
The Power of Verification for Greedy Mechanism Design∗

Dimitris Fotakis
National Technical Univ. of

Athens, Greece
fotakis@cs.ntua.gr

Piotr Krysta
University of Liverpool, UK

pkrysta@liverpool.ac.uk

Carmine Ventre
Teesside University, UK
c.ventre@tees.ac.uk

ABSTRACT
Greedy algorithms are known to provide near optimal ap-
proximation guarantees for Combinatorial Auctions (CAs)
with multidimensional bidders, ignoring incentive compati-
bility. Borodin and Lucier [5] however proved that truthful
greedy-like mechanisms for CAs with multi-minded bidders
do not achieve good approximation guarantees. In this work,
we seek a deeper understanding of greedy mechanism design
and investigate under which general assumptions, we can
have efficient and truthful greedy mechanisms for CAs. To-
wards this goal, we use the framework of priority algorithms
and weak and strong verification, where the bidders are not
allowed to overbid on their winning set or on any subsets of
this set, respectively. We provide a complete characteriza-
tion of the power of weak verification showing that it is suffi-
cient and necessary for any greedy fixed priority algorithm to
become truthful with the use of money or not, depending on
the ordering of the bids. Moreover, we show that strong ver-
ification is sufficient and necessary for the greedy algorithm
of [20], which is 2-approximate for submodular CAs, to be-
come truthful with money in finite bidding domains. Our
proof is based on an interesting structural analysis of the
strongly connected components of the declaration graph.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Theory, Economics

Keywords
Algorithmic Mechanism Design; Mechanisms with Verifica-
tion; Combinatorial Auctions

∗This work is partially supported by EPSRC through grants
EP/K01000X/1 and EP/M018113/1 and by Greek NSRF
grant Algorithmic Game Theory/THALES.

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Algorithmic mechanism design (AMD) is the study of op-

timization problems where part of the input data is private
data of selfish agents. The goals of the protocol, called a
truthful mechanism, are to incentivize the agents to truth-
fully report their private data to the mechanism and to op-
timize the objective function of the problem under consider-
ation. AMD problems have numerous applications in areas
like, e.g., e-commerce, online auctioning, shopping systems.

Combinatorial Auctions (CAs) with the objective to max-
imize the social welfare is a paradigmatic AMD problem. In
a CA, we have a set U of m goods and a set of n bidders.
Each bidder i has a private valuation function vi mapping
subsets of goods to nonnegative numbers. Valuations are
monotone, i.e., for S ⊇ T , vi(S) ≥ vi(T ), and normalized,
i.e., vi(∅) = 0. The goal is to find a partition S1, . . . , Sn

of U such that the social welfare
∑n

i=1 vi(Si) is maximized.
Even the simplest versions of CAs are known to be NP-
hard and even hard to approximate in polynomial time. For
vast literature on the design of approximate polynomial-time
mechanisms for various versions of CAs, see, e.g., [25].

We study CAs with bidders’ valuation functions repre-
sented by value oracles, i.e., each bidder i submits such an
oracle that given any subset of goods S ⊆ U outputs the
value vi(S). This is the weakest possible assumption used
in literature to tackle the issue of exponentially (in n and m)
large valuations [4]. We aim at the design of truthful mech-
anisms that only use a polynomial number of calls to such
value oracles and return solutions with best possible approx-
imation guarantees with respect to social welfare. For CAs
with single-minded bidders1 a simple greedy truthful mech-
anism achieves the best possible

√
m-approximation [21].

Despite achieving an optimal approximation ratio for CAs
with single-minded bidders, greedy truthful mechanisms per-
form much worse for more general valuation functions. Bo-
rodin and Lucier [5] studied limitations of a general class
of greedy algorithms, priority algorithms, for truthful CAs
with non single-minded bidders. They proved that any such
truthful priority algorithm (i.e., mechanism using a priority
algorithm to compute its outcome) has an approximation ra-
tio Ω(m). The results of [5] imply that any truthful priority
algorithm does not achieve a good approximation ratio.

A widely studied class of CAs with non single-minded,
thus multidimensional, bidders assumes submodular valua-
tion functions, modeling economies of scale. A well known

1Bidder i is single-minded if there exists a fixed subset Si ⊆
U and a number wi ≥ 0 such that vi(S) = wi for any S such
that U ⊇ S ⊇ Si, and vi(S) = 0 otherwise.

307



greedy approximation algorithm for submodular CAs gives
an approximation guarantee of 2 [20]. This algorithm sim-
ply processes the goods in any fixed order and awards them
to the bidder who has maximum marginal value for each
good. However, there do not exist payments that make this
algorithm truthful [20]. Moreover, Borodin and Lucier [5]
considered the whole class of such greedy mechanisms (de-
fined by a fixed order of the goods used) for submodular
CAs and proved that no mechanism in this class is truthful!

Motivated by the dichotomy between a powerful algorith-
mic technique and its poor compatibility with bidders’ incen-
tives, we investigate here in which general circumstances of
multi-dimensional CAs, we can have truthful greedy mecha-
nisms. Inspired by [18], we focus on relaxations of truthful-
ness wherein some form of overbidding can be detected and
prevented. This line of research, generally dubbed mecha-
nisms with verification, is motivated by a number of real-life
applications and has been considered by economists in the
context of CAs (see, e.g., [7]). We want to understand what
kind of relaxed notion of incentive-compatibility, i.e., veri-
fication, we can adopt to happily marry greedy algorithms
with good approximation guarantees and truthfulness. A
relaxation of truthfulness is necessary in general for efficient
CAs with multidimensional bidders for otherwise no approx-
imation better than m can be achieved [9].

Our Contribution. Priority algorithms comprise a widely
accepted general model of greedy-like algorithms [6]. In the
context of CAs and for our purposes, we consider greedy pri-
ority algorithms that sequentially process elementary bids,
namely triples consisting of the identity i of a bidder, a sub-
set S of goods, and bidder i’s value vi(S) for S. Extending
and generalizing previous results in [18, 14], we first prove
that weak verification, namely verification that does not al-
low the bidders to overbid on their winning sets, is both
sufficient and necessary for any greedy fixed priority algo-
rithm to be truthful without money, if the elementary bids
are processed in nonincreasing order of their values, or with
money, if the order of the elementary bids is determined by,
possibly bidder dependent, increasing functions of their val-
ues. We highlight that these results are not specific to only
CAs but actually apply to any AMD problem Π and greedy
fixed priority algorithm for Π that uses triples as elemen-
tary bids (S being an output component pertinent to Π),
see Section 3. Observe that such general characterization-
type results in AMD are scarce in literature.

To deal with the additional power of adaptive priority
algorithms (cf. [5]), we introduce the concept of strong veri-
fication, where the bidders are not allowed to overbid on any
subset of their winning set. We first characterize all mecha-
nisms that are truthful without money and with strong ver-
ification. We observe that such mechanisms exhibit highly
non-monotone behavior, thus suggesting that designing such
mechanisms with good approximation guarantee is difficult.
Thus, we study strong verification with money.

