
Bounty Hunters and Multiagent Task Allocation

Drew Wicke
Department of Computer Science

George Mason University
4400 University Drive MSN 4A5

Fairfax, VA 22030, USA
dwicke@gmu.edu

David Freelan
Department of Computer Science

George Mason University
4400 University Drive MSN 4A5

Fairfax, VA 22030, USA
dfreelan@gmu.edu

Sean Luke
Department of Computer Science

George Mason University
4400 University Drive MSN 4A5

Fairfax, VA 22030, USA
sean@cs.gmu.edu

ABSTRACT
We propose a system for multiagent task allocation inspired by
the model used by bounty hunters and bail bondsmen. A bonds-
man posts tasks for agents to complete, along with bounties to be
collected by an agent on completion. Multiple agents, taking the
role of the bounty hunters, compete to finish tasks and collect their
bounties. While a task remains uncompleted, its bounty gradually
rises, making it more and more desirable to pursue. Unlike auctions,
this model does not assume rationality in agents’ bids (as there are
none), and since tasks are not exclusive to given agents, the system
is robust to highly noisy environments. We examine how agents
may locally develop rational task valuations in such an environment,
gradually adapting to dividing tasks according to the agents best
suited to them. We compare different methods for building these
valuations against approaches which are more “auction-like” in that
they permit exclusivity, and we do so under both static environments
and ones in which agents, and task details, change dynamically.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation, Performance

Keywords
Bounty Hunting; Auctions; Task Allocation

INTRODUCTION
The dynamic multiagent task allocation problem is one in which

one or more agents collectively perform tasks as they appear dy-
namically in the environment. The agents typically vary in their
ability to perform various tasks, and as this is a multiagent problem,
there is no one agent who decides how to allocate the tasks to them.
Rather, the agents decide on their own what tasks they should vie
for, with certain limitations on the degree to which they may consult
one another to make these decisions. Ideally, out of a morass of
individual greedy agent decisions, we would see a task allocation
which approaches optimal global efficiency.

Scenarios such as these crop up throughout multiagent systems:
they appear in robots divvying up room cleaning needs; or auto-

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright © 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

mated multiagent delivery services; or video games where a band
of plucky outlaws must defend themselves against hordes of zom-
bies. Considerable study over the years has focused on centralized
approaches to globally optimal dynamic task allocation, involving
areas such as register coloring and pebbling, multi-armed bandits,
and bin packing. When the problem is restricted to the multiagent
case, most work has focused on greedy methods, the most popular
approach being auctions.

A simple auction method might work as follows. There is a single
auctioneer who distributes tasks, and multiple agents who bid on the
privilege to do them. As tasks come available, agents compete with
bids in an auction, and after a clearing time has passed, the winning
agent is given the task to complete. Typically the agents will bid
their valuation of the task, that is, some estimate the agent has of
how good the task would be for the agent to do.

This approach is intuitive and appealing at first glance, but it has
some curiosities. First, in much of the literature, there is no incentive
or reward for agents to complete a task. Second, agents generally
have an infinite money supply, and so we must presume they are
altruistic and non-strategic. Third, winning agents usually have
exclusive ownership of tasks, so some other mechanism (perhaps
real options) must be implemented to deal with agents with poor or
noisy task performance. Fourth, agents typically must have some
built-in ability to produce an accurate valuation of the tasks they are
bidding on. Fifth, auction methods commonly assume that tasks are
bid on sequentially as they arrive, perhaps necessitating a multi-task
mechanism for each agent or a clearing time. For these reasons and
others, auctions seem to us to be an odd approach to task allocation.

In this paper we study an alternative model which seems to us
to be a closer fit to the dynamic multiagent task allocation prob-
lem: bounty hunting. Here, the auctioneer is replaced with a bail
bondsman, and the agents are no longer bidders, but bounty hunters.

A quick explanation of these terms for those who may be unfamil-
iar with them. In the United States, an arrested man may be set free
temporarily prior to his trial in return for some amount of money
(bail) as collateral. Bail is often costly, so there is an industry of
bail bondsmen who will, for a fee, post bail on behalf of the arrested
man. If the man does not show for his trial, a bail bondsman can
recover his posted bail only if he brings the fugitive back to be
tried before the government has re-arrested him. To do this, the bail
bondsman will offer some amount of reward (a bounty) to anyone
who successfully captures the fugitive. The competing agents who
try to capture the fugitive in return for this bounty are bounty hunters.
While the fugitive is still at large, the bounty may be increased so as
to make his capture more lucrative. This model appears elsewhere
in different guises of course: for example, a reward for a lost cat,
a Most Wanted Criminal list, a murder contract, or a software bug
bounty.

387

Bounties are an attractive approach to the dynamic multiagent
task allocation problem for several reasons. First, because agents
may compete for the same bounty, tasks are no longer exclusive. If
an agent cannot successfully do a given task, eventually its bounty
will rise and attract other agents to take it from him. Second, there
is no bidding involved: agents can be self-interested, though still
perhaps not hyperstrategic, and there is no need for a queue or
clearing interval. Finally, since agents are not bidding their valuation,
they don’t need to have (at least initially) an accurate valuation
mechanism in the first place.

