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ABSTRACT
We address the question of how an agent can adapt its behavior to
comply with newly adopted norms. This is particularly relevant in
the case of open systems where agents may enter and leave norm-
governed social contexts not known at design time. This requires
norms to be explicitly and separately stated and presented to an
agent as rules to which it then can try to adapt its behavior.

We propose a formal semantic framework that specifies an exe-
cution mechanism for such socially adaptive agents. This frame-
work is based on expressing norms using Linear Temporal Logic.
The formality of the framework allows us to rigorously study its
norm compliance properties. A weak form of norm compliance al-
lows agents to abort execution in order to prevent norm violation.
In this paper we investigate a stronger notion of norm compliance
that is evaluated over infinite traces. We show that it is not possi-
ble for all agents to be strongly compliant with any arbitrary set of
norms. We then investigate situations when strong norm compli-
ance can be guaranteed.
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1. INTRODUCTION
Norms have been proposed as a way of regulating multi-agent

systems in order to prevent undesirable or ineffective behavior [3].
Norms describe how agents should ideally behave. When agents
enter a social context that is governed by a set of norms, they should
be able to recognize the norms, decide whether they want to follow
them, and if they decide to do so, adapt their behavior accordingly
to generate norm-compliant behavior.

In this paper we address the latter issue, focusing on the fol-
lowing question: how can agents adapt their behavior to comply
with newly adopted norms? We refer to such agents as socially
adaptive agents. Creating socially adaptive agents is particularly
relevant in the case of open systems [13] where agents may enter
and leave norm-governed social contexts not known at design time.
This means they have to be able to adapt to new norms at run-time.
Examples are social robots and personal assistant agents that sup-
port people in their daily lives in various social contexts.

Our aim is to develop an execution mechanism for socially adap-
tive agents that can be integrated into existing agent programming
languages [5]. As argued in [32], treating adopted norms “simply
as additional beliefs, goals, or rules that the agent may adopt at run-
time is insufficient, as it will be difficult (if not impossible) to do
it in such a way that norm compliant behavior is generated”. Since
it is not known at design time which combinations of norms may
arise, we need an execution mechanism that can adapt the agent’s
proactive and reactive behavior to arbitrary sets of norms (in some
normative language) at run-time. Moreover, agent behavior should
not be adapted if this is not required according to norms.

In this paper we propose a formal semantic framework that speci-
fies such an execution mechanism for socially adaptive agents. For-
mally specifying the semantics allows us to rigorously study its
norm compliance properties. In previous work [32] we proposed
an execution semantics for agents that had the option of aborting
in order to prevent norm violation (weak norm compliance). Com-
pliance of an execution trace with norms was evaluated up to the
point where a norm violation was about to occur. In this paper, we
investigate a stronger notion that evaluates compliance over infi-
nite traces. We argue that strong norm compliance corresponds to
an intuitive idea of norm compliant behavior. Strong norm com-
pliance requires that any (infinite) normative agent trace complies
with norms. Not all agents can be strongly norm compliant with
any set of norms, for example when norms are inconsistent. We
investigate when strong norm compliance can be guaranteed.

We start by discussing related work on reasoning about norm
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compliance and propose an architecture for socially adaptive agents
that shows how the execution mechanism can be integrated with
other types of norm compliance reasoning (Section 2). We use an
abstract decision mechanism to define an agent’s proactive and re-
active behavior, and express norms using the next-fragment of Lin-
ear Temporal Logic (LTL) (Section 3). An agent satisfies a norm
expressed as an LTL formula if it generates behavior that satisfies
the formula. The main contributions of this paper are the following:

• A normative agent semantics that specifies how the agent’s
decision mechanism is adapted to comply with norms (Sec-
tion 4). We introduce a number of desired properties of nor-
mative agent semantics and show that our semantics satisfies
them.

• A definition and semantic exploration of strong norm com-
pliance (Section 5). We show that satisfiability of norms cor-
responds to the existence of a strongly norm compliant agent,
provide a semantic characterization of strong norm compli-
ance by proving that it coincides with absence of conflict,
and identify sets of “safe” norms that guarantee strong norm
compliance.

2. NORM COMPLIANCE REASONING
We position our work in the broader area of reasoning about

norm compliance by discussing related work (Section 2.1) and in-
troducing an architecture to show how different types of reasoning
about norm compliance can be integrated (Section 2.2).

2.1 Related Work
The term norm compliance has been used in different ways and

in different contexts in the literature. There has been considerable
research on how agents can reason about whether they want to com-
ply with norms by determining whether the benefits from comply-
ing outweigh the expected costs of violation (e.g., induced by sanc-
tions) or if complying is instrumental in achieving the agent’s goals
[9, 4, 17, 26, 27, 31, 1, 11]. Our aim is complementary: we focus
on generating behavior that complies with norms, once the agent
has decided it wants to comply with them.

In the context of business process modelling, techniques have
been developed for verifying whether a business process complies
with a set of norms, for example through model checking [22, 21,
23, 30, 12, 15]. These approaches are aimed at compliance check-
ing at design time. In [21] the declarative representation of norms
and goals for a business process is proposed in a modal defeasi-
ble theory. Compliance by design can be achieved if from this one
creates a new process that satisfies goals and norms. There is also
research on run-time verification of process models [28], in which
business processes are monitored during execution in order to de-
tect (potential) problems. Monitoring is also investigated in the area
of normative multi-agent systems [7, 10, 8] in which mechanisms
for detecting norm violations are developed. While verification and
monitoring approaches check whether a given agent or business
process complies with norms, our aim is to develop an execution
mechanism that can generate norm compliant behavior (while pre-
serving the original agent behavior if possible). In [21] it is sug-
gested to generate a compliant business process from a declarative
specification. This is different from defining an execution mecha-
nism that generates norm compliant behavior by adapting a given
procedural specification.

