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ABSTRACT
Implementing collective behaviour in cooperative multi-agent
systems requires several practical constraints to be addressed.
In some environments, communication bandwidth is a criti-
cal constraint which may compromise the intended coopera-
tive behaviour. This paper introduces a bio-inspired model
which invokes collective behaviour in a multi-agent system
using passive sensing without any explicit inter-agent com-
munication. An agent looks for the majority of its neigh-
bours either in its left or its right half space using two sen-
sors. For a source localization problem, we compare perfor-
mance of the proposed model using passive sensing against
the well known school-of-fish collective behaviour models us-
ing ideal explicit inter-agent communication. For different
cue strengths and neighbourhood radii, our results show that
the proposed strategy boosts higher levels of group cohesion
to make up for the information loss and in certain conditions
performs better than the other collective behaviour models.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous Vehicles; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

Keywords
Biologically-inspired approaches and methods, Collective in-
telligence, Distributed problem solving, Emergent behavior

1. INTRODUCTION
With time, multi-agent systems have become a focal point

in various fields of applied engineering research [54, 47, 52,
60] where researchers have formulated multi-agent strate-
gies to solve different engineering problems [16, 46, 70]. A
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large contribution to the literature on physical multi-agent
systems is biologically inspired [23, 41, 29, 26] from the col-
lective behaviour in nature [64, 28]. In the domain of source
localization, there are significant number of bio-inspired ap-
proaches and methods in the literature [20, 23, 40, 59]. Such
implementations, either require explicit inter-agent commu-
nication, i.e., a deliberate act of invoking a signal transmis-
sion [45, 65] or use passive sensing of the environment or
neighbours [51, 63].

In a nutshell, any cooperative source localization task re-
quires some kind of information transfer which depends on
the modality of a communication infrastructure, i.e., ex-
plicit or implicit [4]. Performance of explicit communica-
tion based strategies suffer substantially in the environments
with severely limited communication bandwidth and delays,
e.g., undersea environments [19, 17]. In such environments,
having an implicit communication based strategy allows the
multi-agent system to operate cooperatively potentially with-
out a complete breakdown. However, implicit communica-
tion based strategies that appear in the literature are in-
spired from ants’ pheromone sensing where an agent looks
for other agents’ passage trails in the environment [4, 51, 63].
In many practical scenarios, whether on land or underwater,
explicitly depositing or implicitly leaving a pheromone-like
trail may not be desirable or even possible.

We present a control strategy that invokes collective be-
haviour in multi-agent systems using only two passive sen-
sors per agent. Fish schools or shoals are optimally evolved
systems by the process of natural selection and find food [55]
or acoustic [49, 56] sources benefitting from their collective
behaviour. An ideal but a challenging approach is to trans-
late this optimally evolved biological model into a practical
control strategy for autonomous multi-agent systems. We
discuss the practicalities of such a translation in Section 2
and present the passive sensing model in Section 3. In the
proposed strategy, an agent uses the two sensors to look for
where the majority of its neighbours are positioned, either in
its left or right half space. Though similar notions pertain-
ing to the dual sensors [11] or the neighbour majority [12]
exist in the literature, the proposed strategy is novel in the
way it integrates the two ideas to offer a practical collective
behaviour based distributed control approach. We present
the simulation setup in Section 4 and compare the perfor-
mance of the proposed model against the biological models
aided by explicit communication in Section 5. We finally
conclude in Section 6 summarizing the important findings
of this paper and sharing some thoughts pertaining to the
future work.
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2. BIO-INSPIRED PRACTICALITIES

2.1 Biological Collective Behaviour Models
In a school of fish, the collective behaviour is believed to

emerge from an individual’s interaction with its neighbours
[42, 32]. Many years of research [18, 2, 34] has classified
three major rules that result in the collective behaviours, i.e.,
the long-range attraction, the short-range repulsion and the
neighbour alignment. An individual fish is attracted towards
its neighbour unless it gets too close, in which case repul-
sion takes over attraction – a phenomenon jointly known as
the long-range attraction and short-range repulsion. Cur-
rent literature on animal collective behaviour shows a lack
of consensus on whether these animal interactions are based
on metric/zonal interactions [58, 18, 31, 34] or topological
interactions [7, 24, 10]. By metric interaction, one assumes
the interaction of the focal animal with its neighbours within
a fixed radius. There are three distinct zones defined within
the fixed radius of interaction as shown in Fig. 1. For a
distance, r ∈ R+ (m), away from the fish, there exists a
repulsion zone such that 0 < r ≤ rr, an orientation zone
such that rr < r ≤ ro and an attraction zone such that
ro < r ≤ ra. By topological interaction, one assumes that
the focal animal interacts with a fixed number of nearest
neighbours but these models are more restricted in explain-
ing the collective behaviour in some flocks of birds and their
generic application is rather debatable [9, 42].

