that agent b may
learn the same information for just eight dollars:

215
a 28

b(“John has no criminal records in Virginia”).

Related Work. The idea to add numerical labels to epis-
temic modality goes back to Van der Hoek and Meyer’s
work [18] on graded modalities in epistemic logic. The nu-
merical labels in their system, however, count the number
of exceptions in which the statement is false, not the budget
required to learn that statement is true. As a result, their
axiomatic system is very different from the one proposed
here.

The most popular logical system for reasoning about re-
source constraints is linear logic [6]. It treats propositional
variables as resources without introducing any additional
labeled modalities. Different from our system, linear logic
reasons only about resources and does not deal with episte-
mology.

Our logical system is related to Artëmov’s logic of justifi-
cation [1]. Although logic of justification does not consider
the cost of justification, the Distributivity axiom (1) could
be viewed as a budget-constrained version of Application ax-
iom from justification logic. Similarly, budget constrained
version of Positive Introspection axiom (2) is related to Proof
Checker axiom in justification logic: the costs of checking
the proof, at least in our setting, is the same as the cost of
the proof itself. Whereas justification logic deals with jus-
tifications syntactically, our logical system deals with them
semantically. The superscript of the modal operator refers
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only to the cost of a justification. Thus, our logical system
could be viewed, to some degree, as a more abstract version
of justification logic. Note, however, that the formal se-
mantics for budget-constrained knowledge that we propose
in this paper is very different from Fitting’s [5] semantics
for justification logic. While Fitting’s semantics extends S4
models with admissible evidence function, our S5-like se-
mantics treats each justification as an equivalence relation.

Our system is also related to Moss and Parikh’s work on
topological semantics for epistemic logic [8], in which they
developed a logical system that takes into account “effort”
needed to acquire new knowledge. Unlike ours, their system
treats efforts topologically without assigning them numerical
costs.

Finally, in terms of a modality indexed with a real num-
ber subscript, this work is related to the author’s article [9]
on logic of confidence. In spite of this syntactic similarity,
logic of confidence contains Negative Introspection axiom.
Moreover, Distributivity axioms in these two systems are
different.

Paper Structure. Section 2 introduces the syntax and
the semantics of our logical system for budget-constrained
knowledge. Formally equipped, we further analyze the Grand
Hotel example and prove that statement (5) does not imply
statement (6). The logical system is presented in Section 3
and a couple of example properties of budget-constrained
knowledge followed from the logical system is shown in Sec-
tion 4. In Section 5 and Section 6, the soundness and
the completeness of the logical system are established. Fi-
nally, Section 7 discusses potential extensions to our work
when our assumption of finitely many actions is relaxed to
at most countably many actions, when one considers dis-
tributed knowledge with constrained budget, and when the
budget becomes a function that relates time and money.

2. SYNTAX AND SEMANTICS
In this section we introduce formal syntax and semantics

of our logical system. We assume that A is an arbitrary
(possibly infinite) set of agents and P is a set of atomic
propositions.

Definition 1. Let Φ be the minimal set of formulas such
that

1. P ⊆ Φ,

2. if ϕ ∈ Φ, then ¬ϕ ∈ Φ,

3. if ϕ,ψ ∈ Φ, then ϕ→ ψ ∈ Φ,

4. if ϕ ∈ Φ, then 2caϕ ∈ Φ where a ∈ A and c ∈ [0,+∞).

In the introduction we have seen that the cost of knowl-
edge comes from costs associated with obtaining justifica-
tions for this knowledge. In some situations one might find
it more natural to talk about costs of “efforts” [8], costs of
“actions”, or costs of “evidences”. In our formal semantics
we assume an existence of a set of justifications Ja for each
agent a ∈ A. For technical convenience we assume that
sets {Ja}a∈A are disjoint for different agents a. The cost of
justifications is captured by a cost function ‖j‖ that maps
each j ∈ Ja into a non-negative real value. This function
is not agent-dependent because any justification j uniquely
determines the agent. Note that the same knowledge has

different costs to different agents in the background check
fees example. To account for this, in our model we assume
that different agents have different sets of justifications. The
difference in knowledge costs to different agents comes from
the fact that they use agent-specific justifications for the
same knowledge.

