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ABSTRACT

Norms have been extensively studied to coordinate multi-agent sys-
tems, and the literature has investigated two general approaches to
norm synthesis: off-line (synthesising norms at design-time) and
on-line (run-time synthesis). On-line synthesis is generally recog-
nised to be appropriate for open systems, where aspects of the
system remain unknown at design-time. In this paper we present
LION, an algorithm aimed at synthesising /iberal normative sys-
tems. LION’s normative systems respect the agents’ autonomy to
the greatest possible extent, constraining their behaviour when only
necessary to avoid undesirable system states. LION’s norm synthe-
sis is also driven by the need to construct compact normative sys-
tems. The key to the success of LION in this multi-objective synthe-
sis process is that it learns about and exploits norm synergies. More
precisely, LION can learn when norms are either substitutable or
complementary. We show empirically that LION significantly out-
performs the state of the art by synthesising normative systems that
are more liberal while maintaining representation compactness.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
—Multiagent Systems

General Terms
Algorithms
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1. INTRODUCTION

Norms have been extensively studied as a technique for coordi-
nating interactions within multi-agent systems (MAS) [6,4]. How-
ever, computing a normative system (i.e., a set of norms) that will
effectively coordinate a multi-agent system has been identified as a
computationally complex (NP-hard) problem [21]. Two general ap-
proaches to the design of norms have been investigated in the liter-
ature: off-line [21},[7|1] (design time synthesis) and on-line 17,18,
8L115113]] (run-time synthesis). It is generally recognised that on-line
synthesis is better suited than off-line synthesis for open systems,
where aspects of the system (such as the system state space or the
range of possible agent behaviours) are unknown at design-time.
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Recent research on on-line synthesis has focused on norm emer-
gence [20l 191 [9} 23], which considers that agents collaborate to
synthesise their own norms. However, this line of research makes
several strong assumptions, namely that agents will participate in
the norm synthesis process, and will have the appropriate compu-
tational capabilities to synthesise norms. These assumptions are
not required in a family of alternative on-line norm synthesis ap-
proaches [11, [12| [13|] that synthesise normative systems from the
observation of agents’ interactions. On the one hand, they synthe-
sise norms that are effective to avoid undesirable states of a MAS
(i.e., conflicts) as long as agents comply with them. On the other
hand, they aim at avoiding over-regulation by preserving only those
norms that are necessary to avoid such conflicts. Based on [[11], the
IRON [12] and SIMON [13]] systems focus on synthesising compact
normative systems. Compactness is concerned with minimising
both the number of norms that are given to the agents as well as
their norm reasoning computational effort. With this aim, they per-
form norm generalisations that represent several (specific) norms
by means of general (abstract) norms. The normative systems that
result have fewer and more general norms (and thus, easier to rea-
son about) than [11]]. In particular, SIMON proved to be the best-in-
class approach, outperforming IRON in terms of compactness.

However, even though IRON and SIMON minimise the number
of norms, they do not take into account agents’ actual freedom, a
key synthesis criterion that considers how norms constrain their be-
haviour. This is so because a general norm (such as, for example,
“give way to any approaching car” in a traffic scenario), represents
several specific norms (“give way to left”, “give way to right”, etc.)
which together restrict agents’ behaviour to a high extent. There-
fore, the smaller the number of constraints in a normative system,
the greater freedom for the agents. Along this line of preserving
autonomy, the work in [7]] proposes to minimise the number of con-
straints that agents are required to obey. Additionally, the work in
[1] introduces liberality as a relationship between normative sys-
tems. It states that a normative system €2 is more liberal (less re-
strictive) than another one €’ if it places fewer constraints on the
agents. Thus, following the traffic example, we can state that a nor-
mative system with a “give way to left” norm is more liberal than
one with a norm “give way to any approaching car”.

Aiming at synthesising liberal normative systems without com-
promising compactness, we present LION (L/beral On-line Norm
synthesis). Based on [13], LION aims at synthesising normative
systems that (i) avoid undesired states (i.e., conflicts) in a system;
(i1) minimise the number of norms; and (iii) maximise agents’ free-
dom (i.e., autonomy) by minimising the number of imposed con-
straints. The key to the success of LION in this multi-objective syn-
thesis process is that it learns about and exploits norm synergies.
More precisely, LION can learn when norms are either substitutable



or complementary. Substitutability and complementarity [16l [10]
are well-known concepts in economics that apply to a wide range
of domains [2|25][22]. While two substitute goods may replace one
another in use, complementary goods are better used together. By
considering such relationships, LION outperforms SIMON in terms
of liberality without compromising criteria (i) and (ii). In 96% of
our simulations using a simple traffic domain LION synthesised nor-
mative systems that contained, on average, 90% fewer substitutabil-
ity relationships than those synthesised by SIMON.

The remainder of this paper is organised as follows. Section 2]
provides the necessary background about previous norm synthe-
sis approaches. Next, Section[3]introduces concepts used in LION,
which is presented in Section [l Section [3] reports our empirical
evaluation and Section[6] concludes the paper.

2. BACKGROUND

As previously introduced, the work reported in [[11}, 12} [13]] con-
stitutes a family of on-line norm synthesis approaches that synthe-
sise normative systems from the observation of agents’ interactions.
In what follows, we present the key concepts of SIMON [13]], which
proved to be the best-in-class approach.

Briefly, SIMON synthesises norms by continuously monitoring a
system at runtime, searching for undesirable states (which we re-
fer to as conflicts). Whenever a conflict arises, it proposes a new
norm (aimed at avoiding the conflict in the future) and provides
the updated set of active norms to the agents. Agents can then
decide whether to comply or not with those norms that apply to
them at each time step. Norm fulfilment/infringement decisions
may have effects in terms of future conflicts. SIMON gathers this
information as norm performance is evidenced (i.e., if they where
effective/necessary to avoid conflicts). Norm evaluation can then
be used to refine the normative system by (i) generalising well-
performing norms that can be represented in a more compact man-
ner, and (ii) discarding (or specialising) under-performing norms.