But despite their seemingly natural fit, bounties have surprisingly
been little studied in multiagent systems. In this paper we will try
to remedy this. We first describe one possible formal model for a
bounty system, and relax this model in two ways (notably adding
exclusive ownership of tasks) which are more “auction like” (the
scenarios we study do not lend themselves to classical auctions). In
all these approaches agents have no initial valuation of tasks, so we
then examine how they may adapt to develop a proper valuation,
and thus improve global system performance. We will also examine
how well this adaptation performs when the nature of tasks, or the
agents, changes radically. The “auction like” models are slightly
more efficient in common situations: but we then show that they
are problematic in noisy situations. Finally, we study what might
happen when agents are permitted to abandon tasks.

RELATED WORK
A taxonomy of solutions to the general multiagent task allocation

problem has been offered [10] with three major dimensions: the
type of task, the type of agent, and the information available to
determine task assignment. This taxonomy has recently been im-
proved to classify more task allocation problems, like those where
tasks have dependencies [16]. Current solution methods include
centralized approaches using k-armed bandits, integer programming,
and combinatorial optimization; and decentralized approaches like
auctions, markets, and task swapping [17, 18, 19, 22].

We are primarily interested in the decentralized case. The most
common approach, auctions, were popularized by MURDOCH, an
auction method which focused on minimizing resource usage, task
completion time, and communication overhead [11]. This approach
trusted agents to truthfully bid their task valuations, though sensor
noise or an unknown environment could cause their bids to be inac-
curate. TraderBots, another auction framework, was designed to be
more flexible and extensible [8, 13]. Auctions have been augmented
to be robust to robot malfunctions [23]. CoMutaR merged multia-
gent task allocation with coordination through the use of auctions
under the assumption of truthful agents [29]. We are aware of only
one paper that has considered approaches to extend auctions with
non-exclusivity and non-commitment [20].

Markets have also been used in multi-robot task allocation [1, 27]
and exploration [30, 32]. One paper describes a market based plan-
ning system in which the agents learn to bid their opportunity cost
for doing a task, and tasks have rewards associated with them, al-
lowing agents to re-auction them [28].

Another approach is token-passing [9]. This method, like auctions
and markets, also assumes task exclusivity. But like some market
methods, it allows the tasks to be reassigned by passing the token
to other agents. Similarly, [7] used vacancy chains as a method
for allocating tasks. A vacancy chain is a social construct where
when one agent receives a task, he releases his previous task, which
goes to another agent in the chain, who releases his task, and so on.
Finally, L-ALLIANCE adapted threshold parameters determining
how robots choose tasks [24, 25].

A few auction methods have agents that use adaptive mechanisms
for bidding. For example, [14] use Support Vector Regression to
formulate a bid for a task in domains where some tasks can’t be
completed due to a lack of resources. Another adaptive bidding
procedure for task allocation was developed in [4] and was used
to bid in a sequential auction with a clearing time. In a method
developed by [26], the auctioneer, rather than the bidders, is adaptive
and weights the bids for tasks based on each agent’s success rate.
This is very close to a centralized approach. One non-auction task
allocation method [2] uses biologically inspired adaptive agents that
have an upper and lower bound for going after tasks with particular
difficulties (similar to L-ALLIANCE), where the lower threshold
changes based on task difficulty distribution. Because of the strong
assumptions these adaptive auctions make, they could be adapted
to our target problem case only with radical modification. We have
instead taken a different approach for comparison: adapting our
proposed bounty mechanism into one which has certain the basic
features (notably exclusivity) of an auction.

Bounties are a subset of contests, scenarios where agents are pit
against one another to obtain a prize [6]. One type of contest, the
tournament, is very common in sports and competitions [5], and
contests are also found throughout economics, and in the managerial
and political sciences [15]. Contests have not been applied much
in multiagent task allocation to date. Contest theory has explored
adjustable incentive mechanisms in terms of promotions within
companies and cash prizes based on performance [3, 21, 31]. These
incentive mechanisms are mainly used to manipulate the effort of
the contestants. In contrast, the purpose of the bounty mechanism
is not to increase the contestant effort, but to more effectively pair
contestants to specific tasks.

To our knowledge, competitive bounty hunting has not been used
as a mechanism for multiagent task allocation. Interestingly, while
bounties have been studied in terms of public policy [12], not much
work has been done examining them as an economic model either.
Bounties share some relationships with real options where an agent
may negotiate to have the option to exercise something in the future:
for example, movie producers may purchase the rights to make a
movie from a book; or mining companies may purchase the rights to
use a parcel of public land. The option seller in some sense may be
viewed as a bondsman and the buyer as a bounty hunter: however in
a bounty system, the “option” is not exclusive, guaranteed, nor even
negotiated. Options are more similar to market or token methods
such as in [9, 28].

MODEL DESCRIPTION
The Bounties task allocation model involves two types of actors:

a bondsman and one or more bounty hunter agents. The bondsman
generates and maintains a list of available tasks. Tasks belong to
task classes. Tasks in a given class are considered similar in some
sense, and hence related in difficulty. Each task has an associated
bounty which is posted with the task and which changes (we will
assume it rises linearly) over time as long as the task is uncompleted.

