
Cooperative Coevolution of Partially Heterogeneous
Multiagent Systems

Jorge Gomes
BioMachines Lab &

Instituto de Telecomunicações
& Faculdade de Ciências,

Universidade de Lisboa, BioISI
Lisboa, Portugal

jgomes@di.fc.ul.pt

Pedro Mariano
Faculdade de Ciências,

Universidade de Lisboa, BioISI
Lisboa, Portugal

plmariano@fc.ul.pt

Anders Lyhne Christensen
BioMachines Lab &

Instituto de Telecomunicações
& Instituto Universitário de

Lisboa (ISCTE-IUL)
Lisboa, Portugal

anders.christensen@iscte.pt

ABSTRACT
Cooperative coevolution algorithms (CCEAs) facilitate the
evolution of heterogeneous, cooperating multiagent systems.
Such algorithms are, however, subject to inherent scalabil-
ity issues, since the number of required evaluations increases
with the number of agents. A possible solution is to use par-
tially heterogeneous (hybrid) teams: behaviourally heteroge-
neous teams composed of homogeneous sub-teams. By hav-
ing different agents share controllers, the number of coevolv-
ing populations in the system is reduced. We propose Hyb-
CCEA, an extension of cooperative coevolution to partially
heterogeneous multiagent systems. In Hyb-CCEA, both the
agent controllers and the team composition are under evo-
lutionary control. During the evolutionary process, we rely
on measures of behaviour similarity for the formation of ho-
mogeneous sub-teams (merging), and propose a stochastic
mechanism to increase heterogeneity (splitting). We evalu-
ate Hyb-CCEA in multiple variants of a simulated herding
task, and compare it with a fully heterogeneous CCEA. Our
results show that Hyb-CCEA can achieve solutions of simi-
lar quality using significantly fewer evaluations, and in most
setups, Hyb-CCEA even achieves significantly higher fitness
scores than the CCEA. Overall, we show that merging and
splitting populations are viable mechanisms for the cooper-
ative coevolution of hybrid teams.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

Keywords
Cooperative coevolution; emergent team composition; het-
erogeneity; scalability; partially heterogeneous teams.

1. INTRODUCTION
Cooperative coevolution algorithms (CCEAs) evolve solu-

tions that consist of interacting, coadapted components [22].
CCEAs are commonly used for the evolution of multiagent

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

behaviours [23]: the natural decomposition of the problem
into sub-components makes the domain a good fit for coop-
erative coevolution, as each agent can represent a component
of the solution. CCEAs are thus capable of evolving a het-
erogeneous set of agent behaviours, where each agent can
have a specialised behaviour [23, 29]. CCEAs are, however,
associated with inherent scalability issues [21, 28], since each
agent behaviour typically evolves in a separate population.
The computational complexity therefore increases at least
linearly with the number of agents. Moreover, credit assign-
ment issues might also arise in large multiagent systems: it
can be hard to assess the contribution of each individual
agent to the performance of the team as a whole [1].

In multiagent systems with large numbers of agents,
successful solutions may contain agents with similar be-
haviours [16]. Nonetheless, if each population is isolated, as
it is typically the case in CCEAs, similar agent behaviours
might have to be learned multiple times in different popu-
lations. One way to increase the scalability of multiagent
learning is through the reduction of the heterogeneity in
the system [21]. Partially heterogeneous multiagent sys-
tems, also known as hybrids, are composed of multiple ho-
mogeneous sub-teams — sub-teams in which all agents have
identical controllers. By allowing partial heterogeneity, the
number of agent controllers that need to be evolved is re-
duced, improving the scalability of the learning process [14].
Most previous studies on the evolution of partially heteroge-
neous teams are focused on team learning, where one single
genome encodes the behaviour and/or the composition of
the whole team [2, 11, 13]. The cooperative coevolution of
hybrid multiagent systems is still unexplored.

We propose an extension to the traditional cooperative co-
evolution architecture, Hyb-CCEA, that facilitates the emer-
gence of partially heterogeneous teams. In Hyb-CCEA, both
the team composition and the agent controllers are under
evolutionary control. By forming homogeneous sub-teams
inside the larger heterogeneous team, agent controllers can
be shared by multiple agents in the team. This approach
has potential to significantly improve scalability, as the num-
ber of populations can be much lower than the number of
agents in the team, which translates in fewer individuals to
evaluate. In Hyb-CCEA, populations can be merged if they
are converging to the same region of the agent behaviour
space, thereby avoiding the evolution of similar behaviours
in separate populations. When two populations merge, a
new and larger homogeneous sub-team is created, composed

297

of the agents that were assigned to each former population.
We also propose a stochastic splitting mechanism to comple-
ment the merging mechanism. The number of populations in
the system is therefore dynamic, while the number of agents
remains fixed. Multiple team compositions and levels of het-
erogeneity are thus explored throughout evolution.

We study the proposed approach in a simulated herding
task, where each agent is controlled by a neural network.
We explore multiple variations of the herding task, that in-
volve different numbers of agents, require different degrees
of specialisation, and that either benefit from the existence
of sub-teams or not. We evaluate the performance improve-
ments of Hyb-CCEA over a fully-heterogeneous CCEA. We
additionally study the evolutionary dynamics of Hyb-CCEA,
evaluating the dynamic of populations throughout evolution,
the impact of the merge and split procedures, and the choice
of the algorithm’s main parameters.

2. RELATED WORK

2.1 Heterogeneous Multiagent Systems
Heterogeneous multiagent systems are characterised by

the morphological and/or behavioural diversity of their
agents. In morphologically heterogeneous systems, agents
have varied actuation and sensing capabilities, and through
collaboration, the system takes advantage of the collective
set of capabilities [7]. In behaviourally heterogeneous sys-
tems, agents share the same morphology and capabilities,
but have different controllers. In such systems, specialisa-
tion and division of labour are often paramount [23, 29, 4].