In our semantics, any justification j ∈ Ja has an asso-
ciated indistinguishability relation ∼j . Informally, u ∼j w
means that agent a can not distinguish epistemic worlds u
and w with justification j. As mentioned in the introduction,
this approach to capturing justifications, natural from epis-
temic logic point of view, is very different from Fitting’s [5]
models for justification logic.

Finally, the definition of formal semantics given below also
includes function π that specifies, for each atomic proposi-
tion, the set of epistemic worlds in which the proposition is
satisfied.

Definition 2. A budget-constrained epistemic model is a
tuple (W, {Ja}a∈A, {{∼j}j∈Ja}a∈A, ‖ · ‖, π), where

1. W is a set (of “epistemic worlds”),

2. {Ja}a∈A is family of disjoint sets of “justifications”,

3. ∼j is an “indistinguishability” relation on W associated
with justification j ∈ Ja of an agent a ∈ A,

4. ‖ · ‖ is the cost function that maps each justification
j ∈

⋃
a∈A Ja into its price ‖j‖ ∈ [0,+∞),

5. π is a function that maps each p ∈ P into a subset of
W .

For any J ⊆ Ja, we write u ∼J w if u ∼j w for each
j ∈ J . Informally, u ∼J w means that agent a can not
distinguish epistemic worlds u and w while possessing all of
the justifications in set J .

Lemma 1. For any J ⊆ Ja, relation ∼J is an equivalence
relation on the set of epistemic worlds W . �

Lemma 2. If J ⊆ J ′ ⊆ Ja, then equivalence relation ∼J′

is at least as strong as equivalence relation ∼J . �

Recall from the introduction that, informally, w 
 2caϕ
means that in epistemic world w agent a has a possibility
to learn ϕ with budget c. Below we capture this informal
definition by saying that 2caϕ is satisfied in epistemic world
w if there is a set of justifications J with a total cost of no
more than c such that ϕ is satisfied in all epistemic worlds
that are J-indistinguishable from w.

Definition 3. Satisfiability relation 
 between epistemic
worlds in W and all formulas in Φ is defined as follows:

1. w 
 p if w ∈ π(p), where p ∈ P,

2. w 
 ¬ϕ if w 1 ϕ,

3. w 
 ϕ→ ψ if w 1 ϕ or w 
 ψ,

4. w 
 2caϕ if there is a finite set J ⊆ Ja such that

(a)
∑
j∈J ‖j‖ ≤ c,

(b) for any u ∈W , if u ∼J w, then u 
 ϕ.
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Grand Hotel Example. We illustrate Definitions 2 and 3
using the Hilbert’s Grand Hotel example from the introduc-
tion. The set of agents in this example consists of a single
agent a. An epistemic world w is a possible hotel occupation
state which can be represented as a Boolean function on ho-
tel room numbers. That is, w : N 7→ {occupied, available}.

In this example, a justification could be thought of as
an action of opening a single door in the hotel to check
if the room is occupied. Thus, the set of all justifications
can be identified with the set of room numbers N. Such a
justification j can not distinguish epistemic worlds u : N 7→
{occupied, available} and w : N 7→ {occupied, available} if
u(j) = w(j). In other words, u ∼j w if and only if u(j) =
w(j).

Suppose that the cost of opening any door is zero: ‖j‖ = 0
for each j ∈ N and that in epistemic world w0 the hotel is
full: w0(j) = occupied for each j ∈ N.

Finally, let valuation π(p0) for some atomic proposition
p0 be defined to be the set of all epistemic worlds in which
at least one room is vacant:

π(p0) = {w ∈W | ∃n ∈ N (w(n) = available)}.

Informally, proposition p0 is statement “The Grand Ho-
tel has vacancies”. For the sake of clarity, in what follows,
we write “The Grand Hotel has vacancies” instead of atomic
proposition p0. The truth of statements (5) and (6) is for-
mally shown below.

Proposition 1.

w0 
 ¬20
a(“The Grand Hotel has vacancies.”).