A bounty hunter commits to at most one task at a time, which
allows him to begin work on the task, and which announces to other
agents that he has committed to it. Multiple agents may commit to a
task, but they may not collaborate on it. For now we will presume
that once an agent has committed to a task, he must complete the
task, or be beaten out by some other agent, before he may commit
to a new task. When a bounty hunter successfully completes a task,
he receives a payment equal to the bounty of the task when he had
committed to it.

Agents could refuse to commit to any task for some period of
time. However in our experiments there is always at least one

388

available task, and we have set the incentive structure to make
refusal irrational. Thus the agents in our experiments by design
never wait before committing to tasks.

More formally we have:

• A set of bounty hunter agents, denoted A : {a1,a2, ...,}.

• A set of task classes S : {S1,S2, ...}.

• For each task class Si, there is an associated set of possible
tasks {Ii,1, Ii,2, ...}.

• At each time step t there is some set Q(t) of uncompleted
tasks available for bounty hunters to attempt to complete. We
denote these tasks by the integers 1,2, ..., i, ...

• Each uncompleted task i ∈ Q(t) is associated with a bounty
bi ∈ R. This bounty changes over time t according to some
(typically monotonically nondecreasing) function Bi(t). In
our experiments we will assume that Bi(t) is a simple linear
function, and so denote the rate at which bi increases per
timestep as ri.

• At any time t, a mapping Mt(A) : A×{Q(t)∪{2}}→R from
agents and the uncompleted tasks to which each is committed
(or to none, denoted 2), to the bounty established when each
agent committed to that task. The bounty on “none” (2) is
immaterial.

In our model we will assume that an agent may commit to no
more than a single task at any given time. Furthermore, in
some methods, only a single agent may commit to a task (it is
exclusive).

EXCLUSIVITY AND CLEARING TIME
Unlike a typical auction, a true bounty system is not exclusive:

multiple agents may commit to a task. Exclusivity has an advantage
in that agents are never wasting time simultaneously working on the
same task. But bounties have a different advantage: they provide
a straightforward way for agents to resolve situations where an
agent cannot complete a task or complete it efficiently, as ultimately
another agent will take it from him.

Similarly, a bounty system also does not require a clearing time
for bids, since there are no bids at all. An auction-style clearing time
is not easy to integrate into scenarios where tasks arrive at arbitrary
times, levels of urgency, or rate; and where typically only a single
agent is available to bid for them: and so agents would likely need to
have multi-task queues. Our simple experimental scenario, defined
later, is one such example. We failed to find an auction model from
the distributed multiagent task allocation literature which could be
straightforwardly adapted to it.

Lacking an easy way to compare against the auction literature, we
can still tweak a bounty model into an “auction-like” environment,
by adding task exclusivity and optionally a one-task queue of sorts.
Such modified models are no longer true bounty systems, but retain
much of their flexibility. We consider three possibilities:

• Bounties This is the model discussed earlier. Tasks are not
exclusive.

• Bounties with Exclusivity This is the Bounties model, ex-
cept that when an agent commits to a task, he owns it ex-
clusively: no other agent may commit to it. If two or more
agents simultaneously commit to a task, the winner is chosen
at random, and the losers vie for the remaining tasks.

• A Bounty “Auction” This is the same as the Bounties with
Exclusivity model, except that we change the procedure with
which an agent decides to commit. When one or more agents
are ready to commit to tasks at time t, all agents (committed or
not) are queried for their valuations of the current uncommit-
ted tasks in Q(t). We then iterate as follows: the highest-valued
task is paired with the agent who valued it thus (breaking ties
randomly). This task and agent are then discarded, and of the
remaining tasks and agents, the highest-valued task is again
paired with the agent who valued it, and so on. This continues
until all tasks or all agents have been paired. An agent who
wishes to commit then commits to the task to which he has
been paired, if any. We assume that an agent will always
commit to a new task immediately upon completion of his
current task, if a new task exists.

Note that these three approaches run the gamut from a boun-
ties model to one more closely resembling an exclusive multi-item
auction of sorts, albeit one without a clearing time, nor one where
agents necessarily receive tasks even if ones are available.

ADAPTIVE VALUATION
Because the bounty model does not presume that agents have an

accurate valuation of the environment, nor of the nature of other
agents, we have experimented with two methods which enable
agents to learn this information in order to adapt to the tasks best
suited to them. The Simple method only tries to learn the estimated
time to completion of given task classes, and their corresponding
probability of completion. The Complex method expands on the
probability of completion to learn the probability of completion
given the specific other agents that have also committed to the task.

These two methods provide us with several parameters to exper-
iment with. ε is the probability that the agent will commit to a
randomly-chosen task. α is the learning rate for the estimated time
to completion. β is the learning rate for the estimated probability of
completion. Finally, γ is a (small) unlearning rate for the estimated
probability of completion: like ε , this promotes exploration.