For metric/zonal interaction, there are numerous models
having some very subtle differences between them but many
of them fit the experimental data quite well. A very simple
model [18, 9] is based on the unit vector information of the
neighbour positions. For example, in case the focal fish, i,
with position, xi(t), at time, t, detects any neighbour(s),
j, inside its repulsion zone, i.e., the inter-agent distance,
rij(t) = |xj(t)− xi(t)| ≤ rr, it assumes heading according to
the following direction vector

dri(t+ τr) = −
nr(t)∑
j 6=i

xj(t)− xi(t)

rij(t)
(1)

where τr is the sampling time and nr(t) are the number of
neighbours in the repulsion zone. Similarly for any neigh-
bour(s), j, in the attraction zone such that ro < rij(t) ≤ ra,
the focal fish, i, would assume heading as

dai(t+ τ) =

na(t)∑
j 6=i

xj(t)− xi(t)

rij(t)
(2)

where τ is the sampling time and na are the total number of
neighbours in the attraction zone. The repulsion zone holds
the highest priority and in case a neighbour is found therein,
other behaviours are suspended.

There are other collective behaviour models which build
more directly on the significance of the centroid of the school’s
mass [5, 25, 30, 53]. Some of these models assume a some-
what unrealistic notion that a focal fish has the knowledge
of the global centroid and tries to bias itself towards that
center. Nevertheless, there are models that only assume
knowledge of the centroid of neighbour positions within a
fixed radius [56, 58, 50]. In fact, we can write a very simple

centroid model by slightly modifying (1) and (2) such as

dri(t+ τr) = −
nr(t)∑
j 6=i

(xj(t)− xi(t)) (3)

and

dai(t+ τ) =

na(t)∑
j 6=i

(xj(t)− xi(t)) (4)

respectively. By limiting the ra in the centroid model, we
can mimic knowledge of the local centroid and by increasing
it to a very large number, we can mimic knowledge of the
global centroid.

The orientation models serve the purpose of mimicking the
polarization of a school, i.e., the mean of the angle deviation
of each fish to the mean swimming direction of the school
[34]. The long-range attraction and short-range repulsion
model without the orientation model accounts well for the
expanse of a school, i.e., the mean distance of all the fish
from the school’s centroid, but not so much for the polariza-
tion [42]. It is also known that the phenomenon of neighbour
alignment in the orientation zone is dependent on the radial
neighbour density. For example, a low density would result
in a disordered orientation and only for a certain thresh-
old of density, order emerges and increases thereafter as a
function of group size [69, 21]. Such a transition from dis-
order to order (alignment) is seen in a group of locusts [13]
where for small populations, there is no significant align-
ment among individuals. Similar transitions are observed
in a school of fish [8]. These observations hint towards the
possibility of alignment being an emergent property that is
a consequence of long-range attraction and short-range re-
pulsion phenomenon in a high density group. Also, from the
perspective of a source localization problem, there is a high
chance that alignment may result as an implicit consequence
of following a certain cue. For example, a recent study
has shown that alignment emerges from the long-range at-
traction and short-range repulsion phenomenon when agent
speeds are varied as a function of instantaneous cue inten-
sities [38]. Since this paper focuses on a team with small
number of agents (1 – 20) and a source localization prob-
lem, we discount the orientation model in favour of keeping
focus only on the role of the long-range attraction and the
short-range repulsion behaviours.

To discount the orientation zone we set ro = rr which
applies to (2) and (4). For comparison of the biological
models with the passive sensing model, we refer to the unit
vector model as the UV model and the centroid model as the
C model in the following text. Hence, UV model generates
direction vectors for an autonomous agent based on (1) and
(2) and C model generates direction vectors based on (3)
and (4).