As our main technical result, we show that the 2-appro-
ximate (adaptive priority) greedy algorithm of [20] is truth-
ful with money in finite bidding domains if and only if strong
verification is used. We prove the existence of payments
that make this algorithm truthful by using the well known
cycle-monotonicity technique [27, 30], which basically re-
quires to study the cycles of the so-called declaration graph.
We unveil a surprising structural property of the declara-
tion graph associated to this algorithm. It is well known

that if the valuation domain is finite, a mechanism is truth-
ful with money if and only if the corresponding declaration
graph does not contain any negative cycles (see, e.g., [27,
30]). Here, carefully exploiting the greedy selection rule and
strong verification, we prove that all cycles of the declaration
graph consist of cliques of nodes linked by 0-weight edges.
Thus, contracting the nodes of all such cliques, we obtain
an acyclic declaration graph. Then, we can define payments
for any given declaration (node of this graph) by comput-
ing essentially the shortest paths from this node to all the
sinks. We also show that strong verification is necessary for
making the greedy algorithm truthful with money, even if it
is allowed to execute all possible orders of goods.

We finally turn our attention to the computational com-
plexity of computing the payments, guaranteed to exist by
our proof. The only general approach known to date to prove
that computing payments is not harder than essentially ex-
ecuting the mechanism (once), is the technique of Babaioff
et al. [3, 2]. We show, however, that this approach does not
lead to the required payments in our case, indicating that the
payment computation has to carefully take into account the
structure of the declaration graph. The problem of comput-
ing payments can equivalently be formulated as computing
a feasible solution to an appropriate linear program (of ex-
ponential size) defined on the declaration graph. It is easy
to observe that shortest paths are only one of the feasible
solutions to this linear program (the minimal), but any fea-
sible solution can be used as a payment function. In fact, we
are not interested in an entire feasible solution, but just on
its component that corresponds to (and reveals the payment
for) some given node of the declaration graph. We further
prove that if the domain is represented succinctly, the prob-
lem of computing the payment corresponding to a shortest
path solution to this linear program is NP-hard. The proof
shows that computing such payments requires (and reveals)
crucial information about a succinctly represented declara-
tion graph of exponential size. This is true even for CAs
with n = 2 submodular bidders and m = 2 goods.

We complement this result by showing that indeed, we
can always efficiently find (non-shortest path) payments in
our declaration graph in the restricted case with m = 2
goods and any number of bidders, by carefully exploiting the
structure of the declaration graph in this case. We in fact
prove that the associated outcome graph, i.e., the declara-
tion graphs with its nodes leading to the same outcomes con-
tracted to a single node, does not have any negative weight
cycle. We are able to actually close the picture completely,
by proving that there are instances with n = 2 and m = 3
for which the outcome graph has a negative weight cycle,
meaning that for such instances the payment-per-outcome
approach fails for payment computation.

Due to lack of space, some of the proofs are deferred to
the full version of the paper.

Significance of Results and Related Work. Our work is
among the very first studies which dig deeper into the mostly
unexplored structure of the declaration graphs associated to
interesting mechanisms. We are aware of only very few such
similar studies, e.g., [19, 18].

To put our results in a broader mechanism design con-
text, it is in place to compare them with the celebrated
VCG mechanism [29, 8, 16]. Although, we do not know if
payments for our greedy mechanism for submodular CAs
can be computed in time independent of the size of the do-

308



main our results have significant implications. If one wants
to use an auction mechanism in practice, the mechanism
to choose would arguably be greedy, for its simplicity over
the VCG, which requires an optimal solution to a compu-
tationally difficult problem (VCG does not need verification
though). The crucial point is that the CAs setting relevant
to applications is in fact the setting in which we are able to
compute our payments efficiently. Think about submodular
CAs where each bidder can declare valuation functions from
a set of size polynomial in n and m. In this case, the alloca-
tion graph associated to the greedy mechanism has polyno-
mial size and thus payments are computable in time polyno-
mial time in n and m, i.e, in the combinatorial size of the al-
location problem. For instance, valuations are numbers from
{0, 1, 2, . . . ,M}, where M is a constant and, moreover, each
bidder submits explicit bids on subsets of only fixed constant
size subset of goods. Interestingly, for another such practi-
cally relevant setting of CAs with constant-size submodular
valuations, Dobzinski and Vondrák [13] prove that the so-
cial welfare maximization problem is not only NP-hard but
also NP-hard to approximate within any factor better than
1.225. Thus, we cannot run VCG in this setting in poly-
nomial time. But since the declaration graph of the greedy
algorithm is of size polynomial in n and m, we can compute
the payments in polynomial time, see Theorem 8.

CAs with submodular bidders were widely studied both
from algorithmic and AMD perspective, see, e.g., [22, 17,
31, 20, 11, 10, 12, 13]. CAs with submodular bidders given
by value oracles as an optimization problem (without strate-
gic consideration) is NP-hard to solve optimally and NP-
hard to approximate with factors better than e/(e− 1) [17];
such factors cannot be obtained with using only polynomi-
ally many value oracles [22]. On the other hand, there are
the following polynomial time algorithms: a deterministic
greedy 2-approximation [20] and a randomized e/(e − 1)-
approximation algorithm [31]. Now, considering truthful
mechanisms for this problem with payments, very strong
non-constant lower bounds on the approximation ratios are
known. Dobzinski [10] proved that every universally truthful
randomized mechanism for CAs with submodular valuations
with an approximation ratio of m1/2−ε, for some ε > 0, must
use exponentially many value oracles. There is a determin-
istic polynomial time truthful mechanism with an approxi-
mation ratio of

√
m, see [11], which is best possible by this

hardness result. Moreover, Dobzinski and Vondrák [12] show
that no deterministic polynomial time truthful mechanism
provides an m1/2−ε-approximation for a constant ε > 0 to
this problem, even with succinctly represented submodular
valuations, unless NP = RP. Similar strong non-constant
lower bound holds even for randomized polynomial time
truthful in expectation mechanisms for CAs with succinctly
represented submodular valuations [12].2 In light of such
strong hardness results, our 2-approximate truthful mecha-
nism assumes particular relevance (also considering its ap-
plicability to practical auction domains).

The concept of a posteriori verification (i.e., verification
that depends on the output computed) in AMD dates back
to the seminal work of Nisan and Ronen [24]; subsequently, it
has been extensively studied in machine scheduling settings
(see, [26] and references therein) and introduced to CAs in

2A valuation function is called succinctly represented if it
can be encoded in a bit string of length polynomial in the
problem size.

[18]. The feasibility of trading verification with money in
mechanism design for CAs has been studied in [14].