Simple Method. Given a posted task i, let the estimated expected
time to complete tasks of the class of i be Ti and the estimated
probability of completion of tasks of the class of i be Pi. Initially,
∀i : Ti = 1, Pi = 1, to encourage the agent to explore all tasks. The
agent then iterates as follows. First, the agent chooses a task to
commit to and complete. With ε probability he will pick an entirely
random available task. Otherwise he will choose task I∗ as:

I∗← argmax
i ∈ Available Tasks

bi

Ti
Pi

While the agent is working on a task, nothing is updated. Then
at some point the agent either completes the task, or fails to do so
because some other agent has completed it instead. In the first case,
Ti and Pi are updated as:

Ti← (1−α)Ti +αt

Pi← (1−β)Pi +β

...where t is the amount of time it has taken to complete the task since
the agent committed to it. In the second case, only Pi is updated as:

Pi← (1−β)Pi

Finally upon completion or failure of a task, all tasks i are updated:

∀i : Pi← (1− γ)Pi + γ

389

The purpose of γ is to slowly drift probabilities towards 1 to
make them more likely to try in the future. This, like ε , promotes
exploration of the space.

We note that in the Bounties with Exclusivity and Bounty “Auction”
approaches, since tasks are exclusively committed to, the probability
table P serves no purpose. Thus for these approaches we fix (∀i)Pi =
1, β = 0, γ = 0.

Complex Method. In the Complex Method we augment the task
selection equation by including the probability that the agent will
succeed given that certain other agents have committed to the task.
We naively compute this as the product of the estimated probability,
for each additional agent committed to the task, that our agent
would defeat the additional agent. To do this, instead of Pi, let
Pi,a be the estimated probability that our agent will defeat another
agent a at tasks of the class of i if both agents are committed to it.
This (wrongly but conveniently) assumes that success rates against
different agents are independent.

Initially we set ∀i,a : Ti = 1, Pi,a = 1. We select using ε as usual,
but redefine I∗ as:

I∗← argmax
i ∈ Available Tasks

bi

Ti
∏

a presently committed to i
Pi,a

We revised the update equations accordingly. When our agent
succeeds at a task, Ti and Pi,a are updated as:

Ti← (1−α)Ti +αt

∀a presently committed to i : Pi,a← (1−β)Pi,a +β

...where t is the amount of time it has taken to complete the task
since the agent committed to it. When our agent fails at a task
because a specific other agent a∗ has beaten it to the task, we only
update: Pi,a∗ :

Pi,a∗ ← (1−β)Pi,a∗

In either case, upon completion or failure of a task, all tasks i are
then updated for all other agents a as:

∀i,a : Pi,a← (1− γ)Pi,a + γ

We note that the Bounties with Exclusivity and Bounty “Auction”
approaches do not use this method, since it explicitly assumes that
other agents may commit to the same task.

EXPERIMENTS
To test the effectiveness of the adaptive bounty methods and dif-

ferent exploration techniques, we performed tests in a simulated
environment of agents and balls for them to retrieve. This scenario
was derived from similar tasks we encountered in robot soccer exper-
iments. Four agents (1, 2, 3, and 4) are placed at the corners 〈0,0〉,
〈59,0〉, 〈0,39〉, and 〈59,39〉 respectively on an infinite discrete grid.
We define twenty task classes, each with a mean location uniformly
randomly chosen somewhere within the 60×40 rectangle between
the agents’ corners. The simulation starts with twenty balls (the
tasks, one task per class), which appear on the field randomly at
locations using a gaussian distribution centered at their task class
means and with a standard deviation in each direction using σ = 5.

When an agent commits to a task, he moves towards its ball.
Agents can move one grid square (up, down, left, right) per timestep.
When an agent reaches the ball, he completes the task, and every-
body who was moving toward the ball is instantly teleported back to
his corner. Teleportation was meant largely to speed up simulation.
When the task is completed, another ball of the task class reappears
in p∼ uniform(0,19) timesteps.

While a task remains uncompleted, its bounty gradually increases
at a rate described later. Once an agent commits to a task, he is
locked to the current bounty for that task and may not abandon that
task until it is completed by some agent (not necessarily himself).
It is legal for two agents to occupy the same square. If two agents
complete the same task simultaneously, the winner is the agent with
the lower agent ID (1, 2, 3, or 4).

We tested six scenarios. First, we used a static environment where
agents played the game described above. Second, we tried a dy-
namic agent environment where periodically some agents would be
removed from the game, then added back. Third, we tried a dynamic
task environment where task complexities changed for each agent
periodically. The fourth and fifth experiments focused on extreme
situations. The fourth experiment had unreliable collaborators that
were slower in going after tasks than the other agents. In the fifth
experiment we randomly modified a task class to be unexpectedly
harder to do for a particular agent by making that agent a tenth its
normal speed. Finally, in the sixth experiment we examined the
effect of allowing agents to abandon going after their chosen task.