2.2 Practicalities of the Long-range Attraction
Long-range attraction is the key behaviour that contributes

towards the cohesion and compactness of a group. It is in-
teresting to investigate the advantages of having an attrac-
tion behaviour in multi-agent systems for some real-world
problem. It has been shown that the long-range attraction
behaviour without aid of any other collective behaviours (re-
pulsion or orientation) can contribute towards increasing the
efficiency of a source localization problem [59]. However, the
implementation cost of behaviours given by (2) and (4) is in
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Figure 1: Zonal model of fish interaction.

terms of an agent acquiring its own reliable position esti-
mate and to establish communication with other agents to
exchange the position information. Acquiring a reliable po-
sition estimate and/or communication with acceptable de-
lays and bandwidth in certain environments is a hard and
an expensive problem to solve [39, 62].

Having small interaction neighbourhoods may alleviate
the communication issues to some extent [6, 36]. However
from the perspective of a source localization problem, hav-
ing a small neighbourhood may consequentially require a
very large team of agents [55]. For example, a small team
with agents having small neighbourhood radii will be po-
tentially sampling a strong spatially-correlated cue which
will have detrimental effects on its collective decision mak-
ing [37]. Fish are known to have small neighbourhoods but
some schools of fish undertaking distant migration are com-
posed of several million individuals connected through small
neighbourhoods over several kilometers [48, 43]. It is highly
unlikely in the present times to build a massive swarm of au-
tonomous agents with sufficient mission endurance to solve
a real-world problem. Given a small number of agents (3 –
20), we show in Section 5 that C and UV models require a
large neighbourhood (in hundreds of meters) for localizing
an acoustic source 1000 m away.

2.3 Practicalities of the Short-range Repulsion
Repulsion allows more volume to a school allowing it to

span more space. Also, increasing rr results in decreasing
cohesion in a school [34]. There is also a difference of opin-
ion on the effect of repulsion on the overall schooling, e.g.,
some studies report that removing the repulsion zone causes
school disintegration [2, 3], whereas some report that re-
moval of the repulsion zone has insignificant effect on school-
ing [33, 34, 35]. Nevertheless, it is interesting to investigate
the effect of the short-range repulsion on a school-of-fish or a
team of autonomous agents in a source localization problem.

Short-range repulsion suffers from the same issues as dis-
cussed in the preceding section for the long-range attrac-
tion. Models defined in (1) and (3) also require the focal
agent to acquire the position information of all the neigh-
bouring agents. However, the short-range repulsion allows
sophisticated multi-agent systems such as land robots, Un-
manned Aerial Vehicles (UAVs) or AUVs to avoid collisions
with their peers during a cooperative mission. From the

Repulsion zone

Attraction zone

a
r

r
r

Right halfLeft half

Figure 2: Passive sensing zonal model for detecting majority
of neighbours either in left or right half space.

perspective of an agent safety, collision avoidance control is
indispensable in most physical multi-agent setups.

3. THE PASSIVE SENSING (PS) MODEL
As discussed in the preceding section, C and UV models

require explicit communication of inter-agent position infor-
mation. Our focus is an alternate collective behaviour model
that builds on the biological counterparts but only requires
passive sensing to achieve similar characteristics and perfor-
mance. We assume that each agent is equipped with two
passive sensors, one on its right side and one on its left side.
This effectively partitions the two-dimensional sensing world
of an agent as shown in Fig. 2 into right and left half plane.
The passive sensing model requires an agent to have the
following information

1. Where is the majority of neighbours in my attraction
zone? Either to my right or to my left?

2. Are there any neighbours inside the repulsion zone? If
so, what is the estimated distance to the closest one
and which half is it located in?

Based on this information an agent exercises short-range
repulsion and long-range attraction behaviours.

3.1 Collective behaviours of the PS Model
Short-range repulsion operates at the highest priority level.

In case an agent detects a neighbour within its repulsion
zone, it starts an evasive action and ignores any other be-
haviours such as going towards the goal or towards the neigh-
bours etc. The evasion rules for an agent are:

1. If there are any number of neighbours inside the repul-
sion zone, estimate the distance to the nearest neigh-
bour.

2. Determine the half (right or left) in which the nearest
neighbour is located.

3. Initiate a turn in the opposite half (left or right) with a
turning rate dependent on the estimated nearest neigh-
bour distance.
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The turning rate as a function of the distance between the
focal agent, i, and the nearest neighbour, j, within the re-
pulsion zone is given as