Proof. Assume the opposite. Thus, there must exist a
finite set J ⊆ N such that

∑
j∈J ‖j‖ = 0 and

u 
 “The Grand Hotel has vacancies.”

for each epistemic world u where u ∼J w0. By Lemma 1,
w0 ∼J w0. Thus, w0 
 “The Grand Hotel has vacancies.”,
which contradicts the choice of world w0. �

Proposition 2.

w0 1 20
a¬20

a(“The Grand Hotel has vacancies.”).

Proof. Assume the opposite. Thus, there must exist a
finite set J ⊆ N such that

∑
j∈J ‖j‖ = 0 and

u 
 ¬20
a(“The Grand Hotel has vacancies.”)

for each epistemic world u where u ∼J w0. Since set J is
finite, there must exist n ∈ N \ J . Consider epistemic world
u0 such that

u0(j) =

{
available, if j = n,

occupied, otherwise.

Note that u0 ∼J w0 because n /∈ J . Hence,

u0 
 ¬20
a(“The Grand Hotel has vacancies.”). (7)

Consider set J ′ = {n}. Note that
∑
j∈J′ ‖j‖ = ‖n‖ = 0.

Thus, by Definition 3, statement (7) implies that there exists
epistemic world v0 such that v0 ∼J′ u0 and

v0 1 “The Grand Hotel has vacancies.”. (8)

Finally, note that v0 ∼J′ u0 implies that v0(n) = u0(n) =
available, which is a contradiction to statement (8). �

3. AXIOMS
Our logical system, in addition to all propositional tau-

tologies in language Φ, contains the following axioms:

1. Truth: 2caϕ→ ϕ,

2. Positive Introspection: 2caϕ→ 2ca2
c
aϕ,

3. Distributivity: 2ca(ϕ→ ψ)→ (2daϕ→ 2c+da ψ).

We write ` ϕ if formula ϕ is provable from the propositional
tautologies and the above axioms using Modus Ponens and
Necessitation inference rules:

ϕ, ϕ→ ψ

ψ

ϕ

2caϕ
.

We write X ` ϕ if formula ϕ is provable from propositional
tautologies, the above axioms, and the additional set of ax-
ioms X using only Modus Ponens inference rule.

4. EXAMPLES
The soundness of our logical system will be established in

the next section. In this section we show how this system
can be used to prove two additional properties of budget-
constrained knowledge. We later use these results in the
proof of completeness.

The first property is monotonicity of budget-constrained
knowledge. Informally, it says that anything that can be
learned on a smaller budget also can be learned with a larger
budget.

Lemma 3. ` 2caϕ→ 2daϕ, where c ≤ d.

Proof. Note that ϕ → ϕ is a propositional tautology.
Thus, ` 2d−ca (ϕ→ ϕ) by Necessitation rule. Note also that

` 2d−c(ϕ→ ϕ)→ (2cϕ→ 2dϕ)

is an instance of Distributivity axiom. Thus, from the two
statements above, by Modus Ponens, ` 2caϕ→ 2daϕ. �

The property expressed by the lemma below is something
that, at first glance, might look as a more general version
of Distributivity axiom. However, as we show below, it is
provable from Positive Introspection axiom and the regular
version of Distributivity axiom.

Lemma 4. ` 2ca(2daϕ→ ψ)→ (2daϕ→ 2c+da ψ).

Proof. By Distributivity axiom,

` 2ca(2daϕ→ ψ)→ (2da2
d
aϕ→ 2c+da ψ).

By Modus Ponens rule applied twice,

2ca(2daϕ→ ψ),2da2
d
aϕ ` 2c+da ψ.

By Positive Introspection axiom,

2ca(2daϕ→ ψ),2daϕ ` 2c+da ψ.

By Deduction theorem for propositional logic,

` 2ca(2daϕ→ ψ)→ (2daϕ→ 2c+da ψ).

�
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5. SOUNDNESS
In this section we establish the soundness of our logical

system with respect to the semantics given in Definition 3.
The soundness of propositional tautologies and of Modus Po-
nens inference rule is straightforward. Below we prove the
soundness of each of the remaining axioms and of Necessi-
tation inference rule as a separate lemma. We assume that
w is an arbitrary epistemic world of a budget-constrained
epistemic model (W, {Ja}a∈A, {{∼j}j∈Ja}a∈A, ‖ · ‖, π).