In [29] another technique is proposed that allows agents to adapt
their behavior to newly adopted norms. The main difference with
our work is that they do not specify norm compliance and the ex-
ecution mechanism formally and consequently cannot formally in-

vestigate norm compliance properties. In [31] a norm-based plan-
ning approach is proposed for generating agent behavior that max-
imizes an agent’s utility. Planning can be used to generate norm
compliant behavior. However, it requires that agents are modelled
as planners which is not always desirable. In particular, planning
assumes a finite horizon which our semantic framework does not.
We define an operational semantics of what it means that an agent
adapts its behavior to norms, which facilitates integration of our
execution mechanism into agent programming languages.

2.2 Architecture
In this section we illustrate how we envisage the execution mech-

anism for generating norm compliant behavior to be integrated into
an overall architecture for socially adaptive agents. The architec-
ture (Figure 1) shows how different types of reasoning about norm
compliance, as discussed in Section 2.1, can be integrated.

Socially Adaptive Agent 
Norm Compliance 

Reasoning 
Norm 

Adoption 
norm 

action 
Execution & 
Monitoring 

norm 

Exception 
Handling 

exception 

action 

Figure 1: Socially Adaptive Agent Architecture

When an agent identifies new norms at run-time (called nor-
mative beliefs in [2]), it has to decide whether to adopt them by
reasoning about whether it wants to comply. Once norms have
been adopted (called normative goals in [2]), the agent’s execution
mechanism should ensure that norm compliant behavior is gener-
ated (if possible). This is the focus of this paper. Monitoring can
be used to detect if norm violations (exceptions) unexpectedly oc-
cur. Exceptions may occur if the execution mechanism cannot fully
guarantee norm compliant behavior. In this paper we analyze to
what extent the execution mechanism can provide such guarantees.
If a norm violation occurs, an exception handling process needs to
be in place to determine the best way to respond. Exception han-
dling is related to contrary-to-duty reasoning [24, 22], which con-
cerns the derivation of new norms that should be fulfilled to repair
or compensate for violation of the primary norm. Contrary-to-duty
reasoning is outside the scope of this paper. Our architecture is in
line with that proposed in [29].

3. PRELIMINARIES
We use the abstract agent semantics (Section 3.1) and normative

language (Section 3.2) from [32], which we summarize here.

3.1 Abstract Agent Semantics
The semantic framework we propose comprises three “layers”:

1) a transition function T specifying how the execution of an ac-
tion changes a state, representing the actions that an agent can exe-
cute 2) an agent decision mechanism Dec specifying which actions
enabled by T an agent would choose to execute if there were no
norms in place, and 3) a normative agent semantics JAKN spec-
ifying how Dec is adapted to comply with norms N . Dec can be
generated, for example, through an agent program that specifies the
agent’s reactive and proactive behavior. We here abstract from how
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Dec is generated to ensure that our normative agent semantics can
be integrated with various agent programming frameworks.

We assume two mutually disjoint sets: a set of propositional
atoms At with typical element p over which properties of states are
defined, and a set of agent actions Act with typical element a. We
assume a language of propositional logic LAt with typical element
φ defined over a finite set of atoms At, with >,⊥ ∈ LAt denoting
the true and false sentence, respectively. We also assume a finite
set of abstract agent states S and an entailment relation s |=LAt φ,
which defines when φ holds in s, such that for each φ ∈ LAt with
φ 6|=LAt ⊥ there is a state s ∈ S such that s |=LAt φ. Moreover,
states are complete, i.e., for each state s ∈ S and p ∈ At either
s |=LAt p or s |=LAt ¬p. This is important to prove correspondence
of the semantics with LTL. We also assume atoms are independent,
i.e., for any two atoms, p and q both p ∧ q and p ∧ ¬q are consis-
tent1. We provide no formal definition for |=LAt abstracting from
this for the same reasons we abstracted from Dec.

The partial function T of type : (Act × S) → S specifies how
the execution of an action changes a state. If an action a cannot be
executed in state s, T (a, s) is undefined. We assume an abstract
agent decision mechanism Dec(Act, S, T ) as a set of transitions
s

a−→ s′ with s, s′ ∈ S and a ∈ Act for which T (a, s) = s′. This
set of transitions defines which actions may be executed in which
state according to the agent’s decision mechanism. This is a subset
of the transitions that can occur according to T .

3.2 Language of Norms
We use Linear Temporal Logic (LTL) [16] to specify norms and

thus our syntax of norms is that of LTL. In order to comply with a
norm expressed as an LTL formula, agents should exhibit behavior
that satisfies the LTL formula. An important advantage of using
LTL for specifying norms is that LTL is an expressive formal lan-
guage for specifying properties of traces of computational systems.
Norm compliance directly translates to satisfaction of the LTL for-
mulas over the traces that the agent generates.

To facilitate executing a temporal logic specification, in [18]
a normal form for temporal logic called Separated Normal Form
(SNF) is introduced. SNF is a concise clausal form for temporal
formulas which facilitates operationalization (see, e.g., METATEM
[19, 20]). An SNF formula consists of an implication with a con-
junction of propositional literals as the antecedent and a tempo-
ral formula as the consequent. The temporal formula consists of
a temporal operator© (next) or 3 (sometime/eventually) applied
to a disjunction of propositional literals. Any LTL formula can
be transformed into an equivalent set of Separated Normal Form
(SNF) rules [18]. By way of example, the LTL formula

2(φ→ (done(a1) before done(a2)))

may represent a norm for a robot in a rescue scenario expressing
that it should always (2) be the case if the robot enters a room (φ)
it should send a message to the other agents (done(a1)) before it
leaves the room (done(a2)). This is represented in SNF as follows:
φ⇒ ¬done(a2)
φ⇒ (w ∨ done(a1))

}
present time rules

w ⇒©(¬done(a2))
w ⇒©(w ∨ done(a1))

}
step rules

The present time rules informally specify that if the left-hand
side (lhs) of the rule holds in a state, then the right-hand side (rhs)
must also hold in that state. Step rules represent that if the lhs
1This means we can exclude multiply defined norms from consid-
eration – e.g., ¬smoking and refrain_from_smoking .

holds, the rhs should hold in the next (©) state. For reasons of
simplicity, in this paper we consider the “next-fragment” of LTL
as represented by present time and step rules. This means that we
do not include rules that express that something should hold some-
time in the future. The advantage of present time and step rules
is that they can be evaluated over individual transitions. This does
mean that the formalism discussed here cannot represent all norms
encoded in LTL, but we believe it includes a large useful subset.