Dynamic environments require that agents explore sufficiently in
order to understand that the world has changed. We tested the two
methods (Simple and Complex) using three different approaches
to exploration. First, we simply relied on rising bounty values to
trigger more exploration. We called these the Simple and Complex
approaches. Second, we set ε = 0.1, which caused 10% of task
selections to be completely random. We called these the SimpleR
and ComplexR methods. Third, we set γ = 0.001, which gradually
caused the agents to become more optimistic about their probabili-
ties of success. We called these the SimpleP and ComplexP methods.
We further fixed α = 0.1 and β = 0.2. The settings of α,β ,ε, and
γ were determined from calibration trials. We also included the
Bounties with Exclusivity method, hereafter shortened to Exclusive,
and the Bounty “Auction”, hereafter shortened to Auction.

We compared these eight methods and exploration techniques
against two control methods, largely to serve as rough upper
and lower bounds. In Random, agents commit to tasks entirely
at random. This served as our worst case bound. In Greedy,
each agent knows the expected time E(Ti) to completion of tasks
of the class of task i, and greedily commits to the task I∗ ←
argmaxi ∈ Uncommitted Tasks

bi
E(Ti)

. Only one agent will commit to a
given task. This served as a moderate upper bound for comparison.

Simulations ran for 200,000 timesteps, yielding a minimum of
2000 tasks per agent. Each combination of method, exploration tech-
nique, and scenario was run for 100 independent trials. Statistical
significance was verified using an ANOVA with a Tukey Post-hoc
Test at p = 0.05. Bounty hunters were required to bring back all
prisoners alive: no disintegrations!

Metric. The metric we used for global system efficiency was the
sum total bounty h(t) over outstanding tasks at a given time t, that
is, h(t) = ∑i∈Q(t) bi. This metric nicely reflects two objectives at
once. First, as tasks pile up, h(t) will grow. Second, if tasks are left
stagnant in the queue, their bounty increases and again h(t) grows.
In many scenarios, the sum total bounty can also be considered an
indication of urgency: essentially, it is a measure of the number of
fires to put out, and their importance.

How Fast Should Bounties Increase? If the bail bondsman
increases the bounty too rapidly, agents might reasonably choose
to wait rather than commit to a task. With multiple competing
agents, such task speculation is less common, but with a single
agent, speculation is easy to demonstrate.

390

ComplexR

Auction

SimpleP
Simple

0 500 1000 1500 2000
3000

3500

4000

4500

Timesteps (1/100)

To
ta
lB
ou
nt
y

Figure 1: Experiment 1, Static Environment (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method γ ε Mean

+ Random - - 6139.72
+ ComplexR 0 0.1 3739.18

+ SimpleR 0 0.1 3641.62
+ ComplexP 0.001 0 3476.67
+ SimpleP 0.001 0 3475.81

+ + Complex 0 0 3434.75
+ + Simple 0 0 3408.04
+ + Auction - - 3407.77
+ + Exclusive - - 3403.4
+ Greedy - - 3372.64

Table 1: Experiment 1 results, Static Environment, at
time=200,000. Lower mean values are better. Equivalence
Classes show statistically insignificant differences between
methods.

Imagine a scenario where a single agent is given the same task
i over and over again. His only choice, then, is when to commit
to the task. The longer he waits, the higher the bounty he receives
on task completion. Let bi,0 be the bounty for task i when it is first
offered. Suppose the task takes mi > 0 time to complete, and the
bounty rises at a rate of ri ≥ 0 per timestep. If the agent waited for
n > 0 time to begin the task, it would take n+mi time to finish it
for a bounty of bi,0 +nri, yielding a bounty per timestep of bi,0+nri

n+mi
.

If he had started the task immediately, his bounty would be bi,0,

for a bounty per timestep of bi,0
mi

. Thus we want bi,0+nri
n+mi

≤ bi,0
mi

to

discourage procrastination. Rearranging, we get ri ≤
bi,0
mi

.
We have chosen to adopt this conservative rule. In our experi-

ments, the maximum expected task length was approximately 100,
and so the initial bounty on all task classes was set to 100 and
increased at a rate of 1.

First Experiment: A Static Environment
The first experiment verified that the discussed methods could

learn to adapt to the best task choices per-agent. Results are shown
in Table 1, and selected results in Figure 1.

Results. The results made very clear that all techniques will con-
verge to values near to our Greedy reference. We note an initial
spike in bounty as the techniques spend time learning their best
options.

Greedy
Complex
ComplexR

0 500 1000 1500 2000
3000

4000

5000

6000

7000

8000

9000

Timesteps (1/100)

To
ta
lB
ou
nt
y

Figure 2: Experiment 2, Dynamic Agents (Selected Results),
200,000 timesteps. Lower values are better. Complex peaks
exceed 9500, 10500, and 11500 respectively.

Equivalence
Classes Method γ ε Mean

+ Random - - 11255.4
+ ComplexR 0 0.1 6904.13

+ + SimpleR 0 0.1 6808.35
+ + SimpleP 0.001 0 6572.01

+ + ComplexP 0.001 0 6495.58
+ + Simple 0 0 6437.8
+ + Exclusive - - 6412.1
+ + Complex 0 0 6383.45
+ Auction - - 6326.7
+ Greedy - - 6289.88

Table 2: Experiment 2 results, Dynamic Agents, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.