Lemma 5. If w 
 2caϕ, then w 
 ϕ.

Proof. Suppose that w 
 2caϕ. Thus, there is a set
J ⊆ Ja such that

∑
j∈J ‖j‖ ≤ c and u 
 ϕ for each u such

that u ∼J w. Note that w ∼J w by Lemma 1. Therefore,
w 
 ϕ. �

Lemma 6. If w 
 2caϕ, then w 
 2ca2
c
aϕ.

Proof. By assumption w 
 2caϕ, there must exist a set
J ⊆ Ja such that

∑
j∈J ‖j‖ ≤ c and u 
 ϕ for each u ∈ W

such that u ∼J w. To prove w 
 2ca2
c
aϕ, it is sufficient to

show that u 
 2caϕ for each u ∈ W such that u ∼J w. To
show the latter, it is enough to justify that v 
 ϕ for each
v ∈ W such that v ∼J u. Indeed, consider any v ∈ W such
that v ∼J u. By the assumption u ∼J w and Lemma 1, we
have v ∼J w. This, by the choice of the set J , implies that
v 
 ϕ. �

Lemma 7. If w 
 2ca(ϕ → ψ) and w 
 2daϕ, then w 

2c+da ψ.

Proof. Suppose that w 
 2ca(ϕ → ψ) and w 
 2daϕ.
By the first assumption, there exists a set J1 ⊆ Ja such
that

∑
j∈J1 ‖j‖ ≤ c and u ∼J1 w implies u 
 ϕ → ψ for

each u ∈ W . By the second assumption, there exists a set
J2 ⊆ Ja such that

∑
j∈J2 ‖j‖ ≤ d and u ∼J2 w implies u 
 ϕ

for each u ∈W . Let J = J1 ∪ J2. Then∑
j∈J

‖j‖ ≤
∑
j∈J1

‖j‖+
∑
j∈J2

‖j‖ ≤ c+ d

and equivalence relation ∼J , by Lemma 2, is at least as
strong as both of the equivalence relations ∼J1 and ∼J2 .
Hence, u 
 ϕ → ψ and u 
 ϕ for each u ∈ W such that
u ∼J w. Thus, by Definition 3, u 
 ψ for each u ∈ W such
that u ∼J w. Therefore, again by Definition 3, w 
 2c+da ψ.
�

Lemma 8. For any formula ϕ ∈ Φ, if w′ 
 ϕ for each
epistemic world w′ ∈ W ′ of each budget-constrained epis-
temic model (W ′, {J ′a}a∈A, {{∼′j}j∈Ja}a∈A, ‖ · ‖′, π′), then
w 
 2caϕ.

Proof. Assume that w 1 2caϕ. Let J = ∅ ⊆ Ja. Note
that

∑
j∈J ‖j‖ = 0 ≤ c. Thus, by assumption w 1 2caϕ,

there must exist w′ ∈ W such that w′ ∼J w and w′ 1 ϕ.
The latter contradicts the assumption of the lemma. �

6. COMPLETENESS
In this section we prove the completeness of our logical

system with respect to the formal semantics given in Defini-
tion 3. This proof significantly deviates from the standard
completeness proof techniques for modal logic systems due
to the challenge that we describe below.

S5-like Semantics for S4-like Logic. If one ignores bud-
get superscript on modalities in the language of our logical

system, then the system is reduced to the multiagent S4
modal logic. The standard Kripke semantics for S4 is using
Kripke frames with reflexive and transitive accessibility re-
lations. However, the budget-constrained epistemic seman-
tics in Definition 2, just like the standard S5 epistemic logic
Kripke semantics, assumes that the indistinguishibility rela-
tion is not only reflexive and transitive, but also symmetric.

One might think that it would be possible to easily adopt
the standard canonical Kripke model construction to our
logical system. Unfortunately, in the absence of Negative
Introspection axiom, this construction would yield nonsym-
metric accessibility relations as it does in the case of S4
models.

The main challenge in the proof of the completeness of
our logical system is to construct a Kripke-like model with
symmetric accessibility relations in the absence of Negative
Introspection axiom.