Heterogeneity in a multiagent system may significantly in-
crease its capabilities, at the price of added complexity [25].
Heterogeneity complicates the multiagent learning process,
as the search space becomes significantly larger [21]. In a
heterogeneous system, behavioural control must integrate
the abilities of different agents to work in synergy towards
achieving a common goal. To solve the behavioural control
problem, it is necessary to pursue a holistic approach, in
which interactions between different agents are taken into
account from the very beginning [7, 21]. Artificial evolution
has proven to be a powerful tool for the synthesis of con-
trollers for multiagent systems, both in homogeneous sys-
tems [3, 26] and in heterogeneous systems [23, 29].

To evolve controllers for heterogeneous systems, two main
approaches can be considered [21]: team learning and con-
current learning. In team learning, all controllers for the
whole team are encoded in a single genome [2, 27]. In
concurrent learning, multiple learning processes for differ-
ent parts of the team run in parallel, with the objective of
improving the team as a whole. The most prominent con-
current learning algorithm is cooperative coevolution [22],
where the controllers for the different agents are coevolved
in separate populations that interact during the evaluation
process. In this study, we focus on cooperative coevolution
algorithms, which will be presented in the following section.

2.2 Cooperative Coevolution
Cooperative coevolution has a number of advantages over

the non-coevolutionary approaches for the design of hetero-
geneous multiagent systems, such as: (i) the capability of
working on a problem decomposition, comprised by more
manageable sub-problems [12, 22], and (ii) the emergence
of agent roles and specialisations [23, 29]. Some of the pre-

vious applications of CCEAs in the domain of embodied
multiagent systems include the cooperative predator-prey
task [29, 9, 18], multi-rover task [19], collective construc-
tion [16], herding [23], and keepaway soccer [9].

In a typical application of a CCEA, each agent is evolved
in a separate population [23]. At every generation of the evo-
lutionary algorithm, each population is evaluated in turn.
To evaluate an individual from one population, teams are
formed with representatives from the other populations.
The teams are then evaluated by a fitness function in the
problem domain, and the individual being evaluated receives
the fitness score obtained by the team as a whole. The fit-
ness differential is thus strictly a function of the individual’s
contribution to the problem-solving effort within the context
of the other team members.

Cooperative coevolution has to deal with the intricate dy-
namics that stem from having multiple coevolving popula-
tions [28]. Some of the main challenges include premature
convergence to mediocre stable states [20, 9], and the gen-
erally poor scalability of the algorithms [21]. The classic
CCEA architecture is associated with inherent scalability
issues with respect to the number of agents in the team.
If each agent evolves in a separate population, the number
of populations increases linearly with the number of agents,
which opens the search space and increases computational
complexity. Moreover, in large teams, the impact of a single
agent in the behaviour of the team can be almost impercep-
tible, which can cause the fitness gradients to vanish [1].

The scalability issue is also related with the problem of
reinvention [21]. CCEAs commonly separate agents into
different populations, creating a strict separation between
agents. In many multiagent tasks, however, there can be a
high degree of overlap between the policies of each agent [16].
The evolutionary process can potentially waste many re-
sources learning the same behaviour in multiple popula-
tions. In previous works, the problem of reinvention has
been addressed by pre-programming the shared skillset in
the robots [23], or by implementing a shaping phase to evolve
the basic skillset for all robots [17]. An alternative approach
was adopted in CONE-2 [16], where evolution starts with
only one agent, and more agents, based on existing ones, can
be added throughout evolution. CONE-2 thereby adapts
the number of agents to the task at hand and mitigates the
problem of reinvention.

2.3 Partially Heterogeneous MAS
One way of improving the scalability of multiagent learn-

ing is through the reduction of heterogeneity in the sys-
tem [21]. By reducing heterogeneity, the number of agent
controllers that need to be learned decreases, thus improving
scalability [14]. With partial heterogeneity, the problem of
reinvention can also be addressed: if different agents perform
the same task, they can belong to the same homogeneous
sub-team, thus avoiding the evolution of similar solutions in
different populations.

Evolution of partially heterogeneous multiagent systems
is a relatively unexplored field of research [27]. Previous
works on the evolution of hybrid teams have been mostly
restricted to team learning. Luke [14] evolved hybrid teams
for the RoboCup challenge, with the team composition man-
ually specified beforehand. Each genome was a forest of GP
trees that encoded the behaviour of the multiple sub-teams.
Hara [11] proposed a GP-based grouping technique, Auto-

298

matically Defined Groups (ADG), that automatically dis-
covers the optimal number of groups and their compositions.
Also based on genetic programming, Bongard [2] proposed
the Legion System, where the genome encodes the composi-
tion of the team and one sub-tree for each behaviour class.
In the context of team learning, Lichocki et al. [13] stud-
ied crossover operators for the evolution of hybrid teams,
focusing on the exchange of agents between teams. A dif-
ferent neuroevolution approach was taken in [5]: the agent
controllers were encoded in a single genome, and an indirect
encoding technique, HyperNEAT, was used to exploit simi-
larities in agents’ policies. HyperNEAT allowed for sharing
of policies between agents, while still exhibiting variations.

While encoding the whole team in one genome can facil-
itate the evolution of team compositions, such approaches
lack the advantages provided by coevolutionary algorithms:
the decomposition of the large search space into more
tractable sub-problems. To cope with large heterogeneous
multirobot systems, Nitschke [19] proposed CONE, a co-
operative coevolution method that allows regulated breed-
ing between different populations, each corresponding to a
different agent. Crossover between different populations is
allowed if the individuals of those populations share the
same specialisation. The possible specialisations are spec-
ified manually by the experimenter. It was shown that
CONE can improve the performance of coevolution when
the tasks require a high degree of specialisation. The evolved
teams are, however, still fully heterogeneous, as complete
controllers are not shared by different agents.