The best five methods were (in order but with statistically in-
significant differences) Greedy, Exclusive, Auction, Simple, and
Complex. While Auction and Exclusive outperformed our methods,
the difference was statistically insignificant. We note that Simple
(and to a lesser extent Complex) performed this well despite having
no explicit exploration strategy. We also note here that SimpleR and
ComplexR — which use a 10% random task exploration strategy —
did poorly. This will be a continuing theme.

Second Experiment: Dynamic Agents
In the real world, agents are prone to failure. We tested each

method’s ability to adapt to a situation where agents were periodi-
cally removed from the game, then later reinstated. In this experi-
ment, agent 1 was removed every 30,000 timesteps, and agent 2 was
removed every 60,000 timesteps. Agents were reinserted 20,000
timesteps after removal. Ideally while agents were gone, teammates
would adapt to cover for them.

Results. We discovered that all the methods would adapt quickly,
as illustrated in Figure 2. The Complex method converged to the
Greedy performance regardless of the number of agents in the game.
This is verified in Table 2, which reflects the final timestep 200,000,
when two agents were missing from the game.

We note in Figure 2 that Complex and ComplexR (shown Figure 2)
had very high temporary peaks of poor performance compared to
other methods whenever an agent would disappear: they had a larger

391

Simple

0 500 1000 1500 2000
3000

3500

4000

4500

5000

5500

6000

Timesteps (1/100)

To
ta
lB
ou
nt
y

ComplexR
Auction
ComplexP
Greedy

Figure 3: Experiment 3, Dynamic Tasks (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method γ ε Mean

+ Random - - 6035.74
+ Complex 0 0 4150.56
+ Simple 0 0 4086.08

+ ComplexR 0 0.1 3934.94
+ SimpleR 0 0.1 3928.61

+ Auction - - 3591.57
+ SimpleP 0.001 0 3578.96
+ Exclusive - - 3529.17
+ ComplexP 0.001 0 3509.76

+ Greedy - - 3394.73

Table 3: Experiment 3 results, Dynamic Tasks, at time=200,000.
Lower values are better. Equivalence Classes show statistically
insignificant differences between methods.

state table and would be expected to take longer to adapt. The 10%
random task exploration strategy once again did poorly compared
to other methods. Note that Auction outperformed SimpleP and
SimpleR, but not Complex.

Third Experiment: Dynamic Tasks
If the distribution of tasks suddenly changes, we want the bounty

system to recover. To test this, we occasionally rotated the corners
among the four agents: that is, agent 1’s corner would become
agent 2’s corner, whose old corner would now belong to agent 3,
and so on. We did this every 25,000 timesteps, with a second rotation
performed every 50,000 timesteps (a worst case scenario for task
distribution, as the closest balls became the furthest and vice versa).

Results. This experiment, as shown in Figure 3 and Table 3, shows
the weakness of relying solely on bounty for exploration: the Sim-
ple and Complex methods performed poorly. Following them were
the remaining random exploration methods (SimpleR, and Com-
plexR). Finally, the best adaptive methods were SimpleP, Auction,
ComplexP, and Exclusive. We note that, SimpleP and ComplexP, per-
formed just as well as the Exclusive and Auction methods. Unfortu-
nately, no adaptive method could consistently converge to Greedy’s
performance.

Auction

ComplexP

0 500 1000 1500 2000
3400

3600

3800

4000

4200

4400

4600

Timesteps (1/100)

To
ta
lB
ou
nt
y

Figure 4: Experiment 4, Unreliable Collaborators (Selected Re-
sults), 200,000 timesteps. Lower values are better. Exclusive is
omitted as its results are very similar to Auction.

Equivalence
Classes Method γ ε Mean

+ Exclusive - - 7652.40
+ Auction - - 7334.31

+ ComplexP 0.001 0 5625.17

Table 4: Experiment 4 results, Unreliable Collaborators, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.

We also note that after several iterations of rotations, the agents
were unable to converge to the same (lower) value. This is because
the rate of rotating was too fast for the adaptive methods to catch up
and so the total bounty would gradually pile up. This was especially
true for the Auction strategy. In the first few iterations Auctions
started out better than ComplexP, but by the last iteration, they were
equivalent.

Fourth Experiment: Unreliable Collaborators
The purpose of Experiments 4 and 5 is to show when exclusivity

can fail. In the previous experiments exclusivity was favorable,
since non-exclusive approaches potentially wasted time on tasks
another agent was completing. However, in these next experiments
we show there are situations where non-exclusivity is desirable.

Suppose a system has agents which do not perform nearly as well
as other agents. In this experiment, there were 2 agents, placed
in the top left corner of the grid world, who moved 10x slower
than other agents, and 4 agents, placed in the corners (like normal),
who moved at a normal speed. We chose to test ComplexP as our
main bounty mechanism, and compared it to our two auction-like
algorithms (Auction and Exclusive).

Results. The results are shown in Table 4 and illustrated in Fig-
ure 4. ComplexP was clearly the best in this test. The obvious
underlying reason was that agents at normal speed would win a
race to a ball (a task) against a slow, unreliable collaborator. The
auction-like methods simply had no way to prevent the unreliable
collaborator from holding things up. Also, ComplexP was naturally
suited to this task due to the added information it learned about the
other agents in the environment.