To overcome this challenge, we add extra information to
each epistemic world. In the standard canonical model con-
struction, an epistemic world is simply a maximal consistent
set of formulas. In our construction, an epistemic world is a
pair (X,β), where X is a maximal consistent set of formu-
las and β is a function of the type specified in Definition 4.
Function β can be thought of as an array of “flags” that are
used to fine-tune indistinguishibility relations between epis-
temic worlds. The details of this “fine-tuning” are given in
Definition 6.

We are now ready to define“canonical”budget-constrained
epistemic model (W, {Ja}a∈A, {{∼j}j∈Ja}a∈A, ‖ · ‖, π).

Definition 4. The set of epistemic worlds W consists of
all pairs (X,β), where X is a maximal consistent subset of
Φ and β is a function that maps each tuple (c, ϕ), where
c ∈ [0,+∞) and ϕ ∈ Φ, into an integer value β(c, ϕ) ∈ Z.

Definition 5. For each agent a ∈ A, the set of justifica-
tions Ja consists of all tuples of the form (a, b, c, ϕ), where
b ∈ Z, c ∈ [0,+∞), and ϕ ∈ Φ.

Informally, tuple (a, b, c, ϕ) justifies to agent a at cost c that
statement ϕ is true. The component b of the tuple is a part
of “fine-tuning” mechanism whose purpose is clarified in the
next definition.

Definition 6. For any (X1, β1) ∈W , any (X2, β2) ∈W
and any (a, b, c, ϕ) ∈ Ja, let (X1, β1) ∼(a,b,c,ϕ) (X2, β2) if the
following two conditions are either both true or both false:

1. 2caϕ ∈ X1 and β1(c, ϕ) = b,

2. 2caϕ ∈ X2 and β2(c, ϕ) = b.

Lemma 9. For any (a, b, c, ϕ) ∈ Ja, relation ∼(a,b,c,ϕ) is
an equivalence relation on set W .

Proof. The statement of the lemma follows from Defi-
nition 6 because biconditional is an equivalence relation on
propositional formulas. �

Definition 7. Let ‖(a, b, c, ϕ)‖ = c.

In the standard construction of a canonical Kripke model,
an atomic proposition is satisfied in an epistemic world if
the maximal consistent set representing this world contains
this proposition. We adopt the same approach in our con-
struction without taking function β into consideration.
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Definition 8. For any atomic proposition p ∈ P, let
π(p) be the set {(X,β) ∈W | p ∈ X}.

The next two lemmas are at the core of the proof of the
completeness theorem. They both have analogy in the stan-
dard completeness proofs for modal logics such as S4 and
S5. In the case of these logics, we normally need to show
that if a maximal consistent set representing world w con-
tains formula 2ψ, then ψ belongs to the maximal consistent
set representing any world accessible from world w. In our
case, such a property is stated as follows.

Lemma 10. If (X,β) ∈W and 2caψ ∈ X, then ψ ∈ Y for
each (Y, γ) ∈W such that (Y, γ) ∼(a,β(c,ψ),c,ψ) (X,β).

Proof. Consider any (Y, γ) ∈W such that

(Y, γ) ∼(a,β(c,ψ),c,ψ) (X,β).

Then, by Definition 6, 2caψ ∈ Y . Hence, Y ` ψ by Truth
axiom. Therefore, ψ ∈ Y due to maximality of set Y . �

As mentioned earlier, tuple (a, b, c, ψ) justifies to agent a
at cost c that statement ψ is true, where component b serves
as a part of the “fine-tuning” mechanism. The above lemma
clarifies the details of this mechanism. Namely, in epistemic
world (X,β), such a justification is tuple (a, β(c, ψ), c, ψ).

In a proof of completeness for classical modal logics such
as S4 and S5, one shows that if formula 2ψ does not belong
to the maximal consistent set of formulas representing world
w, then there is a world u, accessible from world w, such
that the maximal consistent set of formulas representing u
does not contain formula ψ. Below is the corresponding
statement in our proof of completeness.

Lemma 11. For any (X,β) ∈W , any 2daψ /∈ X, and any
finite J ⊆ Ja such that

∑
j∈J ‖j‖ ≤ d, there is (Y, γ) ∈ W

such that (Y, γ) ∼J (X,β) and ψ /∈ Y .