In this paper, we propose a cooperative coevolution
method that is capable of evolving partially heterogeneous
teams. Both the team composition and the agent con-
trollers are under evolutionary control. Our method draws
inspiration from CONE [19], in the sense that it relies on
agent specialisations to regulate interactions between differ-
ent populations. In contrast to CONE, however, our method
uses these specialisations to build homogeneous sub-teams,
rather than only relying on them for the exchange of genetic
material. Our approach is described in the following section.

3. HYB-CCEA: COOPERATIVE
COEVOLUTION OF HYBRID TEAMS

We propose Hyb-CCEA, an extension of a CCEA to evolve
agent controllers for physically homogeneous, behaviourally
heterogeneous multiagent systems. In traditional applica-
tions of CCEAs in multiagent systems, there is a one-to-one
mapping between agents and populations. Our approach de-
parts from this concept: we allow population individuals to
encode a controller that can be used by multiple agents, thus
effectively forming homogeneous sub-teams inside heteroge-
neous teams. In Hyb-CCEA, each population is assigned to
a subset of the agents in the team. The number of popula-
tion individuals is constant across all populations, and two
different populations cannot be assigned to the same agent.

During evaluation, all individuals of a given population
are assigned to the same set of agents (see Figure 1). Each
population thus become responsible for the evolution of a
homogeneous sub-team, not just one specific agent. The
rest of the coevolutionary evaluation operates the same way
as a traditional CCEA [22]: individuals are joined with rep-
resentative individuals from the other populations for evalu-
ation, and the individual being evaluated receives the fitness

p1

p2

...

p99

p100

Individuals Agents

a1

Population p

a2

a3

q1

q2

...

q99

q100

Individuals Agents

a4

Population q

a5
p3 q3

*1

2

3

4

5

Task environment

Fitness score

Figure 1: Illustration of the evaluation phase. In
this example, the individual p99 of population p is
being evaluated. The representative individual of q
is q1. The population individuals (controllers) are
assigned to the respective agents, and the fitness of
the whole team is assigned to individual p99.

Algorithm 1 Hyb-CCEA algorithm.

1: Let P be a set of populations, and A the set of all agents.
2: P ← createPopulations()
3: for each generation do
4: for p ∈ P do
5: for each individual i ∈ p do
6: t← Form a team with i and the representative

rq from each other population q 6= p.
7: fiti ← evaluate(t), assigning each individual

to the respective set of agents.

8: P ← attemptSplit(P)
9: P ← attemptMerge(P)

10: for p ∈ P do
11: rp ← individual i ∈ p with maximum fit score.
12: Breed p, based on the fitness scores fit of the

individuals.

score that the team as a whole obtained. The outline of the
algorithm is shown in Algorithm 1. Throughout this study,
only one collaboration is formed to evaluate each individual.
Evaluations could, however, rely on more collaborations, for
example using randomly chosen collaborators [20].

The distinctive aspect of Hyb-CCEA is that it does not
assume that the optimal number of sub-teams and their
composition are known beforehand: we extend the CCEA
so that the number of composition of the sub-teams is also
under evolutionary control. Different levels of heterogeneity
can thus be explored throughout the evolutionary process.
To this end, we propose: (i) a procedure for merging two
populations (step 9), which creates a new population as-
signed to the agents of the two former populations, thus
decreasing the heterogeneity of the system; and (ii) a pro-
cedure for splitting a population (step 8), which creates two
populations assigned to different sets of agents, thus increas-
ing heterogeneity. Both the split and merge procedures were
implemented with the objective of minimising any immedi-
ate negative impact in the behaviour and performance of the
teams. The evolutionary process can therefore follow the fit-
ness gradients without major disruptions caused by sudden
changes in team compositions. The following sections detail
the initialisation, merge, and split procedures.

3.1 Initialisation Procedure
We consider two alternatives for the creation of the initial

populations, which are studied and compared in Section 5.3.

299

Homogeneous start: There is only one population ini-
tially. All the agents of the multiagent system are
assigned to this population.

Heterogeneous start: There is one population assigned
to each agent of the multiagent system.

Another alternative would be to initialise the algorithm
with a partially heterogeneous configuration, based on the
experimenter’s domain knowledge for instance. This alter-
native is fully compatible with the proposed algorithm, but
we do not address it in this paper due to space restrictions.

3.2 Merge Procedure
Previous works have shown that cross-breeding between

agents that share similar specialisations [19], or belong to
the same sub-team [15], can be beneficial for the emergence
of specialisations. We go beyond this concept by allowing
behaviourally similar agents to become genetically homoge-
neous. If two separate populations are evolving similar agent
behaviours, they can be merged into one population, see Fig-
ure 2. To identify behaviour similarities between agents, we
rely on an agent behaviour characterisation [10] provided by
the experimenter. This characterisation is a real-valued vec-
tor β(a), composed of features that describe the state of the
agent a during task execution, and/or the relation of the
agent with the environment and other agents [10]. Charac-
terisations are obtained during the evaluation phase: besides
obtaining the fitness score of the individual, the behaviour
of the respective agent(s) is also recorded.

The concept behind the merge procedure, described in Al-
gorithm 2, is to first obtain a set of agent behaviours that
is representative of each population, then measure the dis-
tance between these sets of behaviours, and finally merge
populations with a high degree of behavioural similarity.

The behavioural set B of a population p is obtained (steps
2 and 5) by aggregating the agent behaviours recorded dur-
ing the evaluation of p, considering the agents to which that
population is currently assigned (Ap):

agentBehaviours(p) =
{
β(ia) : i ∈ p′ ∧ a ∈ Ap

}
. (1)

Since the objective is to assess the behaviour space region
to which a population is converging, we only consider the
high-fitness portion of the population (p′).1

The distance between two populations, including the dis-
tance between a population and itself, is then given by the
mean pairwise distance between the respective sets of agent
behaviours, A and B:

pairwiseDistance(A,B) =
1

|A||B|
∑
x∈A

∑
y∈B

d(x, y) , (2)

where d is the Euclidean distance between the behaviour
characterisation vectors.