2. MODEL AND PRELIMINARIES
CAs and Verification Paradigms. For definition of CAs
and basic notation, we refer to Section 1. Assuming that the
values vi(S) are private knowledge of the bidders accessed
by value oracles, we seek to design an allocation algorithm A
and a payment function P . The auction (also called mech-
anism) (A,P ) for a given input of bids from the bidders,
outputs an assignment and charges the bidder i a payment
Pi. Allocations and payments should be defined so that no
bidder has an incentive to misreport her preferences and in
order to maximize the social welfare. More formally, we let
bi be a valuation function of agent i, i.e., bi : 2U → R+. We
call bi a declaration of bidder i. We let vi be the true type of
agent i and Di denote the set of all the possible declarations
of agent i; we call Di the declaration domain of bidder i.
Let b−i be the declarations of all the agents but i. For any
b−i and declaration bi ∈ Di, we let Ai(bi,b−i) be the set in
2U that A on input b = (bi,b−i) allocates to bidder i. We
say that (A,P ) is a truthful mechanism (or simply that A
is a truthful algorithm) if for any i, bi ∈ Di and b−i:

vi(Ai(vi,b−i))− Pi(vi,b−i) ≥ vi(Ai(b))− Pi(b). (1)

In the (weak) verification model [18, 14] each bidder can
only declare lower valuations for the set she is awarded.
More formally, bidder i whose type is vi can declare a type
bi if and only if whenever Ai(bi,b−i) 6= ∅:

bi(Ai(bi,b−i)) ≤ vi(Ai(bi,b−i)). (2)

The stronger variant of verification we consider here allows
each bidder to underbid on the set awarded and its subsets
(other declarations are unrestricted). Formally, in the strong
verification model, bidder i can declare a type bi if and only
if whenever Ai(bi,b−i) 6= ∅:

bi(T ) ≤ vi(T ) ∀T ⊆ Ai(bi,b−i). (3)

When (2) or (3) is not satisfied, the bidder is caught lying
by the relevant verification step and the mechanism pun-
ishes her so to make this behavior very undesirable (i.e., for
simplicity we can assume that in such a case the bidder will
have to pay a fine of infinite value). This way (1) is satisfied
directly when the verification does catch lies – i.e., when (2)
((3), respectively) does not hold for the weak (strong, respec-
tively) verification – as in such a case a lying bidder would
have an infinitely bad utility because of the punishment/fine.
Thus in this model, truthfulness with weak (strong, respec-
tively) verification of a mechanism is fully captured by (1)
holding only for any i, b−i and bi ∈ Di such that (2) ((3),
respectively) is fulfilled. All the concepts can be adapted to
the setting without money when Pi(b) = 0 for any i and b.

In CAs with submodular bidders, we have that Di is com-
prised of submodular valuations, i.e., for all i, bi ∈ Di and
S, T ⊆ U, bi(S) + bi(T ) ≥ bi(S ∪ T )− bi(S ∩ T ).

A Graph Theoretic Approach to Truthfulness. The
technique we use to study truthful mechanisms with ver-
ification is the so-called cycle monotonicity. Consider an
algorithm A. We set up a weighted graph for each bidder i
depending on A, i’s domain Di, verification paradigm, and
the declarations b−i. Non-existence of negative-weight cy-
cles (respectively, edges) in this graph guarantees the truth-
fulness with money (respectively, without money) of A.

309



More formally, fix algorithm A, bidder i and declarations
b−i. Let V denote the verification paradigm at hand; if a
type a can declare to be of type b obeying V , we say that
a →V b (e.g., a →V b if and only if (2) is true whenever
V is weak verification). The declaration graph associated to
algorithm A has a vertex for each possible declaration in the
domain Di. For the verification V , we add an arc between
a and b in Di whenever a →V b. For example, in the case
of strong verification, from (3), edge (a, b) belongs to the
graph if and only if a(T ) ≥ b(T ) for all T ⊆ Ai(b,b−i).

3

The weight of the edge (a, b) is defined as a(Ai(a,b−i)) −
a(Ai(b,b−i)) and thus encodes the loss that a bidder whose
type is a incurs into by declaring b. The following known
result relates the edges/cycles of the declaration graph to
the existence of payments leading to truthful auctions.

Proposition 1. If each Di is finite and each declara-
tion graph associated to algorithm A does not have negative-
weight cycles with verification V then there exists a payment
function P s.t. (A,P ) is a truthful mechanism with verifica-
tion V . Similarly, if each (possibly infinite) graph does not
have a negative-weight edge with verification V , then A is a
truthful mechanism without money and with verification V .

The proposition above is adapted from [27, 30] to the veri-
fication setting V as in [28]. Note that Proposition 1 requires
the technical hypothesis of finite domains for mechanisms
with money: this is because the payments P are defined as
lengths of certain shortest paths on the declaration graph;
shortest paths are well-defined only on finite graphs. This
seems to be a limitation of the cycle-monotonicity technique
for the design of mechanisms with verification in general [28].

A variant of the cycle-monotonicity technique described
above, defines payments as a function of the outcome and
the declarations of the others, using the following tool.

Definition 1 ([28]). For an algorithm A, verification
paradigm V , every i and b−i ∈ D−i, the outcome graph has
a node for each possible outcome output of A. For every pair
of outcomes, X,Y , X 6= Y , add an edge (X,Y ) if there exist
a, b ∈ Di such that A(a,b−i) = X, A(b,b−i) = Y and a→V

b. The weight of edge (X,Y ) (if any) is infa∈RY
X
{a(X) −

a(Y )}, where RY
X = {a ∈ RX |∃b ∈ RY s.t. a →V b} with

RZ = {a ∈ Di|A(a,b−i) = Z} for any outcome Z.

A theorem similar in spirit to Proposition 1 holds and then
the absence of negative-weight cycles in the outcome graph is
a condition which is necessary and sufficient for the existence
of payments-per-outcome implementing algorithm A.

Greedy Priority Algorithms. We briefly introduce pri-
ority algorithms, following [6]. The input of a priority al-
gorithm is a finite subset I of the class I of all permissible
input atomic items. We consider (elementary) bids as in-
put atomic items. Namely I consists of all possible triples
(i, S, bi(S)), where i is the bidder, S is an output component
(e.g., subset of U for CAs) of the problem at hand, and bi(S)
is i’s valuation for S. For simplicity, we denote such an ele-
mentary bid as bi(S), or b(S), if i is clear from the context.

3Formally, for strong verification, an edge (a, b) belongs to
the graph if a(T ) ≥ b(T ), ∀T ⊆ Ai(b,b−i), only whenever
Ai(b,b−i) 6= ∅ as this set (and its subsets) would be needed
to verify. However, because of the monotonicity and nor-
malization of valuations, a(Ai(b,b−i)) ≥ b(Ai(b,b−i)) holds
also whenever Ai(b,b−i) = ∅, since a(∅) = b(∅) = 0.

The output of a priority algorithm consists of an irrevoca-
ble decision for each elementary bid processed. A (possibly
adaptive) priority algorithm A receives as input a finite set
of elementary bids I and proceeds in rounds, processing a
single bid in each round. While there are unprocessed bids
in I, A selects a total order T on I without looking at the set
of unprocessed bids. It is important that T can be any total
order on I, and that for adaptive priority algorithms, the
order may be different in each round. If the order is fixed
before starting processing the bids, then the algorithm is
called fixed priority. In each round, A receives the first (ac-
cording to T ) unprocessed bid x ∈ I and irrevocably accepts
or rejects it. Then, x (and all bids preceding x in T ) are
removed from I, and A proceeds to the next round. Greedy
priority algorithms accept the current bid bi(S) if grating
S to bidder i is feasible for the problem at hand (e.g., S is
disjoint to the previously allocated subsets of U).