Proof. Define

γ(c, ϕ) =

{
β(c, ϕ), if (a, β(c, ϕ), c, ϕ) ∈ J and 2caϕ ∈ X,

ω, otherwise,

where ω is an arbitrary integer such that (a, ω, c, ϕ) /∈ J .
Such ω exists due to the finiteness of J . We next show that
set

Y0 = {¬ψ} ∪ {2caϕ | 2caϕ ∈ X, (a, β(c, ϕ), c, ϕ) ∈ J}

is consistent. Assuming the opposite, there are formulas
2c1a ϕ1, . . . ,2cna ϕn ∈ X such that (a, β(ci, ϕi), ci, ϕi) ∈ J for
each i ≤ n and 2c1a ϕ1, . . . ,2cna ϕn ` ψ. Then, by Deduction
theorem for propositional logic,

` 2c1a ϕ1 → (2c2a ϕ2 → . . . (2cna ϕn → ψ) . . . ).

By Necessitation rule,

` 20
a(2c1a ϕ1 → (2c2a ϕ2 → . . . (2cna ϕn → ψ) . . . )).

By Lemma 4,

` 2c1a ϕ1 → 2c1a (2c2a ϕ2 → . . . (2cna ϕn → ψ) . . . ).

Note that 2c1a ϕ1 ∈ X by the choice of set Y0. Thus, by
Modus Ponens rule,

X ` 2c1a (2c2a ϕ2 → . . . (2cna ϕn → ψ) . . . ).

Again by Lemma 4 and Modus Ponens inference rule,

X ` 2c2a ϕ2 → 2c1+c2a (2c3a ϕ3 → . . . (2cna ϕn → ψ) . . . ).

Note that 2c2a ϕ2 ∈ X again by the choice of set Y0. Thus,
by Modus Ponens rule,

X ` 2c1+c2a (2c3a ϕ3 → . . . (2cna ϕn → ψ) . . . ).

By repeating the last two steps (n− 2) times,

X ` 2c1+c2+···+cna ψ.

Thus, X ` 2daψ by Lemma 3 and due to∑
i

ci =
∑
i

‖(a, β(ci, ϕi), ci, ϕi)‖ ≤
∑
j∈J

‖j‖ ≤ d,

which is a contradiction to the assumption ¬2daψ ∈ X and
the consistency of the set X. Therefore, set Y0 is consistent.
Let Y be any maximal consistent extension of the set Y0.

Note that ¬ψ ∈ Y0 ⊆ Y by the choice of Y0 and Y . Thus,
ψ /∈ Y due to consistency of the set Y . We are only left to
show that (X,β) ∼J (Y, γ), which, by Definition 6, follows
from the following claim:

Claim 1. For each (a, b, c, ϕ) ∈ J , the following two con-
ditions are either both true or both false:

1. 2caϕ ∈ X and β(c, ϕ) = b,

2. 2caϕ ∈ Y and γ(c, ϕ) = b.

Proof. 1)⇒ 2) : Suppose that 2caϕ ∈ X and β(c, ϕ) = b.
Thus, 2caϕ ∈ Y0 by the choice of Y0. Hence, 2caϕ ∈ Y
because Y is an extension of Y0. Note also that 2caϕ ∈ X and
β(c, ϕ) = b implies, by the choice of γ, that γ(c, ϕ) = β(c, ϕ).
Therefore, γ(c, ϕ) = β(c, ϕ) = b.

2)⇒ 1) : First, assume that 2caϕ /∈ X. Then, γ(c, ϕ) = ω
where (a, ω, c, ϕ) /∈ J . Recall that (a, b, c, ϕ) ∈ J . Thus,
ω 6= b. Therefore, γ(c, ϕ) 6= b.

Next, suppose that 2caϕ ∈ X and β(c, ϕ) 6= b. There are
two cases to consider. If (a, β(c, ϕ), c, ϕ) ∈ J , then γ(c, ϕ) =
β(c, ϕ), by the definition of function γ. Therefore, γ(c, ϕ) =
β(c, ϕ) 6= b. Otherwise, suppose that (a, β(c, ϕ), c, ϕ) /∈
J . Then, γ(c, ϕ) = ω where (a, ω, c, ϕ) /∈ J . Recall that
(a, b, c, ϕ) ∈ J . Thus, ω 6= b. Therefore, γ(c, ϕ) 6= b. �

This concludes the proof of the lemma. �

Next, we use Lemma 10 and Lemma 11 to show that a
formula is satisfied in an epistemic world if and only if it
belongs to the maximal consistent set of this world.