SIMON considers a system populated by a set of agents Ag that
can perform a set of actions Ac C L a4. The context of an agent is a
formula of a first-order logic language £ 4,4 that describes the local
perception of that agent (i.e., the agent’s own point of view). Laq
is composed of first-order predicates p(71,...,7n), wWhere p is a
predicate symbol and 71, . .., 7, are terms of L£44. A norm is then
defined so that it will apply to an agent whenever the context of that
agent satisfies the precondition of the norm. Specifically, norms
are of the form (i, f(ac)), where ¢ is the norm’s precondition and
0(ac) its post-condition (where ¢ is a formula of £ 44, 6 is a deontic
operator such as a prohibition, and ac € Ac). We say 6(ac) holds
for any agent whose context satisfies . Furthermore, we say a
norm is specific iff all its terms are grounded.

SIMON keeps synthesised norms as nodes in a directed graph
data structure called the Normative Network (NN ), so that it repre-
sents current normative system 2 as its set of active norms. More-
over, edges in SIMON’s NN stand for norm generalisation relation-
ships. SIMON creates general norms that compactly represent spe-
cific norms. Generalisation may lead to over-generalisations that
will be backtracked by specialization whenever one of the specific
norms under-performs.

In order to illustrate these concepts, we introduce a traffic exam-
ple scenario in which ambulance, police represent different types
of emergency vehicles; car, motorbike describe private vehi-
cles; and any represents both emergency and private terms. Fig-
ure[Th depicts a normative network composed of four specific active
norms n : “Give way to ambulances”, nz : “Give way to police”,
na : “Give way to cars”, and n4 : “Give way to motorbikes”. Since
ambulances and police cars are both emergency vehicles, SIMON
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Figure 1: Generalisation of norms n1, n2, n3, N4, ns, Ne.

will create a general norm ns : “Give way to emergency vehicles”
to represent (and establish a generalisation relationship with) n
and ng. Similarly, a new general norm ne : “Give way to private
vehicles” will generalise norms ns, n4, which in turn will lead to
the creation of a new norm n7 : “Give way to any vehicle” with the
highest generalisation level. Figure [Ib shows the resulting norma-
tive network, where = {n~}. Afterwards, in case n1 underper-
forms, SIMON will deactivate n1, ns, ny and will activate na, ne SO
that the normative system becomes updated (2 = {n2, ns}).
Generalisation thus provides representation compactness but, as
introduced in Section [I general norms can represent an arbitrary
number of constraints (i.e., specific norms) and, in particular, some
of them may not be required to avoid conflicts. Thus, generali-
sations may over-constrain the system, restricting the freedom of
agents. Indeed, in [[13] SIMON was employed to synthesise norms
and this was the case. There, a slightly different traffic scenario was
used, where each car described its perceptions by means of predi-
cates left, front, right, each predicate containing one term out of
{car-to-left, car-to-right, car-same-heading, wall, nil, any}.
The first three terms represent a car heading in different direc-
tions with respect to the reference car, term wall represents the
perception of a wall, nil means that a car does not perceive any-
thing, and any stands for car, wall or nil. Table [l shows sI-
MON’s most-frequently synthesised normative system, which was
obtained by executing SIMON’s publicly available code [14]. This
normative system resulted in 90% of the tests and proved to avoid
collisions when norms were fulfilled just by having five explicit
general norms. Nevertheless, this compact normative system im-
plicitly represents (i.e., includes) 18 different constraintd] and not
all of them are really required. In fact, n, represents a general
norm of giving way to the left (that is, a car should stop whenever
it perceives a car to its left, and no matter what it perceives to its
front and right positions) and n; is a general norm to give way to
the righﬂ. It is worth noticing that n, does not generalise n, nor
the other way around, and thus they are not related from SIMON’s
point of view. However, although they are neither syntactically re-
lated, if we could go a step further and consider semantics, then we
could infer that the normative system could still prevent collisions
by just having one of these two norms. Therefore, there is room for
finding an alternative normative system that is more liberal (poses
fewer constraints to agents) than that obtained by SIMON.
Nevertheless, removing constraints from a normative system is
not straightforward, since norm synergies within the normative sys-
tem need to be taken into account. In the previous example from
Table[Tl specific norms n, and n, can replace one another, and thus
we say they are substitutable. However, the proper performance of
some specific norms may depend on the existence of other specific
norms. If this is the case, then we say that these specific norms
complement each other: they are complementary. Furthermore,

lNolice that the addition of #Constr. column in Table [l results in 28, but several
general norms generalise to the same specific norm.

2The remaining norms n.,nq4,Ne €nsure a car stops whenever it perceives a car
ahead with different headings.



Norm Pre-condition (6) Norm target | #Constr.
Na left(car-to-right), front(any), right(any) prh(Go) 6
ny left(any), front(any), right(car-to-left) prh(Go) 6
Ne left(any), front(car-same-heading), right(any) prh(Go) 8
ng left(any), front(car-to-left), right(any) prh(Go) 4
Ne left(any), front(car-to-right), right(any) pri(Go) 4

Table 1: A typical SIMON’s normative system upon convergence,

along with the number of constraints each norm represents.

there may be substitutable norms that are complementary to others,
and this should be considered when discarding norms if we want to
preserve the effectiveness of the normative system (i.e., its perfor-
mance in avoiding undesired states).

We thus conclude that SIMON’s normative systems are overcon-
strained, but that aiming at synthesising more liberal normative sys-
tems amounts to managing norm synergies in this multi-objective
synthesis process. More precisely, substitutability and complemen-
tarity relationships between specific norms need to be successfully
learned and exploited.