3. WEAK VERIFICATION AND GREEDY
FIXED PRIORITY ALGORITHMS

We want to understand what kind of verification we can
use with greedy fixed priority algorithms to implement them
truthfully (with or without money). It turns out that the
concept of weak verification (2) is sufficient and necessary
for that. The role of money in truthfulness is strictly linked
with the ordering of the bids used by the algorithm. Below,
we call Ai(b) the winning component of bidder i. Our first
result concerns truthfulness without money.

Theorem 1. A greedy fixed priority algorithm processing
the bids in non-increasing order of their value (and with a
fixed bid-independent tie-breaking rule) is truthful with veri-
fication and without money if and only if the verification pre-
vents overbidding on the (non-empty) winning component.

Proof. Fix i and b−i and consider the declaration graph
associated to the greedy priority algorithm A with a verifi-
cation paradigm V . By Proposition 1, A is truthful without
money if and only if the graph has no negative-weight edges.
We prove that if V is weak verification (2), then there is no
negative-weight edge, and conversely, if V is not weak veri-
fication (2), then there exist instances with a negative edge.

For the first claim, let (a, b) be an edge of the graph. By
hypothesis, this edge exists iff a(Y ) ≥ b(Y ), Y = Ai(b,b−i).
The edge weights a(Ai(a,b−i))−a(Y ). Consider the case in
which the edge is negative, i.e., a(Ai(a,b−i)) < a(Y ) (thus
yielding Y 6= Ai(a,b−i)). In such a case, due to the ordering
of the bids, a(Y ) is considered by A before a(Ai(a,b−i)).
But since A is greedy and since Y was not allocated to i,
there must exist bids bj(Z), for j 6= i, and some other output
components Z, conflicting with Y , such that bj(Z) ≥ a(Y ).
Let b∗j (Z) be the highest of these bids. But then b(Y ) ≥
b∗j (Z) ≥ a(Y ), with at least one of the inequalities being
strict (by the fixed tie-breaking rule). Thus, a contradiction.

For the second claim, since V is not (2), some bidder i is
allowed to overbid on some winning component Y . We can,
therefore, build an instance in which bidder i by declaring a
does not win Y , with a(Ai(a,b−i)) < a(Y ), while, she wins
Y by declaring b. The construction amounts to define b−i in
a way similar to the above (i.e., bid b∗j (Z) in between b(Y )
and a(Y )). But then (a, b) would have negative weight.

Let fi : R+ → R+ be a strictly increasing function and
assume that the greedy fixed priority algorithm uses func-

310



tion fi to rank the bids bi(S) of bidder i for component S.
This generalization can add negative-weight edges (cf. [18,
Example 2]) but no negative-weight cycle, as shown next.

Theorem 2. A greedy fixed priority algorithm that orders
elementary bids using strictly monotone functions fi of their
value (and breaks ties in a fixed manner independent from
the bids) is truthful with verification and with money if and
only if the verification prevents bidder i from overbidding on
the (non-empty) winning component.

Proof. For the “if” direction, fix i and b−i and consider
the declaration graph associated to the greedy priority al-
gorithm A. (Accordingly, b−i is dropped from the notation
herein to increase readability.) We show that the cycles of
this graph have non-negative weights. Consider a generic
cycle C := a0 → a1 → . . .→ ak → ak+1 = a0.

Let us first consider the case in which for some a = aj

in C, Ai(a) = ∅, meaning that the winning component of
bidder i declaring a is empty. The claim is that for b = aj+1,
Ai(b) = ∅, thus implying that all the cycle has weight 0. As-
sume by sake of contradiction that Ai(b) 6= ∅ and note that
since Ai(a) = ∅ then, for all non-empty output components
X, there must exist bidder jX 6= i such that YX = AjX (bjX )
conflicts with X and fjX (bjX (YX)) ≥ fi(a(X)). But then
since Ai(b) 6= ∅ and as the edge (a, b) belongs to the graph,
we have by the definition of verification, that a(Ai(b)) ≥
b(Ai(b)) and then fi(b(Ai(b))) ≤ fi(a(Ai(b))). However,
since Z = Ai(b) is the winning component of i when declar-
ing b it must be that fi(b(Z)) ≥ fjZ (bjZ (AjZ (bjZ ))) ≥
fi(a(Z)). Therefore, fi(b(Ai(b))) = fi(a(Ai(b))) which in
turns yields, by the bid-independent fixed tie-breaking rule,
that Ai(a) = Ai(b) 6= ∅, a contradiction.

Let us now focus on the case in which Ai(a
j) 6= ∅ for all

j ∈ {0, . . . , k}. By definition of the priority algorithm, for
0 ≤ j ≤ k, fi(a

j(Ai(a
j))) ≥ fi(aj(Ai(a

j+1))); while the exis-
tence of edge (aj , aj+1) yields aj(Ai(a

j+1)) ≥ aj+1(Ai(a
j+1))

and then fi(a
j(Ai(a

j+1))) ≥ fi(a
j+1(Ai(a

j+1))). Unfolding
the two inequalities above for the cycle, we get

fi(a
j(Ai(a

j+1))) = fi(a
j+1(Ai(a

j+1))),

which implies that aj(Ai(a
j+1)) = aj+1(Ai(a

j+1)). Then

the weight of the cycle C is
∑k

j=1 a
j(Ai(a

j))−aj(Ai(a
j+1)) =

0. This concludes this part of the proof by Proposition 1.
For the “only if” part, let us assume by contradiction that

a fixed priority algorithm from the statement is truthful,
yet it allows some bidder i to overbid on some non-empty
winning componentX. Consider the instance whereX is the
most preferred component of i and assume that X is the only
component maximizing i’s utility. Define b−i in such a way
that X is not allocated to i when she is truthtelling. Since
A is greedy, there exist bidders j 6= i, such that fj(bj(Y )) >
fi(ai(X)), Y = Aj(bj) and Y conflicting with X. Let j be
such a bidder with the highest fj(bj(Y )). We are going to
show a 3-cycle of negative weight thus showing that there
are no payments for the algorithm (cf. Proposition 1).

Consider the bid b defined as ai except that b(X) > ai(X)
in such a way that fi(b(X)) > fj(bj(Y )) and X is allocated
to i. Since the verification allows this lie, then the declara-
tion graph has the edge (ai, b) of weight δ = ai(Ai(ai,b−i))−
ai(X) < 0. Consider now b′ defined as b with the exception
that ai(Ai(ai,b−i)) ≥ b′(Ai(ai)) = b(X) − ε, with ε < −δ.
(Since fi(b(X)) > fi(ai(Ai(ai,b−i))) and fi is increasing
such an ε exists.) Observe that fi(b

′(X)) > fi(b
′(Ai(ai,b−i)))

and then Ai(b
′) = X. Therefore, edges (b, b′) and (b′, ai) be-

long to the graph, since there is no overbidding on winning
component; (b, b′) weighs 0, while (b′, ai) weighs ε. The cycle
ai → b→ b′ has then negative weight.

Remark 1. Theorems 1 and 2 hold for any AMD problem
Π and greedy priority algorithm for Π that can be cast in our
framework (i.e., input items are elementary bids). Recall
that a greedy priority algorithm treats each input item as if
it was the last one in the sequence and then optimizes the
objective function of the algorithm on each item [6].