Lemma 12. (X,β) 
 ϕ if and only if ϕ ∈ X, for each
ϕ ∈ Φ and each (X,β) ∈W .

Proof. We prove the lemma by induction on the struc-
tural complexity of formula ϕ. If ϕ is an atomic proposition,
then the required follows from Definition 8. Cases of ϕ hav-
ing form ψ1 → ψ2 and ¬ψ follow from Definition 3 and the
maximality and consistency of set X in the standard way.
Now suppose that ϕ has the form 2caψ, for some a ∈ A,
c ∈ [0,+∞), and ψ ∈ Φ.
(⇒) : Assume that 2caψ /∈ X. Consider any finite set J ⊆
Ja such that

∑
j∈J ‖j‖ ≤ c. It is sufficient to show that

there is (Y, γ) ∈ W such that (Y, γ) ∼J (X,β) and (Y, γ) 1
ψ. Indeed, by Lemma 11, there is (Y, γ) ∈ W such that
(Y, γ) ∼J (X,β) and ψ /∈ Y . Therefore, by the induction
hypothesis, (Y, γ) 1 ψ.
(⇐) : If 2caψ ∈ X, then by Definition 3, it is sufficient
to show that (Y, γ) 
 ψ for each (Y, γ) ∈ W such that
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(X,β) ∼(a,β(c,ψ),c,ψ) (Y, γ). Indeed, by Lemma 10, ψ ∈ Y
for each (Y, γ) ∈ W such that (Y, γ) ∼(a,β(c,ψ),c,ψ) (X,β).
Hence, by the induction hypothesis, (Y, γ) 
 ψ for each
(Y, γ) ∈W such that (Y, γ) ∼(a,β(c,ψ),c,ψ) (X,β). �

We are now ready to state and prove the completeness
theorem for our logical system.

Theorem 1. If w 
 ϕ for each w ∈ W of each budget-
constrained model (W, {Ja}a∈A, {{∼j}j∈Ja}a∈A, ‖·‖, π), then
` ϕ.

Proof. Suppose that 0 ϕ. Let X be any maximal consis-
tent subset of Φ containing formula ¬ϕ. Consider function β
such that β(c, ψ) = 0 for each c ∈ [0,+∞) and each ψ ∈ Φ.
Note that ¬ϕ ∈ X implies that ϕ /∈ X due to consistency of
the set X. Therefore, (X,β) 1 ϕ, by Lemma 12. �

7. CONCLUSION AND DISCUSSION
In this paper we introduced a formal logical system for rea-

soning about budget constrained knowledge. We provided
a formal semantics for this system in terms of justifications
with costs and proved the soundness and the completeness of
our logical system with respect to this semantics. There are
several issues related to this work that we want to discuss
in the conclusion.

Infinite Sets of Justifications. In Definition 3, we have
assumed that subset J is finite. Note that this assumption
could be potentially weakened to subset J being at most
countable. If the set J is countable, then the sum of costs
in Definition 3 becomes an infinite series. Since all terms in
this series are non-negative, if such series converges, then it
converges absolutely and, thus, the value of the sum does not
depend on the order of the terms [17, p. 78]. This means
that semantics given by Definition 3 is well-defined for at
most countable sets J . However, the proof of the complete-
ness in given in Section 6 of this paper is no longer valid.
Indeed, existence of integer ω in proof of Lemma 11 relies
on the assumption of finiteness of set J . Furthermore, our
logical system, although still sound, is no longer complete
with respect to the semantics of at most countable sets of
justifications, because Negative Introspection principle be-
comes true for zero-cost knowledge: ¬20

aϕ→ 20
a¬20

aϕ. We
prove the soundness of this principle in such a setting in the
following lemma:

Lemma 13. If w 
 ¬20
aϕ, then w 
 20

a¬20
aϕ.