3. CHARACTERISING NORM SYNERGIES

This section formally characterises the notion of synergies be-
tween norms. In particular, we focus on two types of norm syn-
ergies: substitutability and complementarity. On the one hand, we
consider that two norms are substitutable if they satisfy the same
regulatory requirements and, therefore, can be used to replace one
another. On the other hand, we consider that two norms are com-
plementary if they are better when used together instead of sep-
arately. Next, in section [3.1] we provide some preliminary defini-
tions, while in section[3.2l we provide the formal characterisation of
both norm relationships. Finally, we also discuss the relationship
between complementarity, substitutability, and generalisation.

3.1 Preliminary definitions

Our basic definitions follow those of [13]] presented in Section2l
Thus, we consider a multi-agent system composed of a set of agents
Ag; a set of actions Ac = {aci,...,acm } available to the agents;
a set S of states of the system, where a state s is a set of ground
atomic formulae from £ 44; and a set C C S of undesirable states.
The set of active norms is made available to the agents as a norma-
tive system (e.g., Table[T).

Furthermore, we consider a state transition function T : S X
Ac491 S that leads the MAS to a state s’ from a state s af-
ter the agents perform a collection of actions A C Ac49!. We
will denote a transition from a state s to a state s’ after the perfor-
mance of A by (s, A, s"). For convenience, Ac includes a special
action nil that stands for not performing any action. Then, given
a transition (s, A, s), function action : Ag X S x S — Ac re-
turns the action that an agent performed during the transition. We
assume each agent has its own perception of the MAS it is part
of. Such perception is a partial representation of the MAS from
the agent’s local point of view. Thus, we consider that an agent
ag perceives the MAS at a state s by means of its local function
context ¢ : Ag x S — P(Lagy), which returns a set of predicates
with terms of language £ 4,. Besides, we will also consider that an
agent can tell what other agents it can perceive. This is captured by
the scope function sc : Ag x S — P(Ag), which returns the set of
agents that an agent perceives at a given state. When an agent ag’
is in the scope of agent ag, we say that ag’ is detected by ag.

We now introduce the core concepts of norm fulfilment and norm
infringement. We first establish when a norm applies: (¢, 6(ac))
applies to agent ag at state s if the agent’s local context c(ag, s)
satisfies the precondition of the norm, namely iff c¢(ag,s) = .
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Let there be (¢, 0(ac)) which applies to agent ag at state s, and a
transition (s, A, s'); we then say that the agent fulfilled the norm
during the state transition if either it did not perform an action pro-
hibited by the norm or it performed an action obliged by the norm.

DEF. 1 (NORM FULFILMENT). Let s € S be a state, ag €
Ag an agent, and n = (i, 0(ac)) be a norm that applies to ag at s.
We say that ag fulfilled norm n during a transition (s, A, s') when
either: (i) 6 = prh and action(ag, s,s’) # ac; or (ii) 0 = obl
and action(ag, s,s') = ac.

As a dual concept to norm fulfilment, we consider that an agent
infringed a norm during a state transition if it performed an action
that the norm prohibited or it did not perform an action that the
norm enforced.

DEF. 2 (NORM INFRINGEMENT). Let s € S be a state, ag €
Ag an agent, and n = {p,0(ac)) a norm that applies to ag ar s.
We say that ag infringed norm n during a transition (s, A, s') when
either: (i) 0 = prh and action(ag, s,s’) = ac; or (ii) 0 = obl
and action(ag, s, s') # ac.

Next, we provide our formal characterisation of norm synergies.

3.2 Substitutability and complementarity

As mentioned above, two norms are substitutable if they satisfy
the same regulatory needs and, therefore, can be used to replace one
another, whereas two norms are complementary if they perform
better when used together. Therefore, in order to assess whether
any of these two relationships holds between a pair of norms, we
will have to assess the difference in outcome between the fulfilment
of the two norms at the same time and their individual fulfilments.
Thus, substitutability between two norms will hold when the con-
current fulfilment of the two norms avoids undesired states, but also
does the individual fulfilment of any of the two norms (while the
other one is infringed). By contrast, complementarity between two
norms will hold when only the concurrent fulfilment of both norms
avoids undesired states, whereas the individual fulfilment of any of
the two norms does not.

However, before formalising substitutability and complementar-
ity we need to establish when two norms concurrently apply. First,
we consider the notion of joint context. We say that two agents
share a joint context in a given state if they can detect (perceive)
one another. Formally,

DEF. 3 (JOINT CONTEXT). Lets € S be a state, and ag,ag’ €
Ag two agents with contexts c(ag, s), c(ag’, s) and scopes sc(ag, s),
sc(ag’, s). We say that (c(ag, s),c(ag’, s)) is a joint context shared
by the agents iff ag’ € sc(ag,s) and ag € sc(ag’, s).

Then, when two agents share a joint context and there are two
norms such that there is one norm that applies to each agent, we
say that the norms concurrently apply. Formally,

DEF. 4 (CONCURRENT APPLICABILITY). Lets € S be a state,
ag,ag’ € Agtwo agents that share a joint context (c(ag, s), c(ag’, s)),
and n = (p,0(ac)), ' = {¢',0'(ac")) two different norms. We
say that n, n concurrently apply in the joint context iff c(ag, s) =
pand c(ag’,s) E ¢

‘We now formalise the notion of substitutability. We notice though
that we will consider that substitutability only holds between spe-
cific norms as defined in Section @l Thus, for example, ({left
(car-to-right), front(nil), right(nil) }, prh(Go)) is a specific norm
generalised (represented) by n, in Table[Il Then, we say that two



specific norms that concurrently apply are substitutable in a partic-
ular state when only one of them is required to avoid a transition to
an undesired state. Formally,

DEE. 5 (SUBSTITUTABILITY). Let s € S be a state, C C S
a set of undesired states, and ag,ag’ € Ag two agents that share
a joint context {c(ag, s),c(ag’, s)). Let n,n’ be two different, spe-
cific norms such that n applies to ag and n' applies to ag’, and they
concurrently apply in the agents’ joint context. Let (s, A, s') be the
transition that results after ag and ag' perform actions ac € A
and ac’ € A respectively. Norms n,n' are substitutable in s iff the
following conditions hold: (i) a conflict occurs (s’ € C) when both
agents infringe their norms; and (ii) no conflict occurs (s' ¢ C)
when at least one of the agents fulfils its applicable norm.