θ̇ri(t+ τr) =

{
θ̇max

(
rr−r̂i,j(t)
rr−rmin

)
if rmin < r̂i,j(t) ≤ rr

θ̇max if r̂i,j(t) ≤ rmin

(5)

where τr is the sampling time of the repulsion behaviour,
r̂i,j(t) is the estimated distance between the focal agent and
the nearest neighbour through the sensor data (more on this
in Section 3.2) and rmin is the minimum distance between
the focal agent and the nearest neighbour where the focal
agent starts turning with the maximum possible rate. Also,
rmin needs to be greater than 2sτr + l for an agent to detect
all the potential collisions where s and l are the agent speed
and length respectively. Then the focal agent, i, assumes
heading according to the following direction vector

dri(t+ τr) = ∆dri(t+ τr) + di(t) (6)

where ∆dri(t + τr) = 1∠τr · θ̇ri(t + τr) and di(t) being the
instantaneous unit directional vector of agent i.

For the long-range attraction behaviour, at every τ sec-
onds, an agent calculates its desired heading towards the
majority of its neighbours by detecting the majority either
in its left or right half as

dai(t+ τ) =


R+
φdwi(t) if more neighbours on left

R−φ dwi(t) if more neighbours on right

dwi(t) otherwise

(7)

where R+
φ , R

−
φ are the counter clockwise and the clockwise

rotation matrices for an angle of φ = 90◦ and dwi(t) is the
previous weighted direction (see Section 4 for details on com-
putation of the weighted direction).

3.2 Practicalities of the PS model
Here we provide some examples of using the dual sen-

sor topology from the perspective of practical implementa-
tion. A very simple scenario is using two microphones or
hydrophones per agent where the focal agent can listen for
the presence of its neighbours. In most of the situations the
drive or propulsion systems of land robots, UAVs or AUVs
make a significant amount of noise which can be sensed eas-
ily by the focal agent within some local neighbourhood. Us-
ing the time-of-arrival analysis on the sensors’ data can help
the focal agent detect where the majority of neighbours is lo-
cated. In fact in harsh environments, such as undersea envi-
ronments, where communication bandwidth is severely lim-
ited, low frequency sound signals like the thruster noise can
travel several hundreds of meters [22, 67, 15]. The thruster
noise of a typical AUV or a ROV is in the range of 120 dB
to 160 dB re 1 µPa at 1 m [27, 14]. AUVs can also be
mounted with locator beacons which emit an acoustic pulse
at a fixed rate in time. For example, a 20 kHz pinger with
a source level of 180 dB re 1 µPa at 1 m can be heard over
several kilometers undersea. In environments where light
can travel, e.g., clear waters, the two sensors can simply be
light detectors. For example, in the case of CoCoRo project,
the researchers use small AUVs which can emit light [65].
Comparing the mean value of light intensity sensed by each
sensor over some time window can give a good estimate of
where the majority of the neighbours are. Cameras can also
be an option as two passive sensors in many environments

where robots can detect the neighbour majority using simple
image processing techniques.

Where an estimate of the neighbour majority completely
defines the long-range attraction behaviour, the short-range
repulsion behaviour requires the estimated distance from the
nearest neighbour in (5). In the PS model, the neighbour
itself is a source. Given an agent has some prior knowledge
of the source intensity and its propagation model, it can ob-
tain a good estimate of the distance in close proximity to a
source. This is especially true for sources which follow the
inverse square law, i.e., the intensity is inversely proportional
to the distance squared. Since the repulsion radius is gen-
erally small, the assumption pertaining to the knowledge of
the estimated nearest neighbour distance is practically valid.

4. SIMULATION SETUP
Let us first define the source localization problem con-

sidered in this paper. We assume an acoustic point-source
located at the origin of the search plane. Arrival time is
defined as the time taken by a specific agent to enter a cir-
cular success zone around the source and not diverge from
the success zone following its initial entry. The radius of the
success zone, rs is set to 50 m. For sensing the intensity of
the source, we use a sound propagation model with spherical
spreading suitable for deep underwater environments [66].
For the source, we assume a sound pressure level of 180 dB
re 1 µPa at 1 m away in the bandwidth of interest. For
the ambient noise, we assume noise levels of either 84 dB re
1 µPa or 118 dB re 1 µPa for comparative performance anal-
ysis of the collective behaviours in different Signal to Noise
Ratio (SNR) conditions. Both the noise levels at 84 dB re
1 µPa and 118 dB re 1 µPa correspond to the deep sea noise
and the shallow water noise respectively in a real-world sce-
nario [22]. The source level correspond to the sound levels
of many commercially available underwater locator beacons.
We initialize a team of N AUVs, each with a random pose
within a square region having an area of 20× 20 m2 and its
center located 1000 m away from the acoustic source.