In the translation process from LTL to SNF, an auxiliary atom w
was introduced above which can be read as ‘waiting’. A new atom
is introduced whenever a complex temporal operator (e.g., before )
is translated into SNF. These atoms do not refer to the environment
state as atoms in At, but are introduced for technical reasons in
order to facilitate model building for the temporal formula. Their
role is to defer, from state to state, the satisfaction of some formula
e.g., done(a1) above – so in every state either done(a1) is true or
the system is still waiting for a1 to be done (w). While w is true
done(a2) is prohibited because it must take place after done(a1).
Agent actions do not directly affect auxiliary atoms, and therefore
we use a separate set Ataux to denote the set of auxiliary atoms,
where At ∩ Ataux = ∅.

We use lit(At) and lit(Act) to denote the set of positive and nega-
tive literals over At and Act, respectively. We use propositional lit-
erals to refer to literals containing atoms from At, auxiliary atoms
to refer to atoms from Ataux, and action literals to refer to literals
from Act. To clearly distinguish action literals from propositional
literals, we denote the former as done(a) or ¬done(a). We define
present time and step rules as follows.

DEFINITION 1. (Present Time Rules) A present time rule has
the form

∧
l⇒

∨
l′ where l ∈ lit(At) and l′ ∈ lit(Act) ∪ Ataux.

DEFINITION 2. (Step Rules) A step rule has the form∧
l⇒©(

∨
l′) where l ∈ lit(At∪Act)∪Ataux and l′ ∈ lit(Act)∪

Ataux.

Step rules correspond to conditional norms that oblige or for-
bid the execution of actions. For example, the step rule p ⇒
©(done(a)) (©¬done(a)) can be read as a norm that expresses
that if p holds, the agent is obliged (forbidden) to execute a next.
Our language of norms is, for example, comparable to the norma-
tive language of the norm-aware agent framework of [29]. Our lan-
guage is more restrictive than [29] in that we only allow actions and
no states in the consequent of norms. It is more expressive in that
we allow disjunctions of actions (and auxiliary atoms) in the con-
sequent, and we have present time rules. LTL has also been used to
specify norms for the MOISE organizational modelling language
[33]. Our normative language differs from temporal deontic logics
(e.g., [14, 6]) in that norms are not expressed explicitly. Tempo-
ral deontic logics are aimed at reasoning about which norms are in
force, while our normative language directly expresses the behavior
that agents should exhibit.

4. NORMATIVE AGENT SEMANTICS
In this section we define the normative agent semantics that for-

mally defines how we integrate norms and agent deliberation. The
semantics is a declarative variant of the semantics of [32], with a
number of changes needed for providing a definition and charac-
terization of strong norm compliance. We summarize these at the
end of the section. The semantics is defined with respect to a set
of norms N . If the set N changes at run-time because new norms
are adopted, the agent can immediately adapt its behavior accord-
ing to the semantics. We do not define such an update mechanism
because it is not required for studying strong norm compliance.
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We use N to denote a set of norms in SNF and use NPTR ⊆ N
and NSR ⊆ N to denote the sets of present time and step rules of
N (= NPTR∪NSR), respectively. In order to represent which auxil-
iary atoms hold and to represent the action that has been executed2,
we extend the states s ∈ S to normative states n = 〈s, aux, a〉
with aux ⊆ Ataux and a ∈ Act. We use � to denote the pro-
jection of a normative state transition to a transition in Dec, i.e.,

(〈s, aux, a〉 −→ 〈s′, aux′, a′〉)� = s
a′
−→ s′.

We define that a normative state n = 〈s, aux, a〉 satisfies a for-
mula φ =

∧
l, denoted as n |= φ, iff (i) all propositional literals

(both positive and negative) from φ follow from s (according to
entailment relation |=LAt introduced above), (ii) all auxiliary atoms
from φ are contained in aux, and (iii) all positive action literals
from φ are equal to a and all negative action literals are unequal
to a. Satisfaction for a formula φ =

∨
l is defined similarly by

replacing “for all” by “there exists”.
One advantage of the transformation of temporal formulas into

present time and step rules is that satisfaction of these rules can be
evaluated on single normative transitions n −→ n′. A transition
satisfies a present time rule if it is satisfied in n and n′, and a step
rule φ ⇒ ©(ψ) is satisfied if it is the case that when φ holds in
n, ψ holds in n′. We formally define satisfaction of a present time
rule (|=PTR) in a normative state as follows:

n |=PTR (φ⇒ ψ) iff n |= φ⇒ n |= ψ

. We define satisfaction of present time (|=PTR) and step rules (|=SR)
over a normative transition as follows:

n −→ n′ |=PTR (φ⇒ ψ) iff n, n′ |= (φ⇒ ψ)

n −→ n′ |=SR (φ⇒©ψ) iff n |= φ⇒ n′ |= ψ

We write n −→ n′ |= N to denote that a normative transition
n −→ n′ satisfies all norms in N .

In defining a normative agent semantics one can make a range
of choices that result in different semantics as well as computa-
tional properties. To guide and motivate the choices we make in
this paper, we introduce a number of properties for such semantics.
These are not the only desirable properties one may consider for
such a semantics, and they do not uniquely characterize the seman-
tics. However, by making these properties and the semantic choices
explicit, we obtain a better understanding of the space of possibili-
ties and its impact on norm compliance. The semantics in [32] was
proven to satisfy the first two of the following properties.