392

Auction

ComplexP

0 500 1000 1500 2000
0

2000

4000

6000

8000

Timesteps (1/100)

To
ta
lB
ou
nt
y

Figure 5: Experiment 5, Unexpectedly Bad Tasks (Selected Re-
sults), 200,000 timesteps. Lower values are better. Exclusive is
omitted as its results are very similar to Auction.

Equivalence
Classes Method γ ε Mean

+ Exclusive - - 3779.05
+ Auction - - 3762.39

+ ComplexP 0.001 0 3497.28

Table 5: Experiment 5 results, Unexpectedly Bad Tasks, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.

Fifth Experiment: Unexpectedly Bad Tasks
We now consider an experiment where some tasks suddenly

change in difficulty for particular agents. We modified the scenario
such that, every time a task class reappeared on the board, there
was a 10% probability it would become “difficult” for a randomly-
selected agent to complete. By “difficult” we mean that this agent,
upon choosing this task, would move at one-tenth his normal speed.

We once again compared ComplexP, Exclusive, and Auction.

Results. The results are shown in Table 5 and illustrated in Fig-
ure 5. ComplexP, again, was the clear winner. Once again, the
exclusivity of the auction-like methods prevented agents from tak-
ing over “difficult” tasks which have trapped helpless agents.

Sixth Experiment: Jumping Ship
We finally experimented with the effect of jumping ship on boun-

ties, by which we mean that an agent may, at any time, abandon his
current task and recommit to a different one, perhaps because its
bounty is higher, or because a better agent has committed to the old
one. If an agent abandons a task, he is teleported back to his corner,
so as to counter speculation.

To discourage excess jumping, we modified each agent’s estimate
of remaining time left to complete his current task as T ′i ← |Ti− t|,
where t is the amount of time the agent has spent on the task so far.
Thus the closer the agent is to his expectation of completion, the
more likely he would be to stay on the task. For the current task, T ′i
substituted for Ti in the calculation of I∗ (potential new tasks just
used Ti).

We did not test jumping ship during learning, but rather after
learning was completed. Thus we ran the Complex method in the
Static Environment for 200,000 timesteps, and then turned off learn-
ing (α = 0, β = 0) and turned on the ability to jump ship. We then
ran the agents for 100,000 more timesteps.

Results. The results were not good. Jumping ship resulted in a
total bounty of 4178.08 at timestep 300,000, compared to 3557.72
prior. This result was statistically significant.

CONCLUSIONS
We have demonstrated methods for agents to adapt to their best

tasks in a bounty hunter system, thus improving the efficiency of the
whole system. We have compared various approaches to adaptation,
as well as both exclusive and non-exclusive task allocation strategies.

As we had imagined, the “complex” non-exclusive methods per-
formed better in dynamic situations due to their additional per-agent
information, since they retained knowledge of missing agents and
could immediately re-use that information when the agents were
re-introduced. While the exclusive and “auction-like” methods gen-
erally performed well in the static and basic dynamic scenarios,
Experiments 4 and 5 showed that they would perform very poorly
in situations where task exclusivity could saddle agents with leaden
tasks. Without any additional information or communication, non-
exclusive bounty agents naturally adapted to these situations. In the
future, we will look at different scenarios which take advantage of
this natural adaptation.

A bounty hunter system is a promising method for task allocation:
it seems robust to loss of agents, changes in task difficulty, and other
kinds of noise. The key properties of a bounty hunter system which
distinguish it from other methods, and permits this robustness, is its
non-exclusivity of task assignment, lack of a bidding structure, and
the increasing attractiveness of outstanding tasks as the bounty on
them rises. For this reason, it is surprising bounties have not been
studied more: we hope this trend will change in the future.

ACKNOWLEDGMENTS
The work presented in this paper is supported by NSF NRI Grant

1317813.

REFERENCES
[1] S. C. Botelho and R. Alami. M+: a scheme for multi-robot

cooperation through negotiated task allocation and
achievement. In IEEE International Conference on Robotics
and Automation, volume 2, pages 1234–1239, 1999.

[2] Adam Campbell, Annie S. Wu, and Randall Shumaker.
Multi-agent task allocation: Learning when to say no. In
Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, pages 201–208, 2008.

[3] Pablo Casas-Arce and F. Asís Martínez-Jerez. Relative
performance compensation, contests, and dynamic incentives.
Management Science, 55(8):1306–1320, 2009.

[4] S.H. Choi and W.K. Zhu. A closed-loop bid adjustment
method of dynamic task allocation of robots. In Electrical
Engineering and Intelligent Systems, volume 130 of Lecture
Notes in Electrical Engineering, pages 81–94. Springer, 2013.

[5] Brian L. Connelly, Laszlo Tihanyi, T. Russell Crook, and
K. Ashley Gangloff. Tournament theory thirty years of
contests and competitions. Journal of Management,
40(1):16–47, 2014.

[6] Luis C. Corchón. The theory of contests: a survey. Review of
Economic Design, 11(2):69–100, 2007.