For adaptive priority algorithm things can be more com-
plex at least in the multidimensional case. Since bidders
control more than one bid, they could lie on one of their
bids to change the ordering of the adaptive priority algo-
rithm and get an advantage. Therefore, it is not enough
in general to prevent lies on the winning component, but a
more stringent notion ought to be used. Next, we show that
this is indeed the case for an adaptive priority algorithm for
CAs with submodular bidders given in [20]. The concept of
verification used to implement this algorithm turns out to
be the strong verification introduced above.

4. STRONG VERIFICATION
Truthfulness without money. We begin by characteriz-
ing the algorithms that are truthful without money in the
setting of strong verification. Interestingly, the characteriz-
ing property is algorithmic only.

Definition 2. An algorithm A is strongly monotone if
the following holds for any i, any b−i, any a ∈ Di: if
Ai(a,b−i) = S then for all b ∈ Di such that b(T ) ≥ a(T ) ∀T ⊆
S it holds b(Ai(b,b−i)) ≥ b(S).

Theorem 3. An algorithm A is truthful without money
and with strong verification for bidders given by value oracles
if and only if A is strongly monotone.

This characterization relates to those in [14] for moneyless
mechanisms with weak verification. However, while in the
latter case mechanisms are monotone, e.g., as in [23, 21] (i.e.,
to higher valuations there must correspond “better” sets),
in our case the resulting mechanisms can be highly non-
monotone. For example, it can be that for a known double-
minded bidder4 with valuation (v1, v2), the set S1 ⊇ S2 is
won but for bi = (v1 + ε, v2 − ε) is not, i.e., there is a dis-
continuity in bids winning S1. This makes the class of these
mechanisms hard to design and then the hope to find one
with good approximation guarantee appears slim. There-
fore, we add money to our mechanisms in order to make the
task of obtaining constant approximations tractable.

Strong verification with money. We focus on the greedy
algorithm introduced in [20] (cf. Algorithm 1). We assume
that the selection of the bidder with maximum marginal
valuation in line 3 uses a fixed bid-independent tie-breaking
rule. Algorithm 1 is a greedy adaptive priority algorithm.
In particular, given the allocation S1, . . . , Sn of goods con-
sidered so far and the current good, it orders first the el-
ementary bids vj(Sj ∪ {e}) in nonincreasing order of their

4This terminology indicates a bidder only interested in two
subsets of the universe; the two sets (denoted above as S1

and S2) are known to the mechanism and the bidders declare
their two valuations rather than a value oracle.

311



Algorithm 1: Greedy algorithm

1 Set S1, . . . , Sn = ∅
2 For each good e ∈ U do
3 Let j be the bidder with highest
vj(Sj ∪ {e})− vj(Sj)

4 Sj = Sj ∪ {e}
5 Return S = (S1, S2, . . . , Sn)

marginal valuations vj(Sj ∪{e})− vj(Sj) and next all other
bids in an arbitrary order (note that [5, Section 4] uses a
slightly different way of describing Algorithm 1 as a priority
algorithm using goods as input atomic items).

Theorem 4. There exists a payment function that paired
with Algorithm 1 gives rise to a truthful mechanism with
strong verification for CAs with submodular bidders given
by value oracles bidding from finite domains.

Proof. By Proposition 1, Algorithm 1 (denoted as A in
the rest of the proof) is part of a truthful mechanism as long
as no declaration graph associated to it has negative weight
cycles. We will prove that this is indeed the case.

Fix i and b−i and consider the declaration graph associ-
ated to A. Consider a generic cycle C := a0 → a1 → . . .→
ak → ak+1 = a0 of this graph. By existence of edges, for all
j = 0, . . . , k, we have:

aj(T ) ≥ aj+1(T ) ∀T ⊆ Ai(a
j+1,b−i). (4)

This yields that for all j = 0, . . . , k

aj(U) = aj+1(U) ∀U ⊆ ∩k
l=1Ai(a

l,b−i). (5)

Now let r be the first good of U in the order considered by
the algorithm in line 2 that is in ∪k

l=1Ai(a
l,b−i) but not in

∩k
l=1Ai(a

l,b−i); let Ar be the set assigned to bidder i up
to the point in which r is to considered. Without loss of
generality, let r ∈ Ai(a

1,b−i). Since r ∈ Ai(a
1,b−i), then

in (a1,b−i) bidder i has the maximum marginal valuation
for r. But then by (4) and (5), we have a0(Ar ∪ {r}) ≥
a1(Ar ∪{r}) and a0(Ar) = a1(Ar), respectively. This yields
a0(Ar∪{r})−a0(Ar) ≥ a1(Ar∪{r})−a1(Ar), which, in turn,
implies that bidder i has maximum marginal for r also in bid
vector (a0,b−i). We then have that r ∈ Ai(a

0,b−i) as well.
By reiterating the argument, we have that r ∈ Ai(a

l,b−i)
for l = 0, . . . , k and then Ai(a

j ,b−i) = Ai(a
j+1,b−i) ∀j =

0, . . . , k. All edges in C have thus weight 0.

The theorem above guarantees the existence of payments
that enforce truthfulness when the bidding domains are fi-
nite. We are left with the question of how to efficiently
compute payments. The first immediate observation is that
whenever the size of the graph is polynomial in the number
of players and goods, then we can simply compute shortest
paths as from Rochet’s theorem.

Corollary 1. There exists a 2-approximate truthful mech-
anism with strong verification for CAs with submodular bid-
ders given by value oracles bidding from finite domains. The
allocation is computable in time polynomial in n+m. If bid-
ders’ domains are of polynomial size in m+n, then payments
can also be computed efficiently.

To remove the assumption of Corollary 1 on the domains,
one would need to depart from shortest paths and find a

different way to define payments (e.g., via a closed formula)
allowing efficient computation. A common approach is to
understand the structure of the graph. The graph is very
well structured. Indeed, by the proof of Theorem 4 any cycle
is a clique of nodes corresponding to declarations to which
the algorithm assigns the same set S, a(T ) = b(T ) for all
T ⊆ S and declarations a and b in the clique. Since all its
edges have weight 0, the clique can be contracted and the
same payment assigned to all these declarations. We are
left with a directed acyclic graph, holding out the hope to
compute payments efficiently.