• Preservation of agent semantics: If the set of norms
N = ∅, then the generated normative traces correspond to
those of the agent semantics.

• Weak norm compliance: Transitions derived by the transition
rules should satisfy norms.

• Preservation of norm compliance: If a norm-compliant tran-
sition is possible according to T , there should be a norm-
compliant transition in the semantics3. Intuitively the se-
mantics does not prevent the agent from executing a transi-
tion that is norm-compliant. This property is required for our
characterization of strong norm compliance (Section 5.2).

In this paper we aim for a computational semantics that is “lo-
cal”, i.e., that takes into account only the current normative state in
2This is needed to evaluate applicability of present time and step rules, since they may
contain conditions about which action has been executed.
3This includes vacuous norms, in fact such norms may be required, see our discussion
of wait.

deriving a transition. The advantage of such a semantics over one
that performs lookahead (and backtracking) to derive transitions is
that it is computationally less intensive (see [25] for an example of a
lookahead semantics to satisfy maintenance goals). A consequence
is, however, that normative conflicts cannot always be prevented,
which impacts norm compliance as we will see.

4.1 Semantics
Our normative agent semantics has two transition rules: one that

allows us to derive transitions from Dec that are norm-compliant,
and where no such transition exists one that allows the agent to take
any norm-compliant action. The norm-constrained decision rule is
introduced to satisfy preservation of the agent semantics. Its guard
ensures that a transition can only be derived if it complies with the
norms. In [32] the guard was used to construct the next state, while
here we provide a simpler declarative constraint.

DEFINITION 3. (Norm-Constrained Decision Rule)

(n −→ n′)� ∈ Dec n −→ n′ |= N

n −→ n′

This rule does not suffice to satisfy the preservation of norm
compliance. Consider a step rule φ ⇒ ©done(b) and that in state
n = 〈s, aux, a〉 we have n |= φ, T (b, s) = s′ and no other norms
are applicable. In this case there is a norm-compliant transition to
n′ = 〈s′, ∅, b〉, but unless s b−→ s′ ∈ Dec, the transition cannot
be derived. Thus we need a transition rule that allows insertion of
actions into the agent semantics.

We also need to ensure that an agent always has an executable
action that it can insert and that is not forbidden by norms. To
this end we introduce an action wait 6∈ Act and extend T to in-
clude this action such that for all s ∈ S : T (wait, s) = s. Thus
wait does not change the agent state but, importantly, it will al-
low auxiliary atoms to change. Consider, for example, step rules
w0 ⇒ ©(¬done(a)), φ ⇒ ©(w1) and w1 ⇒ ©(done(a)), and
an agent in state n |= φ ∧ w0 – so the norms state that in this state
the agent should not do a next but should do it the time step after
that. Also assume that a is the only action. In this case the agent
would not be able to make a transition through actions from Act,
but it can make a norm compliant transition to n′ |= w1 through
wait (which will remove w0 from the auxiliary atoms and add w1

– thus waiting until it is allowed to perform a). In n′ it may then
execute a if the action is enabled, in order to satisfy the third step
rule. Without wait, no transitions would be possible. As we will
see below, this would mean that the agent is not strongly compliant.
We require that the transition rule for action insertion is only exe-
cuted when the norm-constrained decision rule cannot be applied.
This is needed for preservation of the agent semantics. Without
this constraint the agent may derive transitions that do not appear
in Dec when N = ∅.

DEFINITION 4. (Action Insertion Rule) Let n = 〈s, aux, a〉,
T (a′, s) = s′, and n′ be of the form 〈s′, aux′, a′〉4.

n −→ n′ |= N
∀n′′. ((n −→ n′′) �∈ Dec⇒ n −→ n′′ 6|= N)

n −→ n′

[32] proposes a stronger variant of the action insertion rule which
only allows the insertion of actions that appear positively in the rhs
of step rules. The idea is that the agent will only insert actions that
4Note that is is allowable for n to equal n′ if such a transition otherwise complies
with the norms.

426



it may, at some point, be required to take. Such a rule provides a
semantics that satisfies preservation of the agent semantics with-
out requiring that it can be applied only if the norm-constrained
decision rule is inapplicable. However, the stronger rule makes it
impossible to make norm-compliant transitions in situations where
any transition in Dec is forbidden but no action is required accord-
ing to step rules, as in the example above for φ⇒ w1. This seman-
tics would therefore violate preservation of norm compliance.

The transition relation −→ on normative states n is the smallest
relation induced by the two transition rules defined above.

We define an agent A = 〈S0,Dec(Act, S, T )〉 where S0 ⊆ S
is a non-empty set of initial states and Dec is an abstract agent
decision mechanism. We define the normative agent semantics for
an agent as the set of all normative traces that can be derived from
the initial states using the normative transition system. To this end
we transform initial agent states into initial normative states.

DEFINITION 5. (Initial Normative States) Let s be a state and
N a set of norms. An initial normative state of s, denoted as init(s),
is a tuple 〈s, aux, ε〉 where aux is a set of auxiliary atoms for which
〈s, aux, ε〉 |= NPTR, and ε 6∈ Act is a special “empty” action.

There are multiple initial states, for example representing differ-
ent ways in which present time rules with more than one auxiliary
atom in their rhs can be satisfied. An initial normative state does
not always exist for any initial agent state – it may not be possi-
ble to create one that satisfies present time rules. The following
proposition captures when an initial normative state exists.

PROPOSITION 1. We use lit− to denote the set of negative lit-
erals. Let N be a set of norms where for each r ∈ NPTR it holds
that r has a disjunct l′ ∈ lit−(Act) ∪ Ataux in its right hand side.
Then for any state s ∈ S there is an initial normative state init(s).