The distance between each two populations is then nor-
malised (step 8), by dividing it by the respective intra-
population distances (steps 3 and 6). The normalised dis-
tance measure δp,q represents the separation of two popula-
tions p and q in agent behaviour space. If two populations
are converging to similar behaviours, their distance will be

1In the experiments presented in this paper, we considered
the high-fitness portion as the top 20% of each population,
which is the same as the survival threshold of the NEAT
algorithm we use. Preliminary experiments showed this pa-
rameter is robust to moderate variation.

p1

p2

...

p99

p100

Individuals Agents

a1

Population p

a2

a3
p3

q1

q2

...

q99

q100

Individuals Agents

a4

Population q

a5
q3

p1
...

q1
...

q40

Individuals Agents

a2

Population x

a4
p60

a1

a3

a5

Figure 2: Merge procedure: the new population x
replaces the two parents, p and q. The population
x is formed by a subset of their individuals, and is
assigned to all the parents’ agents.

Algorithm 2 Merge procedure.

1: for each population p ∈ P ∧ age(p) ≥ TG do
2: Bp ← agentBehaviours(p)
3: ∆p ← pairwiseDistance(Bp, Bp)
4: for each q ∈ P ∧ q 6= p ∧ age(q) ≥ TG do
5: Bq ← agentBehaviours(q)
6: ∆q ← pairwiseDistance(Bq, Bq)
7: ∆p,q ← pairwiseDistance(Bp, Bq)

8: δp,q ←
2∆p,q

∆p + ∆q

9: Select p and q with the minimum δp,q.
10: if δp,q ≤ TD then
11: Create a pop. x, assigned to the agents Ap ∪Aq.
12: Add to x the highest-fit individuals of p and q, in the

proportions
|Ap|
|Aq∪Aq| and

|Aq|
|Ap∪Aq| , respectively.

13: Remove p and q from P .
14: Add x to P .

close to 1. The most similar populations are merged if the
distance between them is inferior to the merge threshold TD

(step 10). Only populations older than a stability threshold
TG are allowed to merge. This threshold enforces a stability
period that provides the population time to adapt to the
current set of assigned agents. The new population replaces
the two parent populations, and is comprised by the respec-
tive high-fitness individuals (steps 11–14). The number of
individuals that are drawn from each population is propor-
tional to the number of agents assigned to that population.

3.3 Split Procedure
The split procedure increases the heterogeneity of the sys-

tem by breaking up a homogeneous sub-team: two clones of
a population are created, and each one is assigned to a differ-
ent set of agents, see Figure 3. Since all agents assigned to a
given population share the same controllers, they will most
likely display very similar behaviours. Therefore, contrary
to the merging process, we cannot rely on agent behaviour
characterisations to regulate splits. We resort to a stochastic
approach to splitting, described in Algorithm 3.

In the splitting process, each population is assigned a split-
ting pressure Sp (step 2). The splitting pressure increases
linearly with the age of the population (number of genera-
tions since it was created) and the fraction of agents it is
assigned to. The fraction of agents has a limited influence
on the splitting pressure, in order to guarantee a healthy
frequency of splits in multiagent systems of any size. The
population with the highest pressure is split if Sp is above
the stability threshold TG (steps 3–4). The individuals of

300

Individuals Agents

a2

Population p

a4

a1

a3

a5

Individuals Agents

Population x

a1

a2

p1

p2

...

p99

p100

p3

Individuals Agents

Population y

a3

a4

a5

p1

p2

...

p99

p100

p3

p1

p2

...

p99

p100

p3

Figure 3: Split procedure: two new populations, x
and y, replace the parent p. The populations x and y
are copies of p, but each one is assigned to a disjoint
set of agents.

Algorithm 3 Split procedure.

1: for each population p ∈ P ∧ |Ap| ≥ 2 do

2: Sp ←
age(p)

2

(
1 +
|Ap| − 2

|A| − 2

)
, |A| > 2

3: Select the population p with the maximum Sp.
4: if Sp ≥ TG then
5: Randomly split the set of agents Ap into Ax and Ay

such that: Ax ∪Ay = Ap ∧Ax ∩Ay = ∅.
6: Create two copies of p, x and y, assigned to the set

of agents Ax and Ay.
7: Remove p from P .
8: Add x and y to P .

the two resulting populations are exact copies of the indi-
viduals of the parent population (step 6). The set of agents
of the parent population is randomly split into two (step 5),
and each of the child populations is assigned to one of those
subsets (step 6).

Stochastic splits are feasible because splits can be reverted
later by the merge procedure. As both the merge and split
procedures use the stability threshold TG, new populations
cannot be removed for at least TG generations. This stability
period provides the new populations time to converge to dif-
ferent regions of the agent behaviour space. If two recently
split populations did not converge to different behaviours
after the stability period, the distance between them will be
relatively small, and they can therefore be merged again.

4. EXPERIMENTAL SETUP
Our experiments are based on a simulated version of the

herding task [23]. In this task, a group of physically homo-
geneous shepherds must corral one or more sheep. To make
the task more challenging, one or more foxes are present,
which try to capture the sheep, and must be kept away by
the shepherds. Only the controllers for the shepherds are
evolved, and the other agents have a preprogrammed be-
haviour. The herding task requires behavioural heterogene-
ity in the team of shepherds [23], since there are different
tasks that must be performed simultaneously: corral the
sheep and keep away the foxes. We use multiple variants of
the task in our experiments. The number of agent speciali-
sations required to solve the task is varied by using different
numbers of sheep and foxes. Additionally, we introduce two
fox types: a weak fox, which can be kept away by just one
shepherd, and an evasive fox, which requires more than one
shepherd to be stopped. By introducing these variations to
the herding task, we can study the algorithms in setups that
require different sub-teams inside the larger team.

Table 1: Task setups.