In Section [2 we illustrated substitutability with two norms nq:
“give way to left” and n;: “give way to right”. Notice that both
norms concurrently apply together in a situation in which (i) two
cars perceive each other; and (ii) each norm applies to only one of
the cars. In this situation, collisions can be avoided by employing
only one of the norms. Therefore, employing both norms would
over-constrain the situation. We say then that both norms substitute
one another, namely they are substitutable, since any of them could
satisfactorily regulate the situation.

From the definition above, we say that two norms are substi-
tutable in a set of states if they are substitutable at each state. Con-
sider now all the states of a system where two norms concurrently
apply, we say that the two norms are fully substitutable if they are
substitutable in all those states. We notice that the substitutability
relationship is irreflexive, and symmetric, but non-transitive.

Next we formalise the notion of complementarity. We say that
two norms that concurrently apply are complementary in a particu-
lar state when the two of them are required to avoid a transition to
an undesired state. Formally,

DEF. 6 (COMPLEMENTARITY). Let s € S be a state, C C S
a set of undesired states, and ag,aqg’ € Ag two agents that share
a joint context (c(ag, s), c(ag’, s)). Let n,n’ be two different, spe-
cific norms such that n applies to ag and n' applies to ag’, and they
concurrently apply in the agents’ joint context. Say that (s, A, s') is
the transition that results after ag and ag’ perform actions ac € A
and ac’ € A respectively. Norms n,n’ are complementary in s iff
the following conditions hold: (i) a conflict occurs (s’ € C) when
at least one of the agents infringes its applicable norm; and (ii) no
conflict occurs (s’ ¢ C) when both agents fulfil their norms.

From the definition above, we say that two norms are comple-
mentary in a set of states if they are complementary at each state.
We say that the two norms are fully complementary if they are com-
plementary in all the states of the system where they concurrently
apply. Like substitutability, the complementarity relationship is ir-
reflexive, and symmetric, but non-transitive.

OBSERVATION 1. Generalisation, substitutability, and comple-
mentarity are mutually exclusive relationships.

To see this, first observe that substitutability and complementar-
ity are mutually exclusive relationships: two norms that are sub-
stitutable cannot be complementary at the same time and the other
way around. This directly follows from the conditions in definitions
and[@l Furthermore, generalisation and substitutability are mutu-
ally exclusive. This also comes from the definition of generalisa-
tion and substitutability. According to definition[3] substitutability
only holds between specific norms, whereas generalisation always
requires at least a non-specific norm. From this it follows that gen-
eralisation and substitutability cannot hold at the very same time
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between two norms. Following the same line of reasoning, since
complementarity only holds between specific norms, generalisation
and complementarity are mutually exclusive.

This observation tells us that the norm synthesis algorithm de-
scribed in [13]], which only learned generalisation relationships,
never learned any substitutability relationship nor any complemen-
tarity relationship. In the next section we show how a norm synthe-
sis process can take advantage of substitutability and complemen-
tarity relationships. The aim of our normative synthesis process
will be: (i) to exploit generalisation relationships to yield a com-
pact normative system; (ii) to exploit substitutability to disregard
over-constraining norms; and (iii) to exploit complementarity to
keep together norms that are better off together.

4. SYNTHESISING LIBERAL NORMATIVE
SYSTEMS

We now describe LION (LIberal On-line Norm synthesis), our
novel multi-objective norm synthesis mechanism. LION aims to
synthesise compact normative systems that avoid undesirable states
(i.e., conflicts) while respecting the autonomy of agents to the great-
est possible extent. The main feature of LION is that it is capable
of learning and exploiting (benefitting from) norm synergies dur-
ing the norm synthesis process. More precisely, LION identifies
when norms are either substitutable or complementary, book-keeps
these relationships between norms, and uses this knowledge (to-
gether with the generalisation relationships) to synthesise liberal
normative systems that perform well and do not compromise com-
pactness. This requires carefully handling the interplay between all
norm relationships at synthesis time.

Specifically, LION continuously monitors agents’ interactions at
run-time, searching for conflicts and creating norms to avoid them.
LION publishes the normative system that it currently handles (the
current active norms) so that agents make their decision consider-
ing whether to fulfil or infringe its norms. The outcome of agents’
decisions may (or may not) lead to conflicts. LION captures such
outcomes to evaluate how norms perform individually and to de-
tect pair-wise relationships between specific norms. From this,
LION updates the current normative system as follows. On the
one hand, LION employs the individual performance of norms to
either perform generalisations (when norms perform well) or spe-
cialisations (when a norm performs poorly). On the other hand,
LION exploits norm relationships to discard (deactivate) norms in-
volved in substitutability relationships. The heuristic employed to
make this decision is simple: given two substitutable norms, choose
to discard the one that causes less compactness loss provided that
it is not part of any complementarity relationships. Since deac-
tivating a norm leads to specialisation, and hence to losing com-
pactness, LION chooses to discard the norm that minimises such
loss. Overall, generalisation pursues compactness, complemen-
tarity safeguards performance, and discarding substitutable norms
provides liberality.

This section is thus organised as follows. Section.ldetails how
LION represents substitutability and complementarity relationships,
Section 2] explains how it detects these relationships and Sec-
tion [A3] details how it exploits them. Finally, Section .4] presents
LION’s multi-objective norm synthesis strategy, and Section[4.3]de-
fines metrics to evaluate normative systems.