Proof: Consider a present time rule φ ⇒ ψ. If s 6|= φ, the result
trivially holds. If s |= φ, either there is a negative action literal in
ψ which holds in all init(s) or there is an auxiliary atom w in ψ in
which case there is an init(s) = 〈s, aux, ε〉 where w ∈ aux. 2

A trace in the normative agent semantics is a sequence of nor-
mative states where each consecutive state can be derived from the
previous state through the transition rules defined above. If no tran-
sition can be derived then a special action stop is inserted that
changes neither the agent state nor the auxiliary atoms. stop is
thus different from wait, which allows changes to auxiliary atoms.

DEFINITION 6. (Normative Agent Semantics)
Let N be a set of norms and A = 〈S0,Dec(Act, S, T )〉 be an

agent. A trace from state s in the normative transition system,
typically denoted by t and referred to as a normative trace, is an
infinite sequence of normative states n0, n1, n2, . . . such that n0

is some init(s), and for each i ≥ 0 the transition ni −→ ni+1

is in the transition relation on normative states (Definitions 3 and
4), or no transition from ni = 〈si, auxi, ai〉 can be derived and
ni+1 = 〈si, auxi, stop〉 where stop 6∈ Act.

We define SN (s) as the set of all normative traces under set of
normsN starting in an initial state init(s). This set is empty if there
is no initial normative state for s. The normative agent semantics
JAKN of an agent A under set of norms N is the set of associated
normative traces starting in an initial state of A, i.e.,

JAKN =
⋃

s∈S0

SN (s)

COROLLARY 1. For each trace t ∈ JAKN , we have that the
initial state of t satisfies NPTR. Thus JAKN = ∅ iff all initial nor-
mative states violate present time rules NPTR.

Proof: Immediate from the definition of an initial normative state
(Definition 5) and SN (Definition 6). 2

In contrast with [32], the normative agent semantics in this paper
only yields infinite traces. The former yields finite traces if the
agent cannot progress or would violate a norm. Besides yielding a
more elegant semantics, it is required for investigating strong norm
compliance which is defined over infinite traces.

4.2 Properties
We show that the normative agent semantics satisfies the three

properties we introduced above. Preservation of the agent seman-
tics is up to prefixes for finite traces of the agent. That is, if N = ∅
and for a state s there is no transition in Dec, then the normative
semantics allows the agent to execute any action from Act5.

PROPOSITION 2. (Preservation of agent semantics) If A is an
agent andN = ∅ then for each trace t ∈ JAKN , the maximal prefix
of t for which each transition (n −→ n)� ∈ Dec, is a trace of A.

Proof: Immediate from the fact that Definition 4 can only be ap-
plied if Definition 3 does not. If N is empty then norms do not
impose constraints on the derivation of transitions from Dec. 2

We define that a trace weakly complies with a set of norms if all
non-stop transitions comply with norms.

DEFINITION 7. (Weak norm compliance) A normative trace t
weakly complies with a set of norms N iff all non-stop transitions
n −→ n′ (i.e., where n′ is of the form 〈s′, aux′, a′〉 and a′ 6= stop)
in t satisfy N . An agent A weakly complies with set of norms N iff
for all t ∈ JAKN we have that t weakly complies with N .

Defining weak norm compliance by referring only to non-stop
transitions is justified because stop occurs iff the transition does
not comply with norms. The inclusion of wait ensures that this
proposition holds because it prevents the semantics deriving a stop
transition just because no executable actions are available.

PROPOSITION 3. (Stop signals norm violation) Let A be an
agent and N a set of norms. Then a transition n −→ n′ on a trace
t ∈ JAKN is a stop transition (i.e., of the form 〈s, aux, a〉 −→
〈s, aux, stop〉) iff n −→ n′ 6|= N .

Proof: Follows because a stop transition can only be derived iff
no norm compliant transition exists by Definition 6. 2

PROPOSITION 4. The normative agent semantics is weakly
norm compliant. That is, for any agent A and set of norms N ,
it holds that A weakly complies with N .

Proof: The transition rules of Definitions 3 and 4 only allow the
derivation of transitions that comply with norms. Weak compliance
only concerns those transitions. 2

PROPOSITION 5. (Preservation of norm compliance) LetA be
an agent, N a set of norms and n = 〈s, aux, a〉 a state on a trace
t ∈ JAKN . If there is a normative state n′ = 〈s′, aux′, a′〉 such
that T (a′, s) = s′ and n −→ n′ |= N then there is a normative
state n′′ such that n −→ n′′ is a norm compliant transition in t.
5The semantics could be adapted so that, in this situation, only
wait transitions were be selected if no transition from Dec were
available, but we do not do that here for reasons of simplicity.
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Proof: If n −→ n′ can be derived by Definition 3 we are done.
Otherwise if T (a′, s) = s′ it can be derived by Definition 4 which
encompasses all other norm compliant transitions in T . 2

In summary, we have obtained the following insights regarding
the definition of a semantic framework for socially adaptive agents
targeted at strong norm compliance:

• Preservation of norm compliance requires a weaker form of
action insertion than proposed in [32] because satisfying
norms may require progression without explicitly requiring
the execution of an action.

• A consequence of using a weaker form of action insertion is
that preservation of the agent semantics can only be proven
up to maximal prefixes. That is, if N = ∅ and according
to Dec the agent would terminate at some point, according
to the normative agent semantics the agent would continue
executing actions if possible. In [32] it was shown that the
stronger action insertion rule yields exact preservation of the
agent semantics, i.e., not only up to maximal prefixes.

• Defining weak norm compliance over infinite traces requires
distinguishing norm compliant transitions that do not change
the agent state (e.g., wait) from those that violate norms
(stop). Intuitively, this highlights that there is a difference
between refraining from doing an action in order to avoid
norm violation (if certain actions are forbidden) and abort-
ing the execution of the agent. The former is ok from the
perspective of strong norm compliance, while the latter is
problematic.