Setup Sheph. Sheep Foxes Fox type Eval. budget

W5 5 1 2 Weak 150K
E5 5 1 1 Evasive 150K
W7 7 2 2 Weak 300K
E7 7 1 2 Evasive 300K
W10 10 2 3 Weak 400K
E10 10 1 3 Evasive 400K

Sheep

C
o
rr

a
l

Shepherds Foxes

W7,W10

W7,W10

W5,E5
E7,E10

Weak
Fox

Evasive
Fox

s1

s2

s3

s4

A

Sheep

SheepShepherd

Shepherd
...

...

Any fox
Sheep

Shepherd

W5,W7,E7

E5,W10,E10

W10,E10

W5,W7,E7

W10,E10

Figure 4: Left: Initial conditions for each setup. The
labels on the sheep and foxes indicate the initial po-
sitions that are used in each setup. The shepherd
on the bottom illustrates the sensor setup. Right:
Illustration of the pre-programmed behaviour of the
sheep and the different types of foxes.

The task variants are listed in Table 1, and the initial
conditions are depicted in Figure 4 (left). The agents’ initial
positions for each variant are fixed. The task environment
is a bounded square arena of size 150x150 units, with no
obstacles. Each shepherd has the following sensors, which
correspond to the inputs of the neural network: (i) four
sensors that return the distance of the nearest shepherd (s1−
s4), with a range of 25 units; and (ii) 2(f + s + 1) sensors
that return the distance and relative orientation for each of
the f foxes, each of the s sheep, and the centre of the corral.
The two neural outputs control respectively the shepherd’s
linear speed (maximum of 1 unit/step) and turning speed
(maximum of 22.5◦/step).

When a shepherd approaches a sheep (distance less than
5 units), the sheep moves 1 unit in the opposite direction of
that shepherd (see Figure 4, right). The sheep are other-
wise passive. The behaviour of the foxes is preprogrammed:
each fox tries to intercept the closest sheep by estimating
its future position and by moving 1 unit in that direction.
If a shepherd gets close to a fox (distance less than 5 units),
the fox moves away from the shepherd. If the foxes are of
the weak type, the fox moves in the opposite direction. If
the foxes are of the evasive type, the fox moves in a perpen-
dicular direction, choosing the side where the closest sheep
is present. Figure 4 (right) illustrates the fox behaviours.
A trial ends when all sheep enter the corral, all sheep are
captured by a fox, or when 500 time steps have elapsed.

The fitness function F rewards the shepherds for getting
the sheep closer to the corral, and in case a sheep is success-
fully corralled, for the amount of time it took to corral it.
To bootstrap the evolutionary process, the fitness function

301

also rewards the shepherds for getting close to the sheep at
any point in the simulation trial.

F =
∑
s∈S

[
1−ms

|S| +

{
2− τs/T if s is corralled

1− df,s/di,s otherwise

]
, (3)

where S is the set of sheeps, ms is the minimum distance of
any shepherd to s (normalised to [0, 1]), τs is the number of
time steps it took to corral s, T is the maximum trial length,
df,s is the final distance of s to the corral, and di,s is the
initial distance.

The agent behaviour characterisation β(a) is a vector that
describes the relation of shepherd a with the environment:
(i) distance of a to every sheep, averaged over the simulation
trial; (ii) mean distance of a to the corral, and (iii) mean
distance of a to every fox. The length of the characterisation
varies from 3 to 6, depending on the number of sheep and
foxes. All features are normalised to the range [0,1].

The agent controllers are neural networks evolved by
NEAT [24], a state-of-the-art neuroevolution algorithm that
evolves both the weights and topology of the networks, and
has been extensively used in evolutionary robotics. We use
the NEAT4J2 implementation and most of the default pa-
rameter values: each population has a fixed size of 100 indi-
viduals, the mutation probability is 25%, crossover probabil-
ity is 20%, the probability of adding a connection is 5%, the
probability of adding a neuron is 3%, and the target number
of species is 5. The same evolutionary parameters were used
in the experiments with Hyb-CCEA and CCEA. The task is
implemented in MASON3, and the evolutionary algorithms
are implemented over the ECJ framework4.

Although the two evolutionary algorithms are genera-
tional, we rely on the number of evaluations (i.e., number of
evolved individuals) for a fair comparison, since Hyb-CCEA
has a dynamic number of population individuals. The two
algorithms were therefore given a fixed budget of evalua-
tions for each task setup (see Table 1). Every evolutionary
treatment is repeated in 30 independent evolutionary runs.

5. RESULTS

5.1 Comparison with
Fully Heterogeneous Teams

To evaluate the potential improvements brought by Hyb-
CCEA, we compare its performance with the underlying
cooperative coevolution algorithm (CCEA), in which the
teams are fully heterogeneous. The CCEA is implemented
as described in Algorithm 1, but each agent is assigned to a
separate population, and there are no split and merge pro-
cedures. Hyb-CCEA used the same parameter values in all
tasks: TG = 20 and TD = 1.25 (these parameters are stud-
ied in Section 5.4). Figure 5 shows the highest fitness scores
achieved after a given number of evaluations, averaged over
30 evolutionary runs for each method and task. The highest
fitness scores achieved by Hyb-CCEA were significantly su-
perior to those achieved by CCEA in all task setups (Mann-
Whitney test, p < 0.05), except W5 (p = 0.14). The results
show that Hyb-CCEA not only achieves higher fitness scores
in the end, it also displays a steeper initial increase in fitness
scores across all tasks.
2http://neat4j.sourceforge.net
3http://cs.gmu.edu/~eclab/projects/mason
4http://cs.gmu.edu/~eclab/projects/ecj

1.0

1.5

2.0

2.5

3.0

1.2

1.6

2.0

1.0

1.5

2.0

2.5

1.0

2.0

3.0

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

0 100K 200K 300K

0 50K 100K 150K

0 100K 200K 300K 400K

0 100K 200K 300K

Fi
tn

es
s

0 50K 100K 150K

Fi
tn

es
s

0 100K 200K 300K 400K

Fi
tn

es
s

Hyb−CCEACCEA

W5

W7

W10

E5

E7

E10

Evaluations Evaluations

Figure 5: Mean of the highest fitness scores achieved
after a given amount of evaluations.