Necessity of Strong Verification for the Truthfulness
of Algorithm 1. We show that strong (no-overbidding)
verification is necessary for the payments of Theorem 4 to ex-
ist. Namely, we give a domain for bidder 2 and a declaration
for bidder 1 such that no matter what order Algorithm 1 uses
in line 2, the declaration graph of bidder 2 has a negative-
weight cycle, unless strong verification is used. We have U =
{α, β} and two submodular bidders N = {1, 2}. A valuation
function v is represented as a triple (x, y, z), where v({α}) =
x, v({β}) = y, and v({α, β}) = z. Let v1 = (9.4, 6, 11) and
D2 = {b2, b′2, b′′2 , b′′′2 } where b2 = (11, 10, 18), b′2 = (9, 10, 19),
b′′2 = (11, 7, 16.4) and b′′′2 = (11, 5.5, 16.5). Note that if Al-
gorithm 1 considers first good α and then β, bidder 2 with
declaration b2 is allocated {α, β} and with declaration b′2
is allocated {β}. If the order of goods is reversed then we
observe that A2(v1, b

′′
2 ) = {α, β} and A2(v1, b

′′′
2 ) = {α}. If

no strong verification is used, e.g., weak verification would
be adopted, then edges (b2, b

′
2), (b′2, b2), for order α, β, and

(b′′2 , b
′′′
2 ) and (b′′′2 , b

′′
2 ), for order β, α, are present in the dec-

laration graph of bidder 2. Moreover, b2({α, β})−b2({β}) =
18 − 10 = 8 and b′2({β}) − b′2({α, β}) = 10 − 19 = −9, and
then b2 → b′2 → b2 is a negative cycle, if the order con-
sidered is α, β. Similarly, in the case in which the order
is β, α, we have b′′2 ({α, β}) − b′′2 ({α}) = 16.4 − 11 = 5.4
and b′′′2 ({α}) − b′′′2 ({α, β}) = 11 − 16.5 = −5.5, and then
b′′2 → b′′′2 → b′′2 is a negative cycle. Note that strong ver-
ification would eliminate edges (b′2, b2) and (b′′′2 , b

′′
2 ) in the

respective cases. Therefore, Algorithm 1 does not admit
truthful payments for any order in which the goods are pro-
cessed, unless strong verification is used.

5. COMPUTING PAYMENTS
The complexity of payment computation is usually no

harder than complexity of the corresponding algorithm for
the combinatorial problem at hand. This is because explicit
formulas for payments are either known (e.g., VCG, single-
dimensional domains) or derived from the cycle-monotonicity
analysis [19, 18]. However, when this fails, no other source of
hardness for payment computation is sought [19, Section 4]
[28]. We initiate here a study of the complexity of pay-
ment computation by decoupling the latter from the com-
putational complexity of the combinatorial algorithm, using
Algorithm 1 as a case study.

We begin by observing, via a connection with the implicit
payment computation of [2, 3], that shortest-path payments
cannot seem to overlook the structure of the declaration
graph. Informed by this, and in order to prove hardness
of payment computation, we enrich the classical mechanism
design model by including bidding domains as input to the
mechanisms. We will adapt standard black box approach
and assume that in addition to bidders’ declarations, the

312



bidders’ domains are either given explicitly as part of the
input encoded in binary or they are represented succinctly
and the mechanism can access them by queries. Running
time of a mechanism is measured as a function of m+n and
the size of domains’ description or the number of queries,
where each query takes constant time.

Impossibility of Implicit Payment Computation. We
present an example indicating that we need to carefully take
the structure of the declaration graph into account when we
compute the payments for Algorithm 1. As noted above, by
Theorem 4, if we fix the declarations of all other bidders to
b−i, the declaration graph of bidder i reduces to a directed
acyclic graph. Among the nodes of the DAG, we are partic-
ularly interested in the node, that we call 0, containing all
the declarations mapped by the algorithm to ∅.

We observe that 0 is a sink of the DAG. Fix i, b−i and let
a ∈ Di be a declaration mapped by Algorithm 1 (denoted
as A below) to ∅. Assume that a could lie, according to (3),
and say b such that Ai(b,b−i) = S 6= ∅, and let r be the first
good of S according to the order considered by the algorithm
in line 2. By the greedy rule in line 3 (and the fixed tie-
breaking rule within), we have that b({r}) ≥ marg−i(r) ≥
a({r}), with at least one of the inequalities being strict,
where marg−i(r) denotes the maximum marginal on r of
bidders other than i at this point. The above inequality
chain shows that b is a lie which contradicts (3).

Proposition 1 for acyclic graphs can be proved by setting
the payment of bidder i in the declarations profile (bi,b−i)
to the length of the shortest path from bi to 0, denoted
as SP (bi, 0). Indeed, fixed i and b−i, for an edge (a, b) of
the declaration graph for bidder i, SP (a, 0) ≤ SP (b, 0) +
a(Ai(a,b−i))− a(Ai(b,b−i)) which simply rewrites (1). We
note that this payment can be negative, i.e., we pay the
bidders so that they do not underbid on their allocated set.
Moreover, as noted in [18], scaling down all the payments
so that they become non-negative (while remaining truth-
ful) may require that the utility of some bidders becomes
negative, i.e., violate voluntary participation.

One could try to compute (the length of the shortest path
from bi to 0 and) the payment of bidder i in (bi,b−i) by con-
sidering the path from bi to 0 consisting of all declarations
obtained by uniformly scaling down all the coordinates bi.
Such a path would go down through all declarations λbi, for
all λ ∈ [0, 1]. Then, similarly to [1, 2, 3], one can set the
payment of bidder i as follows:

Pi(bi,b−i) = bi(Ai(bi,b−i)−
∫ 1

0

bi(Ai(λbi,b−i))dλ. (6)

It would be particularly interesting if the payments for
Algorithm 1 can be computed in this way because [1, 2,
3] prove that random sampling w.r.t. λ yields an unbiased
estimator of the integral in (6). Therefore, using the tech-
niques of [1, 2, 3], we could estimate the payments in ran-
domized polynomial time, thus turning Algorithm 1 into a
truthful-in-expectation mechanism with strong verification.
Our next example shows that (6) may not result in the right
(shortest path length and) payments, thus indicating that
this technique does not work with our declaration graph.

Our example uses 2 goods U = {α, β} and 2 submodular
bidders N = {1, 2}, and a valuation function v is a triple
(x, y, z), where v({α}) = x, v({β}) = y, and v({α, β}) =
z. We let v1 = (11 − ε, 12, 12), for a small ε > 0, b2 =
(23, 12, 23) and b′2 = (11, 12, 12). Algorithm 1 considers first

α and next β. Then, A2(b2, v1) = A2(b′2, v1) = {α}, while
A2( 10

11
b′2, v1) = {β}. Also, A2(λb2, v1) = {α} for all λ ∈

( 11−ε
23

, 1], A2(λb2, v1) = {β} for all λ ∈ ( 1+ε
12
, 11−ε

23
], and

A2(λb2, v1) = ∅ for all λ ∈ [0, 1+ε
12

]. Thus, (6) yields that
bidder 2 should give a positive payment of about 12.8 −
0.145ε + 0.052ε2 to the mechanism, while since the weight
of edge (b2, b

′
2) is 0 and the weight of edge (b′2,

10
11
b′2) is −1,

we should pay bidder 2 at least 1 for declaration (b2, v1).

A Computational Criticism to Cycle-Monotonicity.
We now show that if domains are represented succinctly,
payment computation requires (and can reveal) crucial in-
formation about the declaration graph, and thus, it is NP-
hard. Specifically, we show that, unless P = NP, we cannot
efficiently compute minimum payments, i.e., payments de-
fined as shortest paths on the declaration graph.

Theorem 5. The problem of computing the shortest-path
payments for Algorithm 1 with strong verification is NP-
hard, even for n = 2 bidders and m = 2 goods, where bid-
ders’ domains are accessed by queries.

Proof. Suppose we are given an instance with two goods
U = {α, β} and two bidders N = {1, 2} each with submodu-
lar valuation on the bundles of U. A valuation function vi of
bidder i is represented as above by a triple (x, y, z), where
vi({α}) = x, vi({β}) = y, vi({α, β}) = z, and, because of
monotonicity, we have that x ≤ z, y ≤ z, and, because of
submodularity, we have that y ≥ z − x.