Proof. Consider set J = {j ∈ Ja | ‖j‖ = 0}. Thus,∑
j∈J ‖j‖ = 0. By Definition 3, it is sufficient to show that

for any u ∈W if w ∼J u, then u 
 ¬20
aϕ. We will prove this

by contradiction. Consider any u ∈ W such that w ∼J u
and suppose that u 
 20

aϕ. Thus, there is J ′ ⊆ Ja such that∑
j∈J′ ‖j‖ = 0 and for each v ∈ W , if u ∼J′ v, then v 
 ϕ.

Note that
∑
j∈J′ ‖j‖ = 0 implies that J ′ ⊆ J .

Note that
∑
j∈J′ ‖j‖ = 0 by the choice of J ′. Thus, by

Definition 3, the assumption w 
 ¬20
aϕ implies that there

is v0 ∈ W such that w ∼J′ v0 and v0 
 ¬ϕ. Recall that
w ∼J u and that J ′ ⊆ J . Hence, w ∼J′ u. Thus, by
Lemma 1, u ∼J′ v0 and v0 
 ¬ϕ, which is a contradiction
to our result from the previous paragraph. �

However, under this modified semantics the negative in-
trospection principle remains false for non-zero costs knowl-
edge. To construct a specific example when this principle

is false, consider again Hilbert’s Grand Hotel example from
the introduction, yet assuming that it costs one Turkish lira
to open any door in the hotel: ‖j‖ = 1 for each j ∈ N. In
this case, if w0 is, as before, the epistemic world in which
the hotel has no vacancies, then

w0 1 ¬2ca(“The Grand Hotel has vacancies.”)→
2ca¬2ca(“The Grand Hotel has vacancies.”)

for each c > 0. The proof is very similar to the proofs of
Proposition 1 and Proposition 2. In the proof of the second
proposition, set J is still finite because

∑
j∈J ‖j‖ ≤ c and,

by our assumption, the cost of each justification is one lira.

Budget-Constrained Distributed Knowledge. In this
paper each modality is labeled by only one agent. One can
consider modality 2cAϕ, where A is a group of agents, mean-
ing that, at cost no more than c, the group of agent A can
obtain the distributed knowledge [4] of statement ϕ. Differ-
ent from the single-agent knowledge case, the exact prop-
erties of budget-constrained distributed knowledge depend
on the specific type of the constraints. Namely, for financial
constraints we have:

2c1a (ϕ→ ψ)→ (2c2b ϕ→ 2c1+c2a,b ψ),

because it is natural to assume that if agent a needs c1 Turk-
ish liras to learn ϕ→ ψ and agent b needs c2 liras to discover
ϕ, then they together “distributively” know ψ after spending
at most c1 + c2 liras.

However, for time constraints we have

2c1a (ϕ→ ψ)→ (2c2b ϕ→ 2max{c1,c2}
a,b ψ),

assuming that the two agents can work simultaneously.

Production Possibility Frontiers. So far, we have been
assuming that we either deal with a financial constraint or
a time constraint. In many cases goods are priced based
on delivery time. That is, a good could be obtained slow
but cheap or faster but at a higher cost. Such a constraint
could be described by a function that show how fast the
good can be obtained within the given budget. In economics,

money

time

Figure 2: Production Possibility Frontier.

graphs of such functions (see Figure 2) are called production
possibility frontiers. For any production possibility frontier
f , by 2faϕ we mean the statement that for any given cost c,
agent a can learn ϕ in time f(c).

225



Suppose now that 2fa(ϕ → ψ) and 2gaϕ, where f and g
are two production possibility frontiers. To find function h
such that 2haψ, let us first fix any argument c of this function
and decide what is the minimal time that agent a needs to
learn both ϕ → ψ and ϕ. The agent can spend some part
of this budget, say x, to learn ϕ → ψ in time f(x) and
the rest of the budget to learn ψ in time g(c − x). Thus,
h(c) = min0≤x≤c{f(x) + g(c− x)}. In other words,

2fa(ϕ→ ψ)→ (2gaϕ→ 2f∗ga ψ),

where

(f ∗ g)(x) = min
0≤x≤c

{f(x) + g(c− x)}.

Complete axiomatization of knowledge constrained by pro-
duction possibility frontiers remains an open problem.
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