To bias an agent towards the source, we choose an indi-
vidual behaviour that has the ability of helping an agent
localize a source without the aid of collective behaviours
[59]. According to the source bias model, an agent updates
its direction as follows

dsi(t+ τ) =

{
dwi(t) if I(t+ τ) ≥ I(t)

R+
θ dwi(t) if I(t+ τ) < I(t)

(8)

where I is the acoustic intensity and θ is the correction angle
an agent adds to its previous weighted heading in case it is
not going in the direction of increasing acoustic intensity.
The corresponding weighted direction of an agent, i, based
on (7) and (8) is computed every τ seconds as

dwi(t) = bs · dsi(t) + (1− bs)dai(t) (9)

where bs ∈ [0.5, 1] is the source biasing coefficient where any
values of bs < 0.5 fail in the source localization for any of the
collective behaviour models. Note that higher values of bs
mean less team cohesion and vice versa. Now, we can write
the desired direction of an agent, i, at time, t, as

ddi(t) =

{
dri(t) if nr(t) 6= 0 and rr 6= 0

dwi(t) otherwise
(10)
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Table 1: Symbols, their description and values explored dur-
ing simulation.

Sym. Description Value(s)
N Total number of team mem-

bers
{1, 3, 5, 10, 15, 20}

rs Radius of the success zone 50 m
ra Neighbourhood radius / Ra-

dius of the attraction zone
{150,300,600} (m)

rr Radius of the repulsion zone {0, 7.6} (m)
rmin Minimum radius of the re-

pulsion zone
3.8 m

l Length of an agent 0.8 m
s Speed of an agent 1.5 m s−1

θ̇max Maximum turning rate of an
agent

35 ◦ s−1

τr Sampling time of the short-
range repulsion models

1 s

τ Sampling time of the long-
range attraction models and
the source bias model

[1, 1000] (s)

bs Source biasing coefficient [0.5, 1.0]
θ Correction angle [0, 180◦]

Also, note that (10) accounts for all the collective behaviour
models, i.e., the short-range repulsion and the long-range
attraction behaviours of UV, C and PS models.

A Genetic Algorithm [44] is used to optimize the param-
eters, bs, θ and τ . The fitness function is the mean arrival
time of 1024 simulation runs. Inspired by [1], the number of
simulation runs is calculated from the Vargha-Delaney’s A-
measurement test [68] which ensures similar inter-simulation
fitness distributions. We investigate the performance impact
of varying the radius of the attraction zone (neighbourhood
radius), ra and SNR for different team size, N . A table for
all the values of the parameters explored is given in Table 1.
The agent length, speed and the maximum turning radius
are taken from field experiments on a miniature submarine
as shown in Fig. 3. We assume a constant speed operation in
the simulations with speed, s, of each agent set to 1.5 m s−1.

5. RESULTS & DISCUSSION
The focus is to compare the PS model with limited neigh-

bour information against the UV and C models with com-
plete neighbour information under different operating con-
ditions.

5.1 Without the Short-range Repulsion
First we investigate the effect of having only the long-

range attraction in the UV, C and PS models, i.e., we set
rr = 0 for different team sizes as shown in Fig. 4. Figure 4(a)
shows the mean arrival times of different team sizes. Each
mean arrival time is representative of 49 × 103 simulation
runs. It is interesting to note that for smaller teams, PS
registers better performance in Fig. 4(a), using significantly
more cohesion (lower bs) than the other models in Fig. 4(b).
However as the team size increases, the difference narrows
down with all the three models displaying similar perfor-
mance at N = 15. For all the simulated values of N , there
is neither any significant difference between the performance
of the UV and C models nor in their optimal control parame-

Figure 3: A miniature submarine called Swarmbot during
field experiments at Pandan Reservoir, Singapore.

ter values as can be seen in Fig. 4(b), Fig. 4(c) and Fig. 4(d).
As for the correction angle, θ, all the three models use nearly
the same values till N = 5 but for N = 10 and beyond, PS in
Fig. 4(c) switches abruptly to a new correction angle strat-
egy. This also corresponds in Fig. 4(b) to the cohesion levels
switching abruptly to a higher value.