0

100

200

300

W5 E5 W7 E7 W10 E10
Setup

E
va

lu
at

io
ns

 x
10

0

CCEA Hyb-CCEA

0.0

2.5

5.0

7.5

10.0

W5 E5 W7 E7 W10 E10
Setup

P
op

ul
at

io
ns

Evaluations until fitness
level achieved

Mean number of
populations

Figure 6: Left: Number of evaluations necessary to
reach the following fitness levels – W5 and E5 : 2.5;
W7 : 3.0; E7 : 1.75; W10 : 2.75; E10 : 1.5. Right:
mean number of populations throughout evolution.

An analysis of how many evaluations were required on
average to reach solutions with certain fitness levels is pro-
vided in Figure 6 (left). The fitness levels were chosen to
be as high as possible while still being achieved by at least
half the evolutionary runs of both CCEA and Hyb-CCEA.
In all task setups, Hyb-CCEA requires significantly fewer
evaluations to reach the same fitness levels (Mann-Whitney
test, p < 0.05). Figure 6 (right) shows that in all task se-
tups, Hyb-CCEA was able to form homogeneous sub-teams,
since it used on average significantly fewer populations than
the number of agents in the team. By reducing the number
of populations, Hyb-CCEA could therefore achieve solutions
with similar fitness scores with fewer evaluations, when com-
pared with a fully heterogeneous CCEA.

The differences in both the number of evaluations and
highest fitness scores are more pronounced in the setups with
evasive foxes. In these setups, the shepherd team can bene-

302

fit from the existence of sub-teams, since multiple shepherds
are required to deal with each fox. This suggests that Hyb-
CCEA is especially effective in domains where sub-teams
should be formed. Nonetheless, in setups that do not re-
quire sub-teams (weak foxes), Hyb-CCEA still managed to
achieve good solutions faster, without any sacrifice in terms
of solution quality. These results highlight that Hyb-CCEA
not only reduces the redundancy in the evolutionary process
and improves scalability, it also takes advantage of the ex-
istence of homogeneous sub-teams to evolve higher quality
solutions. In the following sections, we study the mecha-
nisms contributing to the performance of Hyb-CCEA.

5.2 Evolutionary Dynamics Analysis
In this section, we analyse the evolutionary dynamics of

Hyb-CCEA induced by the merge and split procedures. Fig-
ure 7 shows the mean number of populations throughout
evolution in each task. In the early stages of evolution, there
is a steep decrease in the number of populations, which sug-
gests a low level of heterogeneity. This initial decrease is
explained by the lack of agent specialisations in the early
generations: since the agents display similar behaviours ini-
tially, the respective populations are merged. As evolution
progresses, populations begin to converge to specific regions
of the behaviour space: specialisations emerge. The number
of populations therefore tends to increase. It is noteworthy
that for setups with the same number of agents, evolution
can converge to different number of populations (see W5 and
E5, and W10 and E10), which confirms that Hyb-CCEA can
adapt the level of heterogeneity to the task at hand.

The merging and splitting of populations should not lead
to significant disruptions in the evolutionary process. This
implies that the fitness of the highest scoring solutions in
the system should not decrease substantially after a merge
or a split. Table 2 lists the immediate impact of the merge
and split procedures. In all setups, the immediate change in
fitness after a split occurs is not significantly different from
the change when no split or merge occurs (Mann-Whitney
test, p > 0.25). This suggests that splits have no immediate
impact in the performance of the teams, which is desirable,
and explained by the fact that both new populations are
initialised with the individuals of the parent population.

After a merge occurs, fitness scores tend to decrease
slightly (p < 0.001 in all setups). In the merge proce-
dure, only populations with similar agent behaviours are

2

4

6

8

Generations

N
um

be
r o

f p
op

ul
at

io
ns Setup

0 100 200 300 400 500

10

W5

E5

W7

E7

W10

E10

Figure 7: Mean number of populations at each gen-
eration. Results are only shown up to the 500th
generation, the values remain relatively stable after.

Table 2: Mean variation of the highest fitness
score after a merge/split, and mean number of
merges/splits in each run. The Stable column shows
the variation when no merge/split occurs.

Setup
Merges Splits Stable

Num. Var. Num. Var. Var.

W5 13.26 -1.96% 12.20 +1.50% +1.02%
E5 16.97 -3.01% 14.93 +0.60% +0.55%
W7 25.57 -2.00% 22.43 +1.20% +0.74%
E7 23.27 -2.67% 20.60 +1.00% +0.76%
W10 41.50 -1.80% 35.03 +0.71% +0.87%
E10 34.06 -0.76% 29.66 +0.27% +0.51%

merged. There might, however, exist subtle differences in
the behaviour of different agents that are beneficial for the
behaviour of the team. If those agents become genetically
homogeneous, these subtle differences disappear, potentially
decreasing the performance of the teams. This impact, how-
ever, is relatively small on average (around 2% of the fitness
score), and the results suggest that it does not compromise
the effectiveness of Hyb-CCEA.

5.3 Initialisation Procedure
As discussed in Section 3.1, we consider two possible ini-

tialisations procedures: (i) each agent is assigned to a sepa-
rate population (heterogeneous start); and (ii) all agents are
assigned to the same population (homogeneous start).

Table 3 shows the highest fitness scores achieved with each
approach. We could only find a significant difference in the
W7 setup (Mann-Whitney test, p = 0.003). In all other task
setups, no differences were found (p > 0.1). We analysed the
number of populations throughout evolution to discover the
reason for the similarities in performance, see Table 4. As
expected, there is a large difference in the number of pop-
ulations in the initial generations (0–99th). As evolution
progresses, however, the difference becomes smaller. Af-
ter the 250th generation, there are no significant differences
in the mean number of populations in the two approaches
(p > 0.1). This result further reinforces that Hyb-CCEA can

Table 3: Highest fitness scores achieved with Hyb-
CCEA, with a heterogeneous (Het) and homoge-
neous (Hom) initialisation.