4.1 Representing norm relationships

First, LION generalises the notion of Normative Network intro-
duced in [12]}, and referred to in Section[2] to represent norm rela-
tionships as follows:



DEF. 7 (GENERALISED NORMATIVE NETWORK). A generali-

sed normative network (GNN) is a tuple (N, Eg, Es, Ec, A, §) where:

(i) (N, Eg U Es U &Ee) is a graph such that: N is a set of norms
that correspond to the nodes in the graph; Eg C N x N is a set of
directed edges representing generalisation relationships ((n,n’) €
Eg means that n' generalises n); Es C N x N is a set of undi-
rected edges standing for substitutability relationships;, E¢ C N x
N is a set of undirected edges standing for complementarity rela-
tionships; and Eg, Es, Ec are pair-wise disjoint. (vi) A = {Active,
Inactive} is the set of possible states of a norm in N; (vii) 4 :
N — A yields the state of a norm in N.

Figure[2b shows a GNN built by LION after detecting substitutabil-
ity and complementarity relationships between norms. We notice
that specific norms ng and n1 hold a substitutability relationship;
specific norms ng and n11 hold a complementarity relationship;
and the rest of relationships (directed edges) stand for generalisa-
tions (nio generalises ng, ng and n7 generalises norms ni—ng at
different generalisation levels). Since norms m11,n10,n7 are the
only ones active (denoted by white circles), the GNN represents
the normative system 2 = {ni1, nio, n7}.

4.2 Detecting norm relationships

Next we describe how LION learns, at run-time, substitutability
and complementarity relationships between specific norms in the
GNN. We recall from Section 3.2l that a pair of concurrently ap-
plicable norms are substitutable if no conflicts arise whenever at
least one of them is fulfilled. Similarly, they are considered com-
plementary if any conflicts arise whenever at least one of them is
infringed. LION is an on-line process that progressively gathers evi-
dences, as they occur, to support whether a pair of norms are either
substitutable or complementary. Thus, given a pair of norms, if
the substitutability conditions in Def. [Sl occur a sufficient number
of times, namely for a sufficient number of states, LION considers
that the relationship holds. The same applies to complementarity.
When LION learns that either a substitutability or complementarity
relationship holds, it does represent it in the GNN.

LION proceeds as follows. Whenever it detects a new pair of
concurrently applicable norms (n, n'), it creates three utility series

<u£5/7u5{1/7u1F >

that accumulate the frequency in avoiding conﬂicts along time when-

ever n,n’ are fulfilled (F)) or 1nfr1nged . UFE, isa binary series

n,n’/
(uf Foooubf ) where uf gathers the evidence related to the

i-th time that n and n” were concurrently applicable and were both
fulfilled (FF). Specifically, u7 ¥ = 1 when both fulfilments did
not lead to an undesired state, and O otherwise. Analogously, we
define L{f n and Z/{,IL s for series where n is fulfilled and n’ is in-
fringed, and n is infringed and ' is fulfilled, respectively.
Gathering pair-wise evidences does not cover dependencies with
other norms in the current normative system, although accounted
undesired states may in fact be caused by third norms. This “noisy”
evidences cause fluctuations in the binary series. Therefore, as it is
usually the case for data streams, LION employs the cumulative
moving average [5]] to smooth out short-term fluctuations and high-
light longer-term trends when detecting substitutability and com-
plernentarity The cumulative average of a series Z/ln , is another

. Um), Where of'F

> u;

uj€UN T, 0 <

series UL o = (U1, .. is computed as follows:

" = (1)

i

the elements in Z/lf n and Z/li s are computed analogously.
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We consider that two concurrently applicable norms n,n’ are
substitutable whenever their cumulative averaged series are sim-
ilar. Since the Euclidean distance is one of the most used and
efficient time series (dis)similarity measures [24], we assess the
similarity between our series by means of the averaged Euclidean
distance, computed as follows:

Distance(l/?fzgz , Z/Alfi/) = - ?2)
being lmin the minirnum length of series Z/lf n and Z/{,fbJ /> Namely

lmin = mln(lun 7L’| | n, n’ |)

Thus, LION determines that two concurrently applicable norms n
and n’ are substitutable iff: (i) it accumulates enough evidence re-
garding the outcomes of the concurrent application of both norms;

and (ii) the distance between series U/, f F and L{f n as well as the
distance between series Z/{n s and Z/{n , are both below a given
threshold avsir, > 0. This amounts to verifying whether the fol-
lowing conditions hold:

~FF ~FI ~FI
[Up | > evalmin, Uy nr| > evalmin, [Up nr| > evalmin — (3)
. “FF FI
Distance(Uy, /s Up nr) < Qsim )
. “FF IF
Distance(Uy, /s Uy nr) < Qsim 5)

Along the same lines, LION considers that two concurrently ap-
plicable norms are complementary whenever their series Z/{n 18

greater than series L{f !, and L{i > and all them have a minimum
number of evidences. Formally, it corresponds to satisfying equa-

tions 3 [6l and [7t

Distance(l)fysuaifﬂ) > Qsim (6)

. ~FF 5IF
DistanceUy, n,Un.nr) > Qsim

@)

Whenever LION detects that two norms are substitutable or com-
plementary, it establishes the corresponding relationship in the GNN.

4.3 Exploiting norm relationships

As previously discussed, generalisation pursues compactness, com-
plementarity safeguards performance and discarding substitutable
norms provides liberality. Hence, at run-time, when LION detects
two substitutable norms, it should discard one of them, since it is
over-constraining the agents in the MAS. Nevertheless, LION does
not proceed directly, on the contrary, it exploits the relationships of
both norms so that the less generalised substitutable norm is dis-
carded provided that it is not complementary with another norm.

We recall from Section[2lthat deactivating specific norms implies
backtracking over (that is, undoing) norm generalisations, hence
leading to less compact normative systems. Therefore, before dis-
carding a substitutable norm, LION considers the ancestors of each
norm to determine its corresponding compactness loss and to choose
the norm having the lowest value. As detailed below, the compact-
ness loss of a norm n is related to the decrement in compactness
that the normative system will suffer in case norm n is deactivated,
or, in other words, its associated specialisation cost.