We will define an instance of CA (and a particular do-
main) given an instance of the satisfiability problem which is
specified by a CNF input Boolean formula φ with k Boolean
variables. Let the domain of bidder 2 contain just one
declaration D2 = {(x, y, z)} for some fixed positive num-
bers x, y, z > 0 such that x < z, y < z, and y = z − x.
Let S = {sj : j = 1, 2, . . . , 2k} be the set of all possible
0 − 1 truth assignments to the k Boolean variables of for-
mula φ. The domain of bidder 1 is: D1 = {(x + ε, y +
ε, x + y + ε/2)} ∪ {(x − ε/j, y + ε/2, x + y + ε/2 − ε/j) :
sj satisfies φ, j = 1, . . . , 2k} ∪{(x−ε/j, y+2ε, x+y+2ε−
ε/j) : sj does not satisfy φ, j = 1, . . . , 2k}, where ε > 0 is a
small fixed constant, ε� min{x, y}.

Since the declaration of bidder 2 is fixed to (x, y, z), the
declaration graph for bidder 1 has D1 as the set of its nodes,
and before defining its arcs we will make some observations
about the greedy algorithm, denoted as A, when α is con-
sidered first and β second. When we run A with bidder 1
declaring (x+ ε, y+ ε, x+ y+ ε/2) ∈ D1, then the outcome
for bidder 1 is {α} and {β} for bidder 2. For any declaration
of bidder 1 from D1 \ {(x + ε, y + ε, x + y + ε/2)} the A’s
outcome for bidder 1 is {β} and {α} for bidder 2.

Given any node b1 ∈ D1 \ {(x + ε, y + ε, x + y + ε/2)}
and b′1 = (x + ε, y + ε, x + y + ε/2) ∈ D1, the decla-
ration graph does not have the arc (b1, b

′
1). This follows

from the fact that b1({α}) < x and b′1({α}) > x, there-
fore if arc (b1, b

′
1) were present this would contradict the

no-overbidding verification assumption. Similarly, there is
no arc present from b′1 to any node b1 ∈ {(x − ε/j, y +
2ε, x + y + 2ε − ε/j) : sj does not satisfy φ, j = 1, . . . , 2k},
as its presence would contradict the no-overbidding assump-
tion for {β}: b′1({β}) = y + ε < y + 2ε = b1({β}).

Thus, node b′1 is connected to the rest of the declaration
graph by arc (b′1, b1), for some b1 ∈ {(x − ε/j, y + ε/2, x +
y + ε/2− ε/j) : sj satisfies φ, j = 1, . . . , 2k}. And, deciding
if node b′1 is connected to the rest of the declaration graph

313



(and thus, whether Algorithm 1 requires a non-zero payment
for b′1) is equivalent to deciding if formula φ is satisfiable.

Therefore, the problem of computing the payment for
node b′1 is NP-hard provided that we can represent the dec-
laration graph succinctly in time polynomial in k and the
size of φ. Such a representation has been shown by small
circuits by Galperin and Wigderson [15, Definition 2.2 and
Lemma 2.2]. This representation essentially reduces to an-
swering in polynomial time (in the size of φ) a question if
given b1 ∈ D1 \{(x+ε, y+ε, x+y+ε/2)}, does there exists
arc (b′1, b1), which is just checking if the appropriate given
0/1 truth assignment sj (defining node b1) satisfies formula
φ or not. Thus, our reduction represents the domain D1 by
presenting an encoding of formula φ to the mechanism and
mechanism asks queries of type “does b1 satisfy φ?”.

We complement this result by showing that for m = 2, it
is indeed possible to compute efficiently different payments
that are not defined as shortest paths on the declaration
graph. Let α, β denote the two items and assume that Al-
gorithm 1 considers α before β.

Definition 3. Let Pω
i be the payment function defined as

Pω
i (b,b−i) = 0 if Ai(b,b−i) ∈ {{α, β}, {β}, ∅}; Pω

i (b,b−i) =
b2(β) otherwise, b2(β) being the maximum of what the other
bidders declare for {β}.

Theorem 6. The payment Pω
i leads to a truthful CA with

strong verification when coupled with Algorithm 1 (even for
infinite declaration domains).

An important observation is that we use the outcome
graph (i.e., same payment for all the nodes mapped by the
algorithm to the same outcome) and therefore by Theorem 6,
the outcome graph for m = 2 has no negative-weight cycles.
There are many intuitive reasons for which the idea behind
Pω
i would not extend to three items α, β, γ considered in this

order by the algorithm (e.g., marginals do not align neatly
for all possible outcomes; hard to handle “jumps” from {α}
to {α, β, γ}). We give a formal argument for these intu-
itions. This approach of payment-per-outcome fails because
the outcome graph might have negative weight cycles.

Theorem 7. There exists an instance of CAs with sub-
modular bidder with n = 2 and m = 3, for which the outcome
graph associated to Algorithm 1 has a negative weight cycle.

Proof. Let A denote Algorithm 1 with item order α, β, γ.
Define the bid b2 of bidder 2 to be b2(X) = |X| for each
X ⊆ {α, β, γ}. Consider the domain of bidder 1 to be D1 =
{a, b, c, d} where for ε > 0:

a b c d
{α} 1 + ε 1 + ε 1 + ε 1 + ε/3
{β} 2 2 1 + ε 1 + ε
{γ} 2 2 1 + 5/3ε 1 + 5/3ε
{α, β} 2 + 2ε 2 2 + 2/3ε 2 + 2/3ε
{α, γ} 3 + ε 3 + ε 2 + 2ε 2 + 2ε
{β, γ} 3 + ε 3 + ε 2 2
{α, β, γ} 3 + ε 3 + ε 2 + 2ε 2 + 2ε

By inspection, the four bids are submodular and A1(a, b2) =
{α, β}, A1(b, b2) = {α, γ}, A1(c, b2) = {α, γ} andA1(d, b2) =
{α, β}. It is also not hard to check that the edges (a, b) and
(c, d) belong to the declaration graph. Their weight is −1+ε
and 4/3ε, respectively. Therefore the outcome graph has the
negative-weight cycle {α, β} → {α, γ} → {α, β}.

Comparison with the VCG mechanism. We now prove
that there are settings of our model relevant to practical
applications where we have a provable advantage over VCG.

Theorem 8. There is a setting of CAs with submodular
bidders, for which the problem of computing payments for
Algorithm 1 is solvable in polynomial time, but the problem
of finding a social welfare maximizing allocation is NP-hard
to approximate within a factor 2e/(2e−1)−ε for any ε > 0.

Proof. We will describe instances of CAs with submodu-
lar bidders for which Dobzinski and Vondrák [13] prove that
the social welfare maximization problem is NP-hard to ap-
proximate within any constant factor better than 2e/(2e −
1) ≈ 1.225. Fix any small ε > 0 and we are given a uni-
verse U of |U| = m goods and a set of n bidders. Dobzinski
and Vondrák are the following instances of the Max n-Cover
problem (see [13], page 9). Let S ⊂ 2U be a family of sets
partitioned into subfamilies S1, . . . ,Sn, such that: every set
in S has the same size s; |S1| = |S2| = · · · = |Sn| = g; for
every two sets S, T ∈ S, |S ∩ T | ≤ ε · s. Note that s and g
are absolute fixed constant integers.