W5 E5 W7 E7 W10 E10

Het 2.56 2.56 3.71 2.49 3.25 2.33
Hom 2.56 2.57 3.40 2.48 3.07 2.38

Table 4: Mean number of populations at different
stages of evolution.

Setup
Gen. 0–99 Gen. 100–249 Gen. 250–

Het Hom Het Hom Het Hom

W5 3.47 2.22 3.23 3.14 3.61 3.38
E5 3.28 2.00 2.77 2.62 2.90 2.76
W7 4.75 2.33 3.85 3.46 3.87 3.55
E7 4.49 2.34 4.01 3.99 4.30 4.34
W10 5.90 2.44 4.07 3.63 4.18 3.73
E10 5.89 2.41 5.06 4.38 5.66 5.39

303

adapt the level of heterogeneity in the team to the task at
hand, and is not significantly biased by the initial conditions.

5.4 Parameter Sensitivity
In this section, we study the sensitivity of Hyb-CCEA to

the merge threshold TD and the stability threshold TG. The
merge threshold dictates the maximum distance allowed be-
tween two mergeable populations. The distance between a
population and itself is always 1 (see Section 3.2). A value
TD = 1 therefore means that two populations should cover
exactly the same region of the behaviour space in order to
be merged. The higher the threshold, the easier it is to
merge two populations. The stability threshold TG dictates
the minimum age of a population: how many generations
must pass before the population can be removed through a
merge or a split. The stability threshold therefore controls
the frequency of merges and splits in the evolutionary pro-
cess. We evaluated the impact of these two parameters in
two task setups, W7 and E7, see Figure 8 for results. We
evaluated TD (left) with a fixed value of TG = 10, and we
evaluated TG (right) with a value of TD = 1.25.

The merge threshold TD has a different impact on the per-
formance of Hyb-CCEA in the two setups: in W7, there are
no significant differences in the range [1, 1.5] and there is a
monotonic decrease in [1.5, 2]; in E7, there is a monotonic
increase in the range [1, 1.5], and no significant differences
in [1.5, 2]. This is explained by the different nature of the
two task variants: in E7, the existence of sub-teams is ben-
eficial, while in W7 there is no need of sub-teams, and more
specialisations are required. Increasing the merge threshold
facilitates the formation of sub-teams, but can hinder the
evolution of subtly different specialisations. Considering the
two setups, the optimal value of TD is between [1.25, 1.5].

The stability threshold only has a significant impact in
the E7 setup (Kruskal-Wallis test, p = 0.50 in W7, and
p = 0.004 in E7). In the E7 setup, higher values of TG

are preferred, although there are no significant differences
in the range [20, 60]. Our results are insufficient to draw
definite conclusions regarding the stability threshold. Al-
though Hyb-CCEA is not overly sensitive to this parameter
in our experiments, we are assessing the impact of TG in
different tasks in ongoing work.

Unlike the merge and split thresholds, the agent behaviour
characterisation (see Section 3.2) is task-specific. The char-
acterisation should have sufficient behaviour features to dis-
tinguish agents with evidently different behaviours. A very

TD

B
es

t f
itn

es
s

TG

Setup W7 Setup E7

2.0

2.5

3.0

3.5

1.00 1.10 1.25 1.50 1.75 2.00

2.5

3.0

3.5

1 5 10 20 40 60

Figure 8: Highest fitness scores achieved at the end
of the evolutionary runs, with different values for
the merge threshold TD and stability threshold TG.
Each point is the average of 30 evolutionary runs.

detailed characterisation should not be harmful to the al-
gorithm, as the distance between populations is given by
a relative measure. In ongoing work, we are empirically
evaluating the impact of the behaviour characterisation in
Hyb-CCEA, and experimenting with task-independent char-
acterisations [6, 8].

6. CONCLUSION
We proposed Hyb-CCEA, a novel method for the cooper-

ative coevolution of partially heterogeneous (hybrid) teams.
In Hyb-CCEA, each population can be assigned to an ho-
mogeneous sub-team, which departs from traditional CCEA
applications where each agent evolves in a separate popula-
tion. Both agent controllers and the team composition are
under evolutionary control. The level of heterogeneity in the
system is therefore dynamic: (i) heterogeneity can be de-
creased by merging two populations into a new one, forming
an homogeneous sub-team with the respective agents, and
(ii) heterogeneity can be increased by splitting one popula-
tion into two new ones, where each is assigned to a different
set of agents. We proposed a merge procedure that merges
two populations if they are converging to similar regions of
the agent behaviour space, and a stochastic split procedure
based on populations’ age.

We compared Hyb-CCEA with a fully heterogeneous
CCEA in a simulated herding task. We used multiple task
setups, varying the number of agents from 5 to 10, and vary-
ing the number and type of specialisations required. Our re-
sults were generally consistent across all tasks: Hyb-CCEA
could reach good solutions for all tasks in significantly fewer
evaluations, and it could also achieve significantly higher
fitness scores in the end. We showed that Hyb-CCEA can
adapt the level of heterogeneity in the system to the task at
hand, and that it is especially effective in task variants that
require the formation of sub-teams.

We studied the main parameters of Hyb-CCEA: the initial-
isation procedure, the merge threshold, which dictates the
distance threshold for merging, and the stability threshold,
which controls the minimum age of populations. Our ex-
periments showed that Hyb-CCEA is not overly sensitive to
variations in the parameter values. Additionally, the same
parameter values were used across all the considered task
setups, yielding promising results.

Our experiments revealed that the performance gains of
Hyb-CCEA become higher as the number of agents increases.
In ongoing work, we are evaluating the proposed approach
in additional tasks, requiring a higher number of agents.
Although the merge and split procedures proposed in this
paper worked relatively well and did not disrupt the evo-
lutionary process, we are currently studying alternative im-
plementations of these procedures.