5.2 The Advantage Threshold
The dotted magenta line in Fig. 4(a) and Fig. 5(a) signi-

fies the advantage threshold where the collective behaviours
are inactive. The advantage threshold is important in the
biological systems where researchers are interested in know-
ing if an individual enjoys any advantage living in a group
rather than being alone and if there is an optimal group
size [61, 57]. When the arrival times in a team (N > 1)
remain below the advantage threshold, it signifies an indi-
vidual benefitting from a group. It can be seen that all the
collective behaviour models show significant improvement
for small teams except at N = 3 in the case of the C and
UV models.

5.3 With the Short-range Repulsion
We set rr = 2rmin in the UV, C and PS models to investi-

gate the effect of the short-range repulsion on source local-
ization arrival times. Figure 5(a) shows the arrival times for
the neighbourhood radii of 300 m and 600 m. It is interest-
ing to note the slight degradation in mean arrival times if we
compare Fig. 4(a) and Fig. 5(a). The only exception is at
N = 3 where the C and UV models have shown significant
improvement. To show nearly the same performance as in
the case of Fig. 4(a), the attraction radius needs to be twice
as much when the short-range repulsion is also active. Also
note that the PS model loses its slight advantage over the C
and UV models once the neighbourhood radius is increased
to 600 m. Fig. 5(b) emphasizes this fact where for the case
of an increased neighbourhood radius, the C and UV models
have utilized more cohesion than the PS model.

Also, in Fig. 5(a), increasing the team size up to a certain
limit adds more benefit for an individual, however beyond
that limit, the arrival times start degrading. In other words
there seems to be an optimal team size for an individual in
this case. The PS model suffers the most from this phe-
nomenon where for ra = 600 m, it is performing nearly at
par with the C and UV models with ra = 300 m at N = 20.
The degradation in performance may have a link with the
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Figure 4: Comparative performance and optimal parame-
ters of the Centroid (C) model, Unit Vector (UV) model
and Passive Sensing (PS) model as a function of number
of agents without short-range repulsion: (a) Mean arrival
time (b) Source biasing coefficient. (c) Correction angle.
(d) Sampling time.
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Figure 5: Comparative performance and optimal parameters
of the Centroid (C) model, Unit Vector (UV) model and
Passive Sensing (PS) model as a function of number of agents
withshort-range repulsion: (a) Mean arrival time (b) Source
biasing coefficient. (c) Correction angle. (d) Sampling time.
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in a reduced SNR scenario: a) Comparative performance
against the advantage threshold and Centroid (C) model
with double the neighbourhood radius. (b) Comparison of
cohesion levels for PS, Centroid (C) and Unit Vector (UV)
models.

increasing cohesion levels and number of agents. We can
see the general trend in Fig. 5(b) where teams increase their
cohesion levels as their size increases. However, this also
increases the average number of times an individual has to
avoid collisions during a mission. Since PS suffers from the
incomplete neighbourhood information and consequentially
responds only to the nearest neighbour, the behaviour may
make the team confused with growing cohesion and team
size [35]. The effect may be seen in Fig. 5(b) where PS
starts retreating back to lower cohesion levels to perform
optimally with larger team sizes.

The correction angle remains effectively constant for each
of the collective behaviours in Fig. 5(c) throughout the range
of the team size and also for both the neighbourhood radii.

Sampling times in Fig. 5(d) behave similarly for all the
collective behaviours for the neighbourhood radius of 300 m.
However, for the case of neighbourhood radius set to 600 m,
UV displays a pattern of a slow increase in the sampling time
as a function of team size. In general, a large sampling time
in the range of 100 s to 110 s ensures enough agent traversal
in the search space to collect an uncorrelated sample and
contribute towards an implicit averaging process that would
be beneficial as a whole.