[7] T. S. Dahl, M. J. Matarić, and G. Sukhatme. Multi-robot
task-allocation through vacancy chains. In IEEE International
Conference on Robotics and Automation, volume 2, pages
2293–2298, 2003.

393

[8] M. Bernardine Dias. Traderbots: A New Paradigm for Robust
and Efficient Multirobot Coordination in Dynamic
Environments. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2004.

[9] Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio
Patrizi. Task assignment with dynamic token generation. In
Monitoring, Security, and Rescue Techniques in Multiagent
Systems, pages 467–477. Springer, 2005.

[10] B. P. Gerkey. A formal analysis and taxonomy of task
allocation in multi-robot systems. International Journal of
Robotics Research, 23(9):939–954, 2004.

[11] B. P. Gerkey and M. J. Matarić. Sold!: auction methods for
multirobot coordination. IEEE Transactions on Robotics and
Automation, 18(5):758–768, 2002.

[12] Eric Helland and Alexander Tabarrok. The fugitive: Evidence
on public versus private law enforcement from bail jumping.
Journal of Law and Economics, 47(1):93–122, 2004.

[13] E. Gil Jones, B. Browning, M. Bernardine Dias, B. Argall,
M. Veloso, and A. Stentz. Dynamically formed heterogeneous
robot teams performing tightly-coordinated tasks. In IEEE
International Conference on Robotics and Automation, pages
570–575, 2006.

[14] E Gil Jones, M Bernardine Dias, and Anthony Stentz.
Learning-enhanced market-based task allocation for
oversubscribed domains. In International Conference on
Intelligent Robots and Systems, pages 2308–2313, 2007.

[15] K.A. Konrad. Strategy and dynamics in contests. LSE
perspectives in economic analysis. Oxford University Press,
2009.

[16] G. Ayorkor Korsah, A. Stentz, and M. Bernardine Dias. A
comprehensive taxonomy for multi-robot task allocation.
International Journal of Robotics Research,
32(12):1495–1512, 2013.

[17] M. G. Lagoudakis, M. Berhault, S. Koenigt, P. Keskinocak,
and A. J. Kleywegt. Simple auctions with performance
guarantees for multi-robot task allocation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems,
volume 1, pages 698–705, 2004.

[18] Lantao Liu, Nathan Michael, and Dylan Shell. Fully
decentralized task swaps with optimized local searching. In
Proceedings of Robotics: Science and Systems, 2014.

[19] Lantao Liu and Dylan Shell. A distributable and
computation-flexible assignment algorithm: From local task
swapping to global optimality. In Proceedings of Robotics:
Science and Systems, 2012.

[20] Maja J. Matarić, Gaurav S. Sukhatme, and Esben H.
Østergaard. Multi-robot task allocation in uncertain
environments. Autonomous Robots, 14(2-3):255–263, 2003.

[21] Barry J. Nalebuff and Joseph E. Stiglitz. Prizes and incentives:
towards a general theory of compensation and competition.
The Bell Journal of Economics, pages 21–43, 1983.

[22] M. Nanjanath and M. Gini. Dynamic task allocation for robots
via auctions. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages
2781–2786, 2006.

[23] Maitreyi Nanjanath and Maria Gini. Repeated auctions for
robust task execution by a robot team. Robotics and
Autonomous Systems, 58(7):900–909, 2010.

[24] L. E. Parker. L-ALLIANCE: a mechanism for adaptive action
selection in heterogeneous multi-robot teams. Technical
Report ORNL/TM–13000, Oak Ridge National Laboratory,
1995.

[25] L. E. Parker. ALLIANCE: an architecture for fault tolerant
multi-robot cooperation. IEEE Transactions on Robotics and
Automation, 14(2):220–240, 1998.

[26] Charles E. Pippin and Henrik Christensen. Learning task
performance in market-based task allocation. In Proceedings
of the 12th International Conference on Intelligent
Autonomous Systems, volume 2, pages 613–621, 2012.

[27] A Pustowka and E.F. Caicedo. Market-based task allocation in
a multi-robot surveillance system. In Robotics Symposium and
Latin American Robotics Symposium, pages 185–189, 2012.

[28] Jeff Schneider, David Apfelbaum, J. Andrew (Drew) Bagnell,
and Reid Simmons. Learning opportunity costs in multi-robot
market based planners. In IEEE International Conference on
Robotics and Automation, pages 1151–1156, 2005.

[29] P. M. Shiroma and M. F M Campos. Comutar: A framework
for multi-robot coordination and task allocation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 4817–4824, 2009.

[30] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,
S. Thrun, and H. Younes. Coordination for multi-robot
exploration and mapping. In Proceedings of the AAAI
National Conference on Artificial Intelligence, 2000.

[31] Christian Terwiesch and Yi Xu. Innovation contests, open
innovation, and multiagent problem solving. Management
science, 54(9):1529–1543, 2008.

[32] Robert Zlot, A. Stentz, M. Bernardine Dias, and Scott Thayer.
Multi-robot exploration controlled by a market economy. In
IEEE International Conference on Robotics and Automation,
2002.

394