To the best of our knowledge, Hyb-CCEA is the first coop-
erative coevolution algorithm that allows for the emergence
of partially heterogeneous teams. Hyb-CCEA improves the
scalability of cooperative coevolution without sacrificing so-
lution quality. Our study opens new interesting avenues
of research, since it brings together the emergence of team
compositions and the advantages of cooperative coevolution.

Acknowledgements This research is supported by

Fundação para a Ciência e Tecnologia (FCT), with grant

SFRH/BD/89095/2012 and projects UID/EEA/50008/2013,

UID/Multi/04046/2013, and EXPL/EEI-AUT/0329/2013.

304

REFERENCES
[1] A. Agogino and K. Tumer. Efficient evaluation

functions for evolving coordination. Evolutionary
Computation, 16(2):257–288, 2008.

[2] J. C. Bongard. The legion system: A novel approach
to evolving heterogeneity for collective problem
solving. In Genetic Programming, volume 1802 of
LNCS, pages 16–28. Springer, 2000.

[3] M. Brambilla, E. Ferrante, M. Birattari, and
M. Dorigo. Swarm robotics: a review from the swarm
engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[4] A. Campbell and A. S. Wu. Multi-agent role
allocation: issues, approaches, and multiple
perspectives. Autonomous Agents & Multi-Agent
Systems, 22(2):317–355, 2011.

[5] D. B. D’Ambrosio and K. O. Stanley. Generative
encoding for multiagent learning. In Genetic and
Evolutionary Computation Conference (GECCO),
pages 819–826. ACM Press, 2008.

[6] S. Doncieux and J.-B. Mouret. Behavioral diversity
measures for evolutionary robotics. In Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE
Press, 2010.

[7] M. Dorigo, D. Floreano, L. Gambardella, F. Mondada,
et al. Swarmanoid: A novel concept for the study of
heterogeneous robotic swarms. IEEE Robotics &
Automation Magazine, 20(4):60–71, 2013.

[8] J. Gomes and A. L. Christensen. Generic behaviour
similarity measures for evolutionary swarm robotics.
In Genetic and Evolutionary Computation Conference
(GECCO), pages 199–206. ACM Press, 2013.

[9] J. Gomes, P. Mariano, and A. L. Christensen.
Avoiding convergence in cooperative coevolution with
novelty search. In International Conference on
Autonomous Agents & Multiagent Systems (AAMAS),
pages 1149–1156. IFAAMAS, 2014.

[10] J. Gomes, P. Mariano, and A. L. Christensen.
Systematic derivation of behaviour characterisations
in evolutionary robotics. In International Conference
on the Synthesis and Simulation of Living Systems
(ALife), pages 212–219. MIT Press, 2014.

[11] A. Hara. Emergence of cooperative behavior using
adg; automatically defined groups. In Genetic and
Evolutionary Computation Conference (GECCO),
pages 1039–1046. Morgan Kaufmann, 1999.

[12] T. Jansen and R. P. Wiegand. Exploring the
explorative advantage of the cooperative
coevolutionary (1+1) EA. In Genetic and
Evolutionary Computation Conference (GECCO),
volume 2723 of LNCS, pages 310–321. Springer, 2003.

[13] P. Lichocki, S. Wischmann, L. Keller, and
D. Floreano. Evolving team compositions by agent
swapping. IEEE Transactions on Evolutionary
Computation, 17(2):282–298, 2013.

[14] S. Luke. Genetic programming produced competitive
soccer softbot teams for RoboCup97. In Genetic

Programming, pages 214–222. Morgan Kaufmann,
1998.

[15] S. Luke and L. Spector. Evolving teamwork and
coordination with genetic programming. In Genetic

Programming, pages 150–156. MIT Press, 1996.

[16] G. Nitschke. Behavioral heterogeneity, cooperation,
and collective construction. In Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE
Press, 2012.

[17] G. S. Nitschke. Neuro-evolution for emergent
specialization in collective behavior systems. PhD
thesis, Vrije Universiteit Amsterdam, 2008.

[18] G. S. Nitschke, A. E. Eiben, and M. C. Schut.
Evolving team behaviors with specialization. Genetic
Programming and Evolvable Machines, 13(4):493–536,
2012.

[19] G. S. Nitschke, M. C. Schut, and A. E. Eiben.
Collective neuro-evolution for evolving specialized
sensor resolutions in a multi-rover task. Evolutionary
Intelligence, 3(1):13–29, 2009.

[20] L. Panait. Theoretical convergence guarantees for
cooperative coevolutionary algorithms. Evolutionary
Computation, 18(4):581–615, 2010.

[21] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous Agents &
Multi-Agent Systems, 11(3):387–434, 2005.

[22] M. A. Potter and K. A. D. Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[23] M. A. Potter, L. A. Meeden, and A. C. Schultz.
Heterogeneity in the coevolved behaviors of mobile
robots: The emergence of specialists. In International
Joint Conference on Artificial Intelligence (IJCAI),
pages 1337–1343. Morgan Kaufmann, 2001.

[24] K. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[25] P. Stone and M. Veloso. Multiagent systems: A survey
from a machine learning perspective. Autonomous
Robots, 8(3):345–383, 2000.

[26] V. Trianni, S. Nolfi, and M. Dorigo. Evolution,
self-organization and swarm robotics. In Swarm
Intelligence, Natural Computing Series, pages
163–191. Springer, 2008.

[27] M. Waibel, L. Keller, and D. Floreano. Genetic team
composition and level of selection in the evolution of
cooperation. IEEE Transactions on Evolutionary
Computation, 13(3):648–660, 2009.

[28] R. P. Wiegand. An Analysis of Cooperative
Coevolutionary Algorithms. PhD thesis, George Mason
University, 2003.

[29] C. H. Yong and R. Miikkulainen. Coevolution of
role-based cooperation in multiagent systems. IEEE
Transactions on Autonomous Mental Development,
1(3):170–186, 2009.

305