The submodular valuation function vi of any bidder i ∈
{1, . . . , n} is defined as function f in Definition 3.3 (page
5 in [13]), where we use the constant size family Si ⊂ 2U

in place of family F and a = 1
2s

, b = ε · s. Observe that,
given ε > 0 and the parameters m,n, s, g of this construc-
tion and the family Si, function vi for bidder i is uniquely
and succinctly defined. Suppose now that the declaration
of any bidder j ∈ {1, . . . , n} \ {i} is fixed to his declared
valuation vj as defined above for his family Sj . Then the
set Di of all possible declared valuations vi of bidder i of
the type defined above has size of at most the number of
possible subfamilies Si. Subfamily Si has g subsets of U
each of size s, thus |Di| ≤

((
m
s

))g
, which is polynomial in m

because s and g are fixed constants. Thus, the declaration
graph of Algorithm 1 has polynomial size and payments are
polynomial time computable.

6. CONCLUSIONS
We considered the question of how truthful greedy mecha-

nisms are, by characterizing the kind of bidders’ misbehavior
that needs to be verified. In the context of CAs, we showed
that any greedy fixed priority algorithm is truthful as long
as bidders cannot overbid on the subset of goods they win
(if any). We then proved that greedy adaptive priority al-
gorithms require stronger assumptions, by proving that the
2-approximation algorithm for CAs with submodular bid-
ders in [20] has to also verify overbidding on the subsets of
the awarded set of goods.

The main question left open by our work concerns the
computational complexity of computing the payments for
the algorithm in [20]. Our results provide a first, meaningful
case study for the problem of assessing the computational ef-
ficiency of the cycle-monotonicity technique. We conjecture
that computing these payments is actually a hard problem.
However, this appears hard to prove, given that the question
is not about optimization but rather search (that is, the ex-
istence of a feasible solution is guaranteed and the question
is about computing any feasible solution versus the shortest
path solution); more specifically, tools adopted to prove the
hardness of computing Nash equilibria seem to be required.

314



7. REFERENCES
[1] A. Archer, C. H. Papadimitriou, K. Talwar, and

É. Tardos. An approximate truthful mechanism for
combinatorial auctions with single parameter agents.
In Proc. of SODA, pp. 205-214, 2003.

[2] M. Babaioff, R.D. Kleinberg, and A. Slivkins. Truthful
mechanisms with implicit payment computation. In
Proc. of EC, pp. 43-52, 2010.

[3] M. Babaioff, R.D. Kleinberg, and A. Slivkins.
Multi-parameter mechanisms with implicit payment
computation. In Proc. of EC, pp. 35-52, 2013.

[4] L. Blumrosen and N. Nisan. On the computational
power of demand queries. SIAM Journal on
Computing, 39(4):1372-1391, 2009.

[5] A. Borodin and B. Lucier. On the limitations of
greedy mechanism design for truthful combinatorial
auctions. In Proc. of ICALP, pp. 90-101, 2010.

[6] A. Borodin, M.N. Nielsen, and C. Rackoff.
(Incremental) priority algorithms. Algorithmica,
37(4):295-326, 2003.

[7] G. Celik. Mechanism design with weaker incentive
compatibility constraints. Games and Economic
Behavior, 56(1):37-44, 2006.

[8] E.H. Clarke. Multipart Pricing of Public Goods.
Public Choice, pp. 17-33, 1971.

[9] A. Daniely, M. Schapira, and S. Gal.
Inapproximability of truthful mechanisms via
generalizations of the VC dimension. In Proc. of
STOC, 2015.

[10] S. Dobzinski. An impossibility result for truthful
combinatorial auctions with submodular valuations. In
Proc. of STOC, pp. 139-148, 2011.

[11] S. Dobzinski, N. Nisan, and M. Schapira.
Approximation algorithms for combinatorial auctions
with complement-free bidders. In Proc. of STOC, pp.
610-618, 2005.

[12] S. Dobzinski and J. Vondrák. The computational
complexity of truthfulness in combinatorial auctions.
In Proc. of EC, pp. 405-422, 2012.

[13] S. Dobzinski and J. Vondrák. Communication
complexity of combinatorial auctions with submodular
valuations. In Proc. of SODA, pp. 1205-1215, 2013.

[14] D. Fotakis, P. Krysta, and C. Ventre. Combinatorial
auctions without money. In Proc. of AAMAS, pp.
1029-1036, 2014.

[15] H. Galperin and A. Wigderson. Succinct
representations of graphs. Information and Control,
56(3):183-198, 1983.

[16] T. Groves. Incentive in Teams. Econometrica,
41:617-631, 1973.

[17] S. Khot, R.J. Lipton, E. Markakis, and A. Mehta.
Inapproximability results for combinatorial auctions
with submodular utility functions. In Proc. of WINE,
pp. 92-101, 2005.

[18] P. Krysta and C. Ventre. Combinatorial auctions with
verification are tractable. Theoretical Computer
Science, 571:21-35, 2015.

[19] R. Lavi and C. Swamy. Truthful mechanism design for
multidimensional scheduling via cycle monotonicity.
Games and Economic Behavior, 67(1):99-124, 2009.

[20] B. Lehmann, D. J. Lehmann, and N. Nisan.

Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior,
55(2):270-296, 2006.

[21] D. J. Lehmann, L. O’Callaghan, and Y. Shoham.
Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM,
49(5):577-602, 2002.

[22] V.S. Mirrokni, M. Schapira, and J. Vondrák. Tight
information-theoretic lower bounds for welfare
maximization in combinatorial auctions. In Proc. of
EC, pp. 70-77, 2008.

[23] A. Mu’Alem and N. Nisan. Truthful approximation
mechanisms for restricted combinatorial auctions. In
Proc. of AAAI, pp. 379-384, 2002.

[24] N. Nisan and A. Ronen. Algorithmic Mechanism
Design. Games and Economic Behavior, 35:166-196,
2001.

[25] N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

[26] P. Penna and C. Ventre. Optimal collusion-resistant
mechanisms with verification. Games and Economic
Behavior, 86:491-509, 2014.

[27] J. Rochet. A Condition for Rationalizability in a
Quasi-Linear Context. Journal of Mathematical
Economics, 16:191-200, 1987.

[28] C. Ventre. Truthful optimization using mechanisms
with verification. Theoretical Computer Science,
518:64-79, 2014.

[29] W. Vickrey. Counterspeculation, Auctions and
Competitive Sealed Tenders. Journal of Finance, pp.
8-37, 1961.

[30] R.V. Vohra. Mechanism Design: A Linear
Programming Approach. Cambridge University Press,
2011.

[31] J. Vondrák. Optimal approximation for the
submodular welfare problem in the value oracle model.
In Proc. of STOC, pp. 67-74, 2008.

315


	Introduction
	Model and preliminaries
	Weak verification and Greedy Fixed Priority Algorithms
	Strong verification
	Computing Payments
	Conclusions
	References