As an example, consider the GNN in Figure Ph representing the
normative system {nz,nio}. It contains two substitutable norms
n1,ng that are generalised by other norms. In particular, ng is
represented by an active norm n1o whose generalisation level is 1,
and n; is represented by an active norm n; whose generalisation
level is 2. Because of being more general, n7; compactly represents



Generalisation
level

(a) Substitutable norms

Level 2

Level 1

Level 0

Level 2

Level 1

Complementarity

Figure 2: Norm relationships: solid arrows stand for (non-
symmetric) generalisation; dashed lines for substitutability (sym-
metric) and solid lines for complementarity (symmetric).

a greater number of norms than nig. At this point, LION must
decide whether to discard ng or n; because they are substitutable.
Since deactivating n; would imply in specialising n7, we consider
that n; has a higher specialisation cost than ng, and thus, LION will
deactivate norm ng instead.

Specifically, LION uses equation [§] to compute the compactness
loss of a norm n as the sum of the generalisation degrees of its
ancestors in the GNN graph.

>

n'! € ancestors(n)

Closs (TL7 GNN) = Gdeg (TL,7 GNN) (8)

where gqeq(n’, GNN) is the generalisation degree of a norm n’ in
the normative network, which is computed by means of equation[B}

©))

where: children(n) is a function that assesses the norms that n
directly generalises (those norms n has an incoming generalisation
relationship with); level(n) is the generalisation level of n; and
k > 1 a constant factor.

Figure Pb helps to illustrate these computations. The compact-
ness loss of norm n; is the sum of the generalisation degree of
its ancestors ns,n7. In particular, since ns has a generalisation
level of 1 and has two children (n1, n2), its generalisation degree is
Jdeg(ns, GNN) = 2k. Analogously, norm n7 has a generalisation
degree ggeq(ns, GNN) = 2k? because its generalisation level is 2
and it has 2 children (ns and ne). As aresult, Cjoss(n1, GNN) =
2k +2k?, which is greater than Cjoss(n9, GNN) = 2k. Therefore,
LION chooses to deactivate ng.

Regarding complementarity relationships, Figure b depicts an
alternative situation during the synthesis process where the norma-
tive network contains, not only substitutable norms n1, ng, but also
a complementarity relationship between norm ng and norm n11. In
this case, since LION prioritizes the preservation of complementary
norms, it will keep ng active and will choose to deactivate n;.

Algorithm [I] details how LION exploits norm relationships to
choose which norm to discard (i.e., deactivate) from a pair of sub-
stitutable norms. Given two substitutable norms na, np, it first
checks if any of them is complementary to other norms in the nor-

Gdeg(n, GNN) = |children(n)] - k"""

mative network (lines 3-4) in order to preserve complementary norms

(lines 5-8). If none of them is complementary, then it marks to
substitute the norm with the lowest compactness loss (lines 9-13).
Otherwise, in case there are no complementarity relationships with
other norms and their compactness losses are equal, then LION ran-
domly marks to deactivate one of them (line 15). It then returns
(line 16) the norm that has been chosen to be substituted.
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Algorithm 1 Choosing a substitutable norm to discard

1: function CHOOSETODISCARD(n 4 , n5, GNN)

2: toDiscard <+ null

3: nACompl < hasComplementarity(na, GNN)
4: nBCompl < hasComplementarity(ng, GNN)
5:  if nACompl and not nBComypl then

6: toDiscard < np

7. if nBCompl and not n.ACompl then

8: toDiscard < na

9:  ifnot nACompl and not nBCompl then

10: if Closs(na, GNN) > Cioss(np, GNN) then
11: toDiscard < np

12: elseif Cjpss(na, GNN) < Cioss(np, GNN) then
13: toDiscard < na

14: else

15: toDiscard < random(na,ng)

16: return toDiscard

4.4 Norm synthesis strategy

We have so far described how to detect substitutability and com-
plementarity relationships between norms. Furthermore, we have
detailed how these relationships can be exploited to minimise the
number of constraints imposed on the agents, while preserving the
compactness of normative systems to the greatest possible extent.
‘We now introduce a novel norm synthesis strategy that detects and
exploits substitutability and complementarity relationships.

Algorithm[]describes LION’s norm synthesis strategy, which re-
ceives as input a transition (s, A, s") with the system states before
(s) and after (s”) the performance of A; the set C' € S of undesired
states of the system; and the generalised normative network GNN.
Initially, the strategy performs norm generation if the current state
s’ is undesired and LION has never generated norms aimed at avoid-
ing it (line 2). If this is the case, it creates norms aimed at avoid-
ing s’ in the future (line 3). We borrow normCreation and other
basic operations such as normApplicability, normFEvaluation,
generalise Up or specialiseDown, from the SIMON algorithm [13].
Next, it retrieves those norms that have been applicable to the agents
in state s (line 4), and computes concurrently applicable norms
(line 5). Then, the strategy evaluates if applicable norms have suc-
ceeded in avoiding conflicts in s’ (a norm is considered to perform
well if it was applicable at the previous state s, and the current state
s’ is not undesired) (line 6). Afterwards, it classifies each applica-
ble norm (line 9) to assess if (i) it is has performed well so far; (ii)
it is generalisable with another norm in the normative system; (iii)
it is substitutable with another norm in the normative network; and
(iv) it is complementary with another norm in the normative net-
work. Thereafter, the GNN is updated with the newly discovered
substitutability and complementarity relationships (line 12). Next,
the algorithm exploits norm classifications to refine the normative
system. Different operations are carried out depending on the out-
come of the classification:

o Underperforming norm. If a norm underperforms in terms of
effectiveness or necessity, it must be specialised. Thus, the algo-
rithm deactivates the norm and specialises down the norm’s chil-
dren in the GNN (lines 14-15). This undoes (backtracks over)
all the generalisations involving the underperforming norm.

o Generalisable norm. If a norm is generalisable with another
norm, it generalises them up in the GNN (lines 17-18).

o Substitutable norm. If a norm is substitutable with other norms,
the algorithm retrieves all the norms it is substitutable with (lines
19-20). For each norm it is substitutable with, it invokes Algo-
rithm [ to choose which of them must be discarded (line 22).
The chosen norm is subsequently deactivated and specialised
down in the GNN (line 24).