5. STRONG NORM COMPLIANCE
Weak norm compliance expresses that if the agent can derive a

transition through the transition rules of Definitions 3 or 4, the tran-
sition is norm compliant. We argue that this notion is too weak to
model what one would intuitively consider to be a norm compli-
ant agent. Consider a robot in a care facility that is required by
the family to leave the patient’s room immediately when the family
enters, and it is required by the physician to hold a device immedi-
ately when s/he asks it to do so. Now assume the family comes in
and the physician asks it to hold a device. The robot can stop and
be weakly norm compliant. However, from the perspective of the
family and the physician, if the robot stops it violates both norms.

We introduce a strong notion of norm compliance to reflect this
intuition. We define that an agent strongly complies with norms
when all transitions on all traces of the agent satisfy the norms, and
there is at least one such trace. The set of traces is empty iff all
initial states of the agent violate present time rules (Corollary 1).

DEFINITION 8. (Strong Norm Compliance)
A normative trace t strongly complies with a set of norms N iff all
transitions n −→ n′ in t satisfy N , i.e., n −→ n′ |= N . An agent
A strongly complies with a set of norms N iff there is a transition
t ∈ JAKN and for all t ∈ JAKN , t strongly complies with N .

COROLLARY 2. Strong compliance implies weak compliance,
i.e., if an agent A strongly complies with a set of norms N then A
weakly complies with N .

In contrast with weak norm compliance, not all agents are strongly
norm compliant with any set of norms. In our example above
whereN contained family⇒©(done(leave)) and requestHold⇒
©(done(hold)), when both family and requestHold are satisfied,

no norm compliant transition can be derived and the semantics in-
troduces the stop transition. This transition does not comply with
these step rules, and thus the robot is not strongly norm compliant.

Weak and strong norm compliance differ only with respect to
the evaluation of stop transitions. Thus the traces of strongly norm
compliant agents do not have stop transitions. This corresponds
with the intuition that to be strongly norm compliant, agents should
not be allowed to abort to prevent norm violation.

In this section we explore semantic characteristics of strong norm
compliance from three perspectives. We provide a logical charac-
terization of when a strongly norm compliant agent exists (Section
5.1), we provide a semantic characterization of strong norm com-
pliance (Section 5.2), and based on this show that certain subclasses
of norms ensure strong norm compliance (Section 5.3).

5.1 LTL Satisfiability
In this section we investigate how strong norm compliance re-

lates to satisfiability of particular LTL expressions. Intuitively,
strong norm compliance corresponds to satisfaction of norms ex-
pressed as LTL formulas. We investigate whether our semantics
and notion of strong norm compliance indeed satisfy this property.

To this end, we define how normative states in our semantics can
be translated to LTL states, and based on this how normative traces
can be translated to LTL traces. LTL states consist of a valuation
over the propositions in the language over which formulas are de-
fined. In our case this means that for each atom, auxiliary atom, and
action, either the atom or its negation is part of the state. Normative
states can then be constructed from LTL states straightforwardly.

DEFINITION 9. (Normative trace to LTL trace and vice versa)
The function ns2ltl(n) for some normative state n = 〈s, aux, a〉
yields an LTL state consisting of the set of literals l where l ∈
lit(At) and s |= l, auxiliary atoms w for w ∈ aux, and negated
auxiliary atoms ¬w for w ∈ Ataux \ aux, positive action literal
done(a) as well as ¬done(a′) for any a′ ∈ Act with a′ 6= a.
The function nt2ltl(t) transforms a normative trace t that does not
include stop to a normative LTL trace by applying ns2ltl to each
state on the trace. The space of normative LTL traces consists of se-
quences of states defined over At, Ataux, and actions Act∪{wait}.
Similarly, the functions ltls2n(n) and ltlt2n(t) transform an LTL
state and trace to a normative state and trace.

Because states are complete, for any ns2ltl(n) and atom p ∈ At we
have that either p ∈ ns2ltl(n) or ¬p ∈ ns2ltl(n). This is required
for construction of an action transition function T from a trace.

One may expect that strong norm compliance corresponds to sat-
isfiability of the set of norms N . However, it is not enough to
consider only the set of norms. Our semantics adds a number of
constraints on traces: no action has been executed in initial states
(init); precisely one action at a time can be executed, which means
that only one atom of the form done(a) can hold in a state (Single);
and at least one must hold (Do). Finally, the action wait does not
change the state expressed over atoms (Wait). Below we describe
these properties as LTL formulas.

1. init ≡
(∧

a∈Act ¬done(a)
)
∧ ¬done(wait)

2. Single ≡ 2
(∧

a1,a2∈Act ¬
(
done(a1) ∧ done(a2)

))
3. Do ≡ 2

(
¬init→

∨
a∈Act∪{wait} done(a)

)
4. Wait ≡ 2

(∧
p∈At(p ∧©(done(wait))→©(p)

)
5. Nspec ≡

∧
r∈N 2(r)

We prove that a formula representing the norms as well as the
constraints on initial states and execution of actions is satisfiable iff
there is an agent that strongly complies with these norms.
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THEOREM 1. (Satisfiable norms) Let N be a set of norms de-
fined over a set of atoms At, set of auxiliary atoms Ataux, and ac-
tions Act. We then have that init ∧ Single ∧ Do ∧ Wait ∧ Nspec

is satisfiable iff there is an action transition function T and set
of initial states S0 such that an agent A = 〈S0,Dec(Act, S, T )〉
strongly complies with N .

Proof: (Sketch) (⇒) Assume init ∧ Single ∧ Do ∧ Wait ∧ Nspec

is satisfiable. We can construct the appropriate agent from a trace
that satisfies this formula using ltls2n to define the transitions in T .