5.4 Lower Intensity Cues
We assume a degraded SNR by increasing the ambient

noise levels to 118 dB re 1 µPa. The comparative perfor-

mance of the PS model for the degraded SNR is shown in
Fig. 6(a) against the advantage threshold. It is interesting
to note that for a neighbourhood radius of 300 m, both the C
and UV models lose the ability of providing an agent with
the benefit of team cohesion as shown in Fig. 6(b) where
both operate with bs = 1. However if we increase the neigh-
bourhood radius to 600 m we can see that C model performs
significantly better in Fig. 6(a) using higher cohesion levels
as shown in Fig. 6(b).

The PS model keeps its trends in Fig. 6(a) and Fig. 6(b)
as were described in Section 5.1 for Fig. 5(a) and Fig. 5(b).
There seems to be an optimal group size between N = 5
and N = 10 in Fig. 6(a) where onwards, the PS model starts
reducing its cohesion levels in Fig. 6(b).

5.5 Agent Trajectories
Agent trajectories from a simulated source localization

mission for a team of 10 agents without the short-range re-
pulsion behaviour are shown for the C, UV and PS models in
Fig. 7(a), Fig. 7(b), Fig. 7(c) respectively. The red dots show
the trajectory for a specific agent in a team, arrival of which
marked the mission as a success. Since, the PS model boosts
significantly higher cohesion levels in Fig. 4(b) for N = 10
as compared to the C and UV models, the agent trajectories
for the PS model in Fig. 7(c) compliment that finding when
compared to the trajectories of the C and UV models. As a
whole, the team seems more cohesive and focussed towards
the source for the PS model. For the short-range repulsion
active, the three trajectories for C, UV and PS models are
given in Fig. 7(d), Fig. 7(e), Fig. 7(f) respectively which are
similar for nearly the same cohesion levels in Fig. 5(b). In
summary, the trajectory response of the PS model is not
significantly different than C and UV models and conserves
the same pattern despite the loss of information.

6. CONCLUSION
We presented a bio-inspired model which invokes collec-

tive behaviour in a multi-agent system using passive sensing
without any explicit inter-agent communication. The pas-
sive sensing model assumes two sensors per agent, one on
its right side and one on its left side. Both the sensors
help an agent detect the majority of its neighbours either
in its left or right half space. For a source localization prob-
lem, we analyzed the comparative performance of the passive
sensing model with the well-known school-of-fish collective
behaviour models (C and UV) aided by ideal explicit com-
munication. It was shown that the proposed approach per-
forms better than or at par with C and UV models for teams
with small number of agents (3 – 20) in certain conditions.
Especially, in conditions involving constrained neighbour-
hood radii and higher background noise levels, C and UV
models failed to extend any benefit to an individual agent
whereas the passive sensing model extended significant ben-
efit. Moreover, the proposed strategy was shown to make
up for the information loss by boosting higher cohesion lev-
els in a team than the other models. However, it was also
shown that for larger teams, the passive sensing approach
reduces the cohesion levels to avoid agent confusion due to
the short-range repulsion behaviour.

In general, the proposed approach shares similar trends
with the other collective behaviour approaches, e.g., in the
effect of the long-range attraction and the short-range repul-
sion on performance, optimal parameter values and agent
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Figure 7: Trajectories of the collective behaviours without short-range repulsion: (a) C model. (b) UV model. (c) PS model.
Trajectories with short-range repulsion: (d) C model. (e) UV model. (f) PS model.

trajectories. There is a need to investigate the short-range
repulsion behaviour more in terms of the source localiza-
tion problems. For all the collective behaviour models, the
short-range repulsion shows some performance degradation.
It may have to do with an agent facing competition near the
source due to the earlier arrivals of other agents. Given
the indispensable nature of collision avoidance control in
many practical multi-agent systems, the short-range repul-
sion needs to be optimized such that it can accommodate
larger team sizes.

We can also make some general conclusions from the re-
sults shown in this paper. It was shown that a small team
requires a large enough neighbourhood radius to have suffi-
cient uncorrelated cue samples. Collective implicit averag-
ing works well with the uncorrelated cue samples but has
a detrimental effect on the collective decision making of a
team otherwise [37]. The cue sampling times also showed
to have a complimentary effect. The sampling times were
optimized by an evolutionary algorithm and the optimal val-
ues suggest that an agent needs to traverse more in space
to gather uncorrelated samples of a cue. This warrants a
more profound investigation of the relationship between the
parameters like the neighbourhood radius, sampling time,
team size and the spatial correlation of a cue.
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