Algorithm 2 LION’s norm synthesis strategy
1: function LIONSTRATEGY((s, A, s’), C;, GNN)

2: if s’ € C and not regulated(s’, GNN) then
3: GNN « normCreation({s, A, s’), GNN)
4: applicableNorms < normApplicability(s, GNN)
5: concurrentNorms <— normConcurrency(s, GNN)
6: performances + normBEvaluation(s’, applicableNorms)
7. classifiedNorms < ()
8: for all n € applicableNorms do
9: n < classify(n, performances, concurrentNorms)
10: if isClassified(n) then
11: classifiedNorms < classifiedNorms | J{n}
12: GNN < update(GNN,n)
13: for all n € classifiedNorms do
14: if underPerforms(n) then
15: GNN <« specialiseDown(n, GNN)
16: else
17: if isGeneralisable(n) then
18: GNN < generaliseUp(n, GNN)
19: if isSubstitutable(n) then
20: substitutable Norms <— getSubstitutable(n, GNN)
21: for all n’ € substitutableNorms do
22: discard <+ chooseToDiscard(n,n’, GNN)
23: if discard # null then
24: GNN < specialiseDown(discard, GNN)
25 return GNN

The algorithm ends by returning the possibly updated GNN, which
contains the normative system that will be communicated to the
agents.

4.5 Analysing normative systems

Next we establish how to measure and compare normative sys-
tems in terms of the synthesis objectives pursued by LION, namely
in terms of compactness, liberality, and regulative performance.

The literature in norms research has considered different met-
rics to evaluate normative systems. In particular, [7] introduces
minimality and simplicity as criteria for the off-line synthesis of
norms. While minimality measures the number of constraints in
a normative system, simplicity measures the cost of agent reason-
ing with its norms. Based on these concepts, in [13], normative
systems are evaluated in terms of their minimality and simplicity.
There, the minimality of a normative system is computed as the
number of norms it contains, and simplicity is assessed as the to-
tal number of norm predicates. However, we recall that a norm
may compactly represent several specific norms (e.g. in Figure
[h, norm n7 represents four specific norms n1, ne, n3, n4). There-
fore, the interpretation of minimality in [13]] disregards the actual
number of specific norms that a normative system represents. This
requires a more fine-grained measure of minimality. Thus, we
define the representation minimality of a normative system € as
R(Q2) = |Uneq specific(n)|, where specific(n) stands for the spe-
cific norms represented by norm n. From this definition it follows
that the less the representation minimality of a normative system,
namely the fewer the number of constraining (specific) norms, the
greater the freedom for the agents. We consider that the notion of
representation minimality more accurately captures the concept of
minimality originally introduced in [7].

We notice that minimality and simplicity provide compactness
measures. In order to compare whether a normative system is more
liberal than another, we rely on the “more liberal than” relation-
ship between normative systems introduced by Agotnes et al. in
[1]. Hence, in this work we say that a normative system {2 is
more liberal than another ' if the norms represented by 2 are in-
cluded in those represented by Q', namely if Uncqspecific(n) C
Unr eqr specific(n’). We will also assess the substitutability of a
normative system as the number of substitutability relationships
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that it contains. This provides a measure of the lack of liberal-
ity of a normative system: the more substitutability of a normative
system, the bigger the opportunity to synthesise a more liberal one.

Finally, regarding regulative performance, we resort to the mea-
sures of effectiveness and necessity defined in [13]. These allow us
to quantify how good a normative system is at regulating a MAS
and how necessary its norms are for regulating.

S. EMPIRICAL EVALUATION

We now compare LION with SIMON [13] along several dimen-
sions. We first analyse the liberality of the normative systems syn-
thesised by both approaches, and show that the normative systems
synthesised by LION are more liberal than those synthesised by SI-
MON. We observe that the key to LION being more liberal than SI-
MON is that LION manages to detect and discard, on average, 90%
of the substitutability relationships within SIMON’s most-frequently
synthesised normative system. Thereafter, we perform a further
analysis to quantify the performance of SIMON’s multi-objective
synthesis. We observe that the representation compactness and per-
formance obtained by LION is similar to SIMON’s. This comes at
some extra cost of LION’s synthesis process.

Empirical settings. Our experiments use the same scenario and
experimental settings described in [13]. We run a discrete-event
simulation of a traffic junction, whose agents are autonomous cars,
and undesired states are those where cars collided. Each simula-
tion employs some norm synthesis mechanism (either LION or SI-
MON) that monitors the simulation and synthesises norms for the
cars. Every time the norm synthesis mechanism at use changes the
normative system, it sends the new normative system to the cars.
At each tick, each car decides whether to fulfil or infringe norms
according to some norm infringement probability, which is fixed
to 0.3 and is the same for all cars. To detect substitutability and
complementarity, we set the minimum number of samples for the
utility series of a pair of norms (Z:{:LF e, Z;If I, and Z;lii,) to 20
(evalmin = 20). Moreover, we set (usim,, the threshold employed
to detect substitutability and complementarity in equations [ 3] [6]
[7 to 0.05. Finally, we set to 10 the constant factor k£ employed to
compute the generalisation degree of a norm in equation [0

We performed 200 simulations with LION and 200 simulations
with SIMON. Each simulation started with an empty normative sys-
tem. The syntax of norms is the one described in Section2t three
predicates describe the perceptions of a reference car from its three
front positions (relative heading of another car, a wall, nothing, or
anything). We considered that a simulation converged to a norma-
tive system if during a 5000-tick period: (i) the normative system
remained unchanged; and (ii) no new conflicts (those that had not
been regulated by any norm yet) occurred. Thus, conflicts arising
from norm violations are disregarded when assessing convergence.