(⇐) Because some agent, A, strongly complies with norms we
know that there is a strongly norm compliant trace t ∈ JAKN and
thus a strongly compliant normative LTL trace nt2ltl(t). This trace
satisfies Single ∧ Do ∧Wait ∧Nspec. 2

5.2 Characterizing Strong Norm Compliance
In this section we provide a characterization of strong norm com-

pliance by showing that an agent strongly complies with norms iff
there are no states n on any trace of the agent that are in conflict
with respect to the agent’s norms and transition function. This
yields a deeper understanding of the notion of strong norm com-
pliance by identifying precisely when a problem occurs, and it pro-
vides the basis for identifying subsets of norms for which all agents
are strongly norm compliant.

We say that a normative state is in conflict when all possible ways
in which the agent could potentially progress to a next state are
in conflict. To capture what it means to “potentially progress to a
next state”, we introduce the notion of a Potential Normative Future
(PNF). The idea of a PNF is that it captures two states that could be
paired by the transition system in a way that satisfies all those parts
of the norms that do not explicitly restrict the actions that may be
taken. A PNF is a tuple 〈s′, aux′, A〉 where s′ and aux′ represent
the agent state and auxiliary atoms of the potential next state, andA
is a set of action literals that represents the constraints that norms
place on the actions that may be executed for this potential next
state. The definition of a PNF is independent of T . It implicitly
assumes that any state can transition to any other.

DEFINITION 10. (Potential Normative Future) Let N be a set
of norms and n = 〈s, aux, a〉 a normative state. A potential nor-
mative future (PNF) of n is a tuple 〈s′, aux′, A〉 where s′ ∈ S is a
state, aux′ ⊆ Ataux is a set of auxiliary atoms and A ⊆ lit(Act) is
a set of action literals such that:

1. ∀r = φ ⇒ ψ ∈ NPTR: if s′ |= φ then ∃l ∈ ψ : l ∈ aux′ or
∃l ∈ ψ : l ∈ A, and

2. ∀r = φ⇒©ψ ∈ NSR: if n |= φ then ∃l ∈ ψ : l ∈ aux′ or
∃l ∈ ψ : l ∈ A

Note that A may contain additional action literals not required by
the norms. This is required for the proof of Lemma 1.

As an example consider the states s1, s2 such that
s1 |= φ and the norms we generated for 2(φ →
(done(a1) before done(a2))) in section 3.2. Then the potential
normative futures for some normative state 〈s1, {w}, a〉 include
〈s1, {w}, {¬done(a2)}〉, 〈s1, ∅, {done(a1),¬done(a2)}〉 and
〈s2, {w}, {¬done(a2)}〉. They also include “impossible” fu-
tures such as 〈s1, {w}, {done(a2),¬done(a2)}〉 – the only
requirement is that all literals required by the norms be present.

We now define a notion of a conflicted normative state. We iden-
tify three possible causes of conflict: (i) the norms require the agent
to perform an action that it cannot perform (practical conflict), (ii)
the norms require the agent to do an action that is forbidden by an-
other (prohibition conflict), or (iii) the norms require the agent to

do multiple actions at the same time (obligation conflict). The latter
two are together called a normative conflict. A PNF is in conflict if
it is in practical or normative conflict.

DEFINITION 11. (Normative State in Conflict) Let N be a set
of norms, T be a transition function, and n = 〈s, aux, a〉 a norma-
tive state, and let pnf = 〈s′, aux′, A〉 be a PNF of n wrt. N .

• We say that pnf is in practical conflict with T iff there is an
action a such that done(a) ∈ A and there is no done(a) ∈
A : T (a, s) = s′.

• We say that pnf is in normative conflict iff ∃a, b : a 6= b
and done(a), done(b) ∈ A (obligation conflict), or ∃a :
done(a),¬done(a) ∈ A (prohibition conflict).

We say that a PNF is in conflict with T if it is in practical conflict
with T or in normative conflict. We say that a normative state n
is in conflict wrt. set of norms N and action transition function T
iff all PNFs of n with respect to N which contain positive action
literals are in conflict with T .

Where T and N are obvious from the context we will say that,
respectively, a PNF is in conflict or a normative state is in conflict.

COROLLARY 3. Let pnf = 〈s′, aux′, A〉 be a PNF of n with
respect to N . Then the following holds: if there is no action a such
that done(a) ∈ A, then pnf is not in conflict with any T .

To prove the theorem that an agent strongly complies with norms
iff none if its traces contain conflicting normative states, we first
prove a lemma that shows that a transition n −→ n′ complies with
norms iff there is a non-conflicting PNF of n.

LEMMA 1. (Norm-compliance and non-conflicting PNFs) Let
N be a set of norms, n a norm compliant state, and n −→ n′ with
n′ = 〈s′, aux′, a′〉 be a transition for an agent A with transition
function T . Then n −→ n′ |= N iff there is a PNF 〈s′, aux′, A〉 of
n that contains a positive action literal and that is not in conflict.

Proof: (Sketch) (⇒) We construct a non-conflicting PNF,
〈s′, aux′, A ∪ {done(a′)}〉, by examining the RHS of all appli-
cable normative rules. If the RHS contains an auxiliary atom it is
placed in aux′ otherwise it is placed in A. It is simple to prove that
this PNF is not in conflict.

(⇐) We assume there is a potential normative future pnf =
〈s′, aux′, A〉 for n = 〈s, aux, a〉, which is not in conflict and which
contains a positive action literal, done(a′). Since done(a′) ∈ A
then T (a′, s) = s′ We show that n −→ 〈s′, aux′, a′〉 |= N which
follows simply from the fact that pnf is not in conflict. 2

We prove that an agent strongly complies with norms iff there
are no conflicting states.

THEOREM 2. An agent A = 〈S0,Dec(Act, S, T )〉 strongly
complies with a set of norms N iff there is no normative state n on
some trace t ∈ JAKN that is in conflict.

Proof: (⇒) Assume that an agent A strongly complies with a set
of norms N . This means that all transitions n −→ n′ on all traces
t ∈ JAKN satisfy N . Then by Lemma 1 we know that n has a PNF
that contains a positive action literal and is not in conflict, which
means that n is not in conflict.