Liberality analysis. Our first comparison focuses on the liberality
of the normative systems that LION and SIMON managed to syn-
thesise upon convergence. We notice that both LION and SIMON
converged in all simulations. Figure [3] graphically represents the
relationship “more liberal than” between LION’s and SIMON’s nor-
mative systems. Each circle represents a different normative sys-
tem. The squared figure on top of each circle stands for the number
of times (out of 200 simulations) it was synthesised. White circles
represent LION’s normative systems, while gray circles represent
SIMON’s normative systems. For instance, {2, is a normative sys-
tem that was synthesised by SIMON 179 times. The “more liberal
than” relationship is represented by the subset relationship between
circles. For instance, since (27 is contained in §2; then we say that
7 is more liberal than ;.



Figure 3: Normative systems synthesised by LION and SIMON.

We observe that SIMON converged to 6 different normative sys-
tems (€21, . .., 6). Specifically, 90% of the times (179 out of 200
simulations), it converged to normative system 2;, which corre-
sponds to the one previously depicted in Table [l As to LION, it
synthesised 21 different normative systems (Q7, ..., Q27). Nev-
ertheless, those normative systems where not evenly distributed.
Thus, 90% of the simulations (180 out of 200) synthesised just 6
normative systems (27, ...,{212), whereas the remaining norma-
tive systems (Q13, . . ., Q27) where only synthesised by 10% of the
simulations. As shown in Figure[3l 81% of LION’s normative sys-
tems (from €27 to 223) are more liberal than (are contained in) 21,
namely SIMON’s most frequent normative systenﬂ. 81% of LION’s
normative systems were synthesised in 96% of simulations, and
thus we can state that LION converged to normative systems more
liberal than €2; for 96% of simulations. The remaining normative
systems have similar (slightly better) metrics than SIMON’s €2;.

Now we analyse why 81% of LION’s normative systems are more
liberal than €2;. With this aim, we compute the number of sub-
stitutability relationships in LION’s and SIMON’s normative sys-
tems. We carry out this computation by means of simulation. For
each normative system, we run a simulation that performs pairwise
comparison between its norms to check if they are substitutable.
For each pair of norms in the normative system, the simulation
proceeds by having two cars fulfil/infringe the norms, checking
whether conflicts arise or not after fulfilments/infringements, and
hence detecting substitutability according to Definition[3l As de-
picted in Figure [ on average, LION’s normative systems manage
to get rid of 90% of the substitutability relationships that SIMON’s
€)1 contains. Furthermore, it managed to detect and preserve the
100% of complementary norms in SIMON’s €2;.

Multi-objective synthesis analysis. Figure [4] summarises the av-
erage savings obtained by LION’s multi-objective synthesis process
with respect to SIMON. First, following the observation above, the
success in detecting and discarding substitutable norms translates
into a reduction in representation minimality, which is our measure
to quantify the gain in liberality. More precisely, the normative
systems synthesised by LION contain 21% less specific norms than
those synthesised by SIMON. Therefore, LION’s normative systems
are less restrictive than SIMON’s normative systems. Second, re-
garding effectiveness and necessity, LION’s normative systems are
similarly effective in avoiding conflicts (in fact, slightly, 2.73%,
more effective), while they are more necessary (11% higher). This
comes at no surprise because SIMON’s normative systems contain
substitutable norms. We recall that two substitutable norms satisfy
the same regulatory needs, and hence only one of them (but at least

3For clarity, Figure [Blonly shows 7 out of the 17 LION’s normative systems that are
more liberal than ;. Normative systems 214, ..., {223 are all more liberal than
€27 but each one is only synthesised once by LION.
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Figure 4: LION savings with respect to SIMON’s most frequently
synthesised normative system.

one of them) is actually necessary. Third, as to compactness, al-
though LION’s and SIMON’s normative systems can be considered
to be equally minimal (LION is 0.1% more minimal), the first ones
are 28% less simple. In other words, LION’s normative systems
have as many norms as SIMON’s, but the norms in LION’s norma-
tive systems have more predicates. This is reasonable if we con-
sider that discarding substitutable norms involves specialising gen-
eral norms, and hence leads to normative systems whose norms are
more specific (and thus have a larger number of predicates). Notice
though that these benefits come at some extra cost: LION requires
27.81% extra time to converge, since it performs extra tasks to cap-
ture norm synergies, as well as to deactivate substitutable norms.

6. CONCLUSIONS AND FUTURE WORK

The aim of our work is to automatically synthesise compact,
well-performing and liberal normative systems for open multi-agent
systems that respect the autonomy of agents to the greatest extent
possible. We argue that, on the one hand, the resulting normative
system that is synthesised on-line should: i) be able to regulate
agent interactions in a seamless way; ii) be as compact as possi-
ble to limit agents’ norm reasoning effort; and iii) impose as few
restrictions as possible, to respect the autonomy of agents to the
greatest extent possible. On the other hand, we also highlight that
norms within normative systems can present non-apparent syner-
gies that have been hitherto unexplored in the literature. In this pa-
per, in addition to considering generalisation relationships that have
been proven to help to synthesise compact normative systems, we
propose LION, a Llberal On-line Norm mechanism that includes
substitutability and complementarity norm relationships to pursue
liberality without compromising efficiency.

We provided experimental evidence to assesses the quality and
relevance of our proposal. In particular, we reported on experi-
ments in which 96% of the time LION synthesised normative sys-
tems that are more liberal than those produced by the best-of-class
approach, SIMON [[13]. Specifically, they remove 90% of its substi-
tutability relationships. This is accomplished without compromis-
ing minimality, effectiveness, or necessity. In future work we plan
to study its application to other scenarios such as self-regulation
of on-line communities as well as to employee-driven creation of
best-practices for professional bodies.
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