(⇐) Assume that there is no normative state n on some trace
t ∈ JAKN that is in conflict. Then for all states n there is a
PNF 〈s′, aux′, A〉 of n that contains a positive action literal and
is not in conflict. Then by Lemma 1 we know that there is an
n′ = 〈s′, aux′, a′〉 such that n −→ n′ |= N . By Proposition 5
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we know that there is a transition, n −→ n′′ on a trace t ∈ JAKN
and n −→ n′′ |= N . Therefore there is a norm-compliant transi-
tion from all states n on all traces t, and if there is a norm-compliant
transition from some state n then all transitions from n on all traces
are norm compliant (since stop means no norm-compliant transi-
tion was possible). Hence A strongly complies with N . 2

5.3 Safe Norms
In this section we analyze a number of subsets of norms for

which any agent A is strongly norm compliant. This means by
Theorem 2 that there can be no normative state of any A that is in
conflict. We call these “safe” norms. The first proposition consid-
ers step rules with only negative action literals in the rhs.

PROPOSITION 6. Let N be a set consisting only of step rules
of the form φ ⇒ ©¬done(a). Then any agent strongly complies
with N .

Proof: Immediate from Corollary 3. 2

Proposition 7 concerns step rules that oblige the execution of an
action in the next state. Such norms cannot give rise to a conflict
when the lhs of the norm implies the precondition of the action
(ought implies can), which means that whenever the norm is ap-
plicable, the action can be executed. To prevent two actions being
obliged at the same time, the lhs of these rules are defined to be mu-
tually exclusive. This is formalized in the following proposition.

PROPOSITION 7.
Let T be an action transition function and letN be a set consist-

ing only of step rules of the form φ⇒©done(a) such that:

• for all φ ⇒ ©done(a) ∈ N : if s |= φ, then T (a, s) is
defined (ought implies can), and

• for any two norms φ ⇒ ©done(a) ∈ N and
φ′ ⇒ ©done(a′) ∈ N we have |= φ ⇒ ¬φ′ (mutually
exclusive lhs).

Then we have that any agent A with action transition function T
strongly complies with N .

Proof: We have to show that none of the states on traces of A are
in conflict. This is simple to show from the fact that at most one
rule is applicable in any state. 2

We note that the implication does not hold in the other direction.
If an agent strongly complies with norms consisting of step rules
of the form φ ⇒ ©done(a), this does not mean that these have
to follow ought implies can nor that the lhs have to be mutually
exclusive. For example, if the agent can avoid states where the
lhs of these rules hold, then they are never applicable. If the lhs
of these rules can be satisfied in initial states, which means they
should not include positive action literals, and the initial states of
the agent A = 〈S0, 〈Act, S, T 〉〉 are complete (i.e., S0 = S), then
the proposition holds in both directions.

The next proposition considers norms of the form introduced in
Section 3.2 where an action has to be executed before another one.

PROPOSITION 8. Let N be the SNF rules corresponding to a
set of norms of the form φ ⇒ (done(a1) before done(a2)). Then
any agent A strongly complies with N .

Proof: The SNF rules for norms of this form were presented in
Section 3.2. Consider a state n where both φ and w hold for all
rules of this form, i.e., all norms are applicable. If there is no such
state, similar reasoning applies for subsets of N . The question is

now whether a conflict occurs in such a state. These norms can be
satisfied (i.e., a PNF can be constructed accordingly) by not exe-
cuting actions a2 and satisfying w, because even if all actions from
Act are included in these norms, the agent can execute wait to get
to the next state in a norm compliant way. Thus a non-conflicting
PNF 〈s′, aux′, A〉 of n is one where the action set A consists of
negative action literals for all actions a2, aux′ is the set of auxiliary
atoms w occurring in these rules, and s′ is the result of executing
some executable action from Act∪ {wait} such that no norms are
violated (and we know this exists due to wait). Therefore n is not
in conflict, and we are done. 2

We note that while any agent with these norms is strongly norm
compliant, it may be so because it continues to execute wait and
thus postpone the execution of done(a2). If we require that a2 is
executed eventually, then assumptions on T have to be introduced
to ensure that a2 can be executed. These “sometime” rules that
require that an action is eventually executed take us out of the next
fragment of LTL, and so are not considered in this paper.

6. CONCLUSION AND FUTURE WORK
If we want to ensure that an agent can follow norms in a range of

different scenarios where norms may change at run-time, we can-
not pre-program all such possible normative behaviours at design
time. For this reason we propose a formal semantic framework that
specifies an execution mechanism for socially adaptive agents that
can adapt their behavior to comply with newly adopted norms at
run-time.

Whether an agent can comply with norms is determined by the
interplay between execution semantics, norms, and agent capabili-
ties.6 To arrive at a fundamental understanding of how the combi-
nation of these elements affects norm compliance we have provided
a formal specification for them, and in doing so have made choices
in defining the normative agent semantics, the language of norms
and our notion of compliance. We have argued why these choices
were made, and we have shown how these choices resulted in sat-
isfaction of relevant properties of the resulting framework.

In summary, this paper provides the following main contribu-
tions: i) a set of properties that a normative agent semantics should
satisfy, ii) a declarative normative agent semantics with proofs that
the properties are satisfied, iii) a definition of strong norm compli-
ance with an exploration of its semantic characteristics. In partic-
ular we provide a logical characterization, a semantic characteriza-
tion, and an exploration of safe norm sets.

In future work we plan to explore other choices for defining
a framework and how they affect norm compliance. In particu-
lar, extensions of the language of norms, such as larger fragments
of SNF, and alternative notions of norm compliance, such as the
bounded norm compliance corresponding to bounded rationality.
We also aim to investigate the effect of complying with norms on
goal achievement (see also [21]), and studying how an agent can
comply with norms with minimal effort. Finally, we will explore
how this framework can be integrated with techniques for reason-
ing about norm violation, working towards a comprehensive frame-
work for normative agents